
SET FUNCTIONS AND SOUSLIN'S HYPOTHESIS 

DOROTHY MAHARAM 

1. Introduction. It is known1 that Souslin's hypothesis2 is implied 
by the existence of a nontrivial outer measure on every field of sets 
satisfying certain conditions. We shall here prove that Souslin's 
hypothesis is equivalent to the existence, on a wide class of fields of 
sets, of set-functions of a certain type. The axiom of choice is as­
sumed, but not the continuum hypothesis. 

Instead of working with fields of sets, it is more convenient to use 
the equivalent notion of a (finitely additive) Boolean algebra, E.8 

We say that x, y&E are disjoint if xAy — o, and that they intersect 
otherwise. A set 5 of elements of E will be called a Souslin system if it 
satisfies the following three postulates: 

(1) S^o, and whenever s, s'(~S, then either sAsfs=to, or s^s', or 
s'^s. 

(2) If A C.S consists of pairwise disjoint elements only, then A is(at 
most) countable. 

(3) If A QS is such that every two of its elements intersect, then A 
is countable. 

Souslin's hypothesis is known to be equivalent to the assertion 
that every Souslin system is countable.4 

THEOREM. Souslin*S hypothesis is true if and only if there exists, on 
each non-atomic Boolean algebra E satisfying the countable chain condi­
tion, a real-valued f unction f such that (i) x^y—>f(x) Sè/OO, (ii) ƒ(#) = 0 
<-»# = 0, and (iii) given xÇzE-(o) and e>0, there exists yÇzE — (o) 
such that y <x and f(y) <€. 

2. "If." Suppose an uncountable Souslin system exists. Then, as 
easily follows from [2, §7], there exists a complete Boolean algebra E, 
satisfying the countable chain condition, and an uncountable Souslin 
system SC.E having the following additional properties: 

(4) S = U5«, where a ranges over all countable ordinals, and the 
elements of each Sa are pairwise disjoint. 

(5) If a<j3, then for each s$ £ Sp there exists an sa (£S«) such that 
Sa>Sp. 

Received by the editors August 12, 1947. 
1 See [2]; in the case of a measure, the result is due to K. Gödel. Numbers in 

brackets refer to the bibliography at the end of the paper. 
2 Souslin, Fund. Math. vol. 1 (1920) p. 223. 
* See [2] for notations, and so on. 
4 This follows from [3], together with some results in [ l] . 
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(6) It CL< & S*-V{sfi\s,<Sa}. 
(7) For each x&E, there exists an a such that 

x « V{*«|s« £ x}. 

(In the notation of [2], we have only to take E=*(D+2N)/N, and 
the elements sa are the equivalence classes ca mod N. The notation sa 

is intended to imply that s«£5«, and so on.) 
Clearly E is non-atomic, so by hypothesis there exists on £ a real-

valued function ƒ having the properties (i)-(iii) of the theorem. 
Now, for a given positive integer n, each 5 G S for which ƒ($) <l/n 

is contained in a maximal such element of 5, say m(s, n) ; in fact, if 
s^sp, we have that for each a^/3 there is a (unique) s«^S/3, and we 
take m(s, n) **s* for the smallest a for which ƒ($«) <l/w. Let ikfn de­
note the set of all elements m(s, n) (for fixed n) ; clearly the elements 
of Mn are pairwise disjoint, so that each ifcf» is countable. The de­
sired contradiction is now obtained by showing that S is countable 
after all; and this will follow (in virtue of (3)) once it is established 
that: 

(8) Each s SS is greater than or equal to some m(s\ n). 
But, given s, we have from (ii) that f(s) >\/n for some n. By (iii), 

there is an x&E such that o<x<s and f(x) <l/n. From (7) there 
exists an s'ÇzS such that s'£x; hence m(s', n) exists and is greater 
than or equal to s'. Now m($'f n) and s are not disjoint (for both are 
greater than or equal to s') ; and m(s', n) > s, for ƒ($) >l/n >f(m(s', n)). 
Hence s}£m(s', n), by (1). 

