SET FUNCTIONS AND SOUSLIN'S HYPOTHESIS

DOROTHY MAHARAM

1. Introduction. It is known¹ that Souslin's hypothesis² is implied by the existence of a nontrivial outer measure on every field of sets satisfying certain conditions. We shall here prove that Souslin's hypothesis is equivalent to the existence, on a wide class of fields of sets, of set-functions of a certain type. The axiom of choice is assumed, but not the continuum hypothesis.

Instead of working with fields of sets, it is more convenient to use the equivalent notion of a (finitely additive) Boolean algebra, E.⁸ We say that $x, y \in E$ are *disjoint* if $x \land y = o$, and that they *intersect* otherwise. A set S of elements of E will be called a *Souslin system* if it satisfies the following three postulates:

- (1) $S \ni o$, and whenever s, $s' \in S$, then either $s \land s' = o$, or $s \ge s'$, or $s' \ge s$.
- (2) If $A \subset S$ consists of pairwise disjoint elements only, then A is (at most) countable.
- (3) If $A \subset S$ is such that every two of its elements intersect, then A is countable.

Souslin's hypothesis is known to be equivalent to the assertion that every Souslin system is countable.4

THEOREM. Souslin's hypothesis is true if and only if there exists, on each non-atomic Boolean algebra E satisfying the countable chain condition, a real-valued function f such that (i) $x \ge y \rightarrow f(x) \ge f(y)$, (ii) $f(x) = 0 \leftrightarrow x = 0$, and (iii) given $x \in E - (0)$ and $\epsilon > 0$, there exists $y \in E - (0)$ such that y < x and $f(y) < \epsilon$.

- 2. "If." Suppose an uncountable Souslin system exists. Then, as easily follows from $[2, \S 7]$, there exists a complete Boolean algebra E, satisfying the countable chain condition, and an uncountable Souslin system $S \subset E$ having the following additional properties:
- (4) $S = US_{\alpha}$, where α ranges over all countable ordinals, and the elements of each S_{α} are pairwise disjoint.
- (5) If $\alpha < \beta$, then for each $s_{\beta} \in S_{\beta}$ there exists an s_{α} ($\in S_{\alpha}$) such that $s_{\alpha} > s_{\beta}$.

Received by the editors August 12, 1947.

¹ See [2]; in the case of a measure, the result is due to K. Gödel. Numbers in brackets refer to the bibliography at the end of the paper.

² Souslin, Fund. Math. vol. 1 (1920) p. 223.

³ See [2] for notations, and so on.

⁴ This follows from [3], together with some results in [1].

- (6) If $\alpha < \beta$, $s_{\alpha} = V\{s_{\beta} | s_{\beta} < s_{\alpha}\}$.
- (7) For each $x \in E$, there exists an α such that

$$x = V\{s_{\alpha} | s_{\alpha} \leq x\}.$$

(In the notation of [2], we have only to take E = (D + 2N)/N, and the elements s_{α} are the equivalence classes $c_{\alpha} \mod N$. The notation s_{α} is intended to imply that $s_{\alpha} \in S_{\alpha}$, and so on.)

Clearly E is non-atomic, so by hypothesis there exists on E a real-valued function f having the properties (i)-(iii) of the theorem.

Now, for a given positive integer n, each $s \in S$ for which f(s) < 1/n is contained in a maximal such element of S, say m(s, n); in fact, if $s = s_{\beta}$, we have that for each $\alpha \leq \beta$ there is a (unique) $s_{\alpha} \geq s_{\beta}$, and we take $m(s, n) = s_{\alpha}$ for the smallest α for which $f(s_{\alpha}) < 1/n$. Let M_n denote the set of all elements m(s, n) (for fixed n); clearly the elements of M_n are pairwise disjoint, so that each M_n is countable. The desired contradiction is now obtained by showing that S is countable after all; and this will follow (in virtue of (3)) once it is established that:

- (8) Each $s \in S$ is greater than or equal to some m(s', n).
- But, given s, we have from (ii) that f(s) > 1/n for some n. By (iii), there is an $x \in E$ such that o < x < s and f(x) < 1/n. From (7) there exists an $s' \in S$ such that $s' \le x$; hence m(s', n) exists and is greater than or equal to s'. Now m(s', n) and s are not disjoint (for both are greater than or equal to s'); and m(s', n) > s, for f(s) > 1/n > f(m(s', n)). Hence $s \ge m(s', n)$, by (1).
- 3. "Only if." Let E be a non-atomic Boolean algebra satisfying the countable chain condition. By Zorn's lemma (or transfinite induction) there exists a maximal subset $S \subset E$ satisfying (1); and the countable chain condition ensures that (2) and (3) hold also. Hence, by Souslin's hypothesis, S can be enumerated as $\{s_n\}$ $\{n=1, 2, \cdots \}$ to ∞ ; it is easy to see that S is necessarily infinite), where for convenience we may suppose that the unit element e (which necessarily belongs to S) is s_1 . We assert:
 - (9) Given s_k , there exists $s_m < s_k$.