3. "Only if.w Let £ be a non-atomic Boolean algebra satisfying 
the countable chain condition. By Zorn's lemma (or transfinite induc­
tion) there exists a maximal subset SQE satisfying (1); and the 
countable chain condition ensures that (2) and (3) hold also. Hence, 
by Souslin's hypothesis, S can be enumerated as {sn} (n — 1, 2, • • • 
to oo ; it is easy to see that S is necessarily infinite), where for con­
venience we may suppose that the unit element e (which necessarily 
belongs to S) is $i. We assert: 

(9) Given Sk, there exists sm<Sk. 
For, since E is non-atomic, there exists x&E such that o<x<Sk. 

If %GS, there is nothing to prove. If not, since 5 is maximal, there 
must be an sm such that SmAx^o, and sn and x are incomparable. 
But then sm intersects Skt so either Sk£*sm—which implies x£sm and 
so is excluded—or Sk>sm q.e.d. 

Let u denote either 1 or —1, and write €»•$*• to denote Si if € t =l , 
and the complement —Si if €*•—— 1. For each finite sequence, 
ci€2 • • • €n of ±Ts, we write A" (€<5») ••*(«* • • • *»)• 
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Now let {**} be any infinite sequence of elements /*»f(€Î4 • • • ^a)) 
such that l£n(l)<n(2)< • • • . We shall show that: 

(10) If a £ E is such that a is less than or equal to each t*f then 
a = o. 

For suppose a 7*0. Then clearly $ is independent of i (provided 
only that »(i)^j) , so that we may write €*==€ƒ, and have that, for 
every j , 

(11) €jSj 2s a. 

Hence a £ S (else a could be adjoined to 5 without violating (1), and 
S is maximal) ; say a = 5*. From (9), $&>sm for some m. But (11) gives 

sk—a contradiction. 
Now, given any #££—• (0), (10) shows that there will be a greatest 

w, say #(#), for which there exists an element t(eit2 • • • O 2s#. (Note 
that tf(l)=e, so that w(#) is always defined.) We put ƒ(#) = l/ft(#), 
and complete the definition by setting ƒ (0) =0. Properties (i) and (ii) 
are immediate. To verify (iii), suppose that xÇ-E — (o) and €>0 are 
given. Choose «>max (1/e, l/f(x))t and consider the 2n (not neces­
sarily distinct) elements /(ei€2 •••€«) for all possible choices of 
€»•= ± 1 . The V of these elements is e, so at least one of them, say t, 
intersects x. Write y — t/\x\ thus o<y£x, and n(y)*£n, so that/(y) 
<min (e, ƒ(#)), and (iii) is established. 

4. Further remarks, (a) Let E be a non-atomic Boolean algebra 
satisfying the countable chain condition. It does not follow that the 
existence of a function f on E alone, satisfying conditions (i)-(iii) of 
the theorem, implies that every Souslin system in E is countable. In 
fact, this is false—unless Souslin's hypothesis is true. For if Souslin's 
hypothesis is false, there will be a Boolean algebra E\ satisfying our 
conditions and containing an uncountable Souslin system 5. (Cf. §2.) 
Let £2 be (say) the algebra of measurable sets modulo null sets on 
the unit interval. We can regard Ei and E2 as the algebras of open-
closed subsets of their respective representation spaces Ri and JR2. The 
"product* algebra E~EiXE2 can now be defined to consist of all 
finite unions of open-closed "rectangles " in the topological product 
i?iXi?2. For each xG.E, say # = UJ0xiX#2) (#2^0) we define ƒ(#) 
= measure of \Jx[. It is easy to see that E and ƒ fulfil all the require­
ments. Yet E contains an uncountable Souslin system 5*, formed by 
the cylinder sets on 5. 

It can however be shown that the countability of every Souslin 
system in E (where E is, as hitherto, non-atomic and satisfies the 
countable chain condition) is equivalent to the existence, for every 
non-atomic subalgebra F of E, of a function ƒ (depending on F, in 



590 DOROTHY MAHARAM 

general), defined on F and satisfying postulates (i)-(iii) for F. In one 
direction this is an immediate consequence of §3; the proof of the 
other implication, while using the same ideas as §2, is more com­
plicated. 

(b) The arguments of §§2 and 3 also readily give purely algebraic 
properties equivalent to Souslin's hypothesis. We have, for example: 

Sousliris hypothesis is true if and only if each non-atomic Boolean 
a-algebra satisfying the countable chain condition contains a double 
sequence of elements tni such that (a)V^nt = e and (j3) for every function 
t(n) Of n, hntniirO^O. 
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