For, since E is non-atomic, there exists $x \in E$ such that $o < x < s_k$. If $x \in S$, there is nothing to prove. If not, since S is maximal, there must be an s_m such that $s_m \land x \neq o$, and s_n and x are incomparable. But then s_m intersects s_k , so either $s_k \leq s_m$ —which implies $x \leq s_m$ and so is excluded—or $s_k > s_m$, q.e.d.

Let ϵ_i denote either 1 or -1, and write $\epsilon_i s_i$ to denote s_i if $\epsilon_i = 1$, and the complement $-s_i$ if $\epsilon_i = -1$. For each finite sequence, $\epsilon_1 \epsilon_2 \cdots \epsilon_n$ of ± 1 's, we write $\bigwedge_{i=1}^{n} (\epsilon_i s_i) = t(\epsilon_1 \epsilon_2 \cdots \epsilon_n)$.

Now let $\{t^i\}$ be any infinite sequence of elements $t^i = t(\epsilon_1^i \epsilon_2^i \cdots \epsilon_{n(i)}^i)$ such that $1 \le n(1) < n(2) < \cdots$. We shall show that:

(10) If $a \in E$ is such that a is less than or equal to each t^i , then a = 0.

For suppose $a \neq o$. Then clearly ϵ_j^i is independent of i (provided only that $n(i) \geq j$), so that we may write $\epsilon_j^i = \epsilon_j$, and have that, for every j,

$$\epsilon_i s_i \geq a.$$

Hence $a \in S$ (else a could be adjoined to S without violating (1), and S is maximal); say $a = s_k$. From (9), $s_k > s_m$ for some m. But (11) gives $\epsilon_m s_m \ge s_k$ —a contradiction.

Now, given any $x \in E - (o)$, (10) shows that there will be a greatest n, say n(x), for which there exists an element $t(\epsilon_1 \epsilon_2 \cdots \epsilon_n) \ge x$. (Note that t(1) = e, so that n(x) is always defined.) We put f(x) = 1/n(x), and complete the definition by setting f(o) = 0. Properties (i) and (ii) are immediate. To verify (iii), suppose that $x \in E - (o)$ and $\epsilon > 0$ are given. Choose $n > \max(1/\epsilon, 1/f(x))$, and consider the 2^n (not necessarily distinct) elements $t(\epsilon_1 \epsilon_2 \cdots \epsilon_n)$ for all possible choices of $\epsilon_i = \pm 1$. The V of these elements is e, so at least one of them, say t, intersects x. Write $y = t \land x$; thus $o < y \le x$, and $n(y) \ge n$, so that $f(y) < \min(\epsilon, f(x))$, and (iii) is established.

4. Further remarks. (a) Let E be a non-atomic Boolean algebra satisfying the countable chain condition. It does not follow that the existence of a function f on E alone, satisfying conditions (i)-(iii) of the theorem, implies that every Souslin system in E is countable. In fact, this is false—unless Souslin's hypothesis is true. For if Souslin's hypothesis is false, there will be a Boolean algebra E_1 satisfying our conditions and containing an uncountable Souslin system S. (Cf. §2.) Let E_2 be (say) the algebra of measurable sets modulo null sets on the unit interval. We can regard E_1 and E_2 as the algebras of openclosed subsets of their respective representation spaces R_1 and R_2 . The "product" algebra $E = E_1 \times E_2$ can now be defined to consist of all finite unions of open-closed "rectangles" in the topological product $R_1 \times R_2$. For each $x \in E$, say $x = \bigcup_{i=1}^n (x_1^i \times x_2^i)$ $(x_2^i \neq 0)$ we define f(x)= measure of Ux_1^{ℓ} . It is easy to see that E and f fulfil all the requirements. Yet E contains an uncountable Souslin system S^* , formed by the cylinder sets on S.

It can however be shown that the countability of every Souslin system in E (where E is, as hitherto, non-atomic and satisfies the countable chain condition) is equivalent to the existence, for every non-atomic subalgebra F of E, of a function f (depending on F, in

general), defined on F and satisfying postulates (i)–(iii) for F. In one direction this is an immediate consequence of §3; the proof of the other implication, while using the same ideas as §2, is more complicated.

(b) The arguments of §§2 and 3 also readily give purely algebraic properties equivalent to Souslin's hypothesis. We have, for example:

Souslin's hypothesis is true if and only if each non-atomic Boolean σ -algebra satisfying the countable chain condition contains a double sequence of elements t_{ni} such that $(\alpha)V_{i}t_{ni}=e$ and (β) for every function i(n) of n, $\Lambda_{n}t_{ni}(n)=o$.

BIBLIOGRAPHY

- 1. Ben Dushnik and E. W. Miller, *Partially ordered sets*, Amer. J. Math. vol. 63 (1941) pp. 600-610.
- 2. Dorothy Maharam, An algebraic characterization of measure algebras, Ann. of Math. vol. 48 (1947) pp. 154-167.
- 3. E. W. Miller, A note on Souslin's problem, Amer. J. Math. vol. 65 (1943) pp. 673-678.

CAMBRIDGE, ENGLAND