
CONVEX FUNCTIONS 

E. F. BECKENBACH 

1. A problem of Cauchy. In 1821, Cauchy [19]1 proposed and 
solved the problem of determining the class of continuous real func­
tions ƒ(x) which satisfy the equation 

(1) /(*i)+ƒ(**) = / ( * i + * 2 ) 

for all real Xi and x^ I think you would enjoy reading Cauchy's 
elegant treatment of this simple problem. But possibly you would 
enjoy more solving it yourself, or seeing to what considerations you 
are led if you omit the hypothesis of continuity. 

The discontinuous solutions of (1) have been studied extensively. 
I have mentioned this equation because any solution of it satisfies 

'(^)='(?)+'(f) 
= y{Kf)-(T)M>(?)+'(?)] 
- y [««O+ƒ(*») 1. 

and therefore satisfies 

(2) / ( ^ - ) ^ y [ƒ(*,)+ƒ(**)], 

an inequality with which we shall be especially concerned. 

2. Definition of convex function. A real function/(x), defined in 
the interval a<x<b, is said to be convex provided that for all Xi and 
#2, with a<xi<x2<b, and for all positive qi and q% satisfying 31+32 
= 1, we have 

(3) f(qixi + £2*2) £ 3i/(*i) + qtffa). 

A convex function necessarily is continuous for a<x<b. 
Geometrically, the condition of convexity is that each arc of the 
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curve y *=f(x) lie nowhere above the chord joining the end points of 
the arc. 

If f"(x) exists at each point of the interval, then a necessary and 
sufficient condition that ƒ (x) be convex there is that we have 

ƒ"(*) à 0 (a < x < b). 

If the strict inequality in (3) holds throughout, we say that f(x) is 
strictly convex. The terminology varies, however, and some authors 
use the terms "non-concave" and "convex" in place of "convex" and 
"strictly convex," respectively. 

Similar definitions hold for concave functions. Briefly, f(x) is con­
cave if and only if —ƒ(#) is convex. 

3. Elementary properties and examples. Clearly if f(x) and g(x) 
are convex functions in the interval a<x<b, then f(x)+g(x) and 
max [ƒ(#), g(x)] are convex there, as is cf(x) for non-negative con­
stants c. 

The limit of a convergent sequence of convex functions is convex ; 
also, if it is finite, so is the upper envelope of a family of convex func­
tions. 

A convex function has a left-hand derivative and a right-hand de­
rivative at each point of (a, b). The right-hand derivative is not less 
than the left-hand derivative, and both are nondecreasing functions 
of x. It follows that these derivatives are equal except at most at the 
point of a denumerable set of points. 

If for fixed X\ and X2 in (a, b) the sign of equality in (3) holds at a 
single interior point of the subinterval (xi, #2), then the sign of equal­
ity holds throughout (xi, #2). 

In the part of (a, b) outside the subinterval (#1, #2), the graph of 
y=f(x) lies nowhere below the line through [xi, f(xi)] and [#2,/fe)]. 

The function \x — a\ is convex, its graph being F-shaped; therefore, 
for instance, so is the function 

g(x)m2\x\+\x- l | + | * - 2 | , 

the continuous graph of which consists of a succession of line-seg­
ments. Again, for the above function g(x), the function max [x2, g(x) ] 
is convex. 

The differentiation test shows that for x>0 the functions x log x 
and log 1/x are convex. 

4. Early history of convex functions. Convex functions were first 
defined and systematically studied by J. L. W. V. Jensen [34, 35] in 
1905, who adopted (2) as defining inequality. We shall say that a 
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function satisfying (2) for all xi and x2 in (a, b) is convex in the sense of 
Jensen, or briefly convex (J). For recognizing the importance of the 
class of convex functions and signalizing it, Jensen deserves great 
credit. 

Of course mathematicians were able before 1905 to recognize and 
utilize conditions under which the graph of a function turns its con­
vexity downward. 

Thus, as Jensen noted in an addition to his cited paper [35], in 
1889 Holder [32] had obtained the fundamental inequality 

( m \ m / m \ 

E w h S ^ W («<*/<M*>o, Z ) Î / - I ) , 
j w / j » i \ j=i / 

for the subclass of convex functions ƒ (x) for which ƒ "(x) is continuous 
in (a, b). The inequality (4) expresses the relation that the function 
value at the weighted average of the x/s is not greater than the 
weighted average of the function values at the x/s. 

Stolz [68] in 1893 showed that if ƒ(x) is continuous and satisfies 
(2), then ƒ(x) has a left-hand derivative and a right-hand derivative 
at each point of (a, b). 

Also in 1893, Hadamard [24] showed that if f(x) has an increasing 
derivative (so that ƒ(x) is convex), then for a<xi<x2<b we have 

ƒ ( — L - - ) < I f(x)da 
\ 2 / x2 — ffi*/ *i 

In 1896, Hadamard [25] announced the result which Landau [40] 
later glamorized by designating it the Three Circles Theorem: If 
f(z) is an analytic function of the complex variable z in the annulus 
a < | s | <b, and M{r\ \f\) denotes the maximum of \f(z)\ on the circle 
\z\ = r , then the graph of log M(r; \f\ ) as a function of log r turns its 
convexity downward. That is, log M is a convex function of log r. 

In 1897 and 1898, Hadamard [26, 27] observed that for a surface 
S given in geodesic representation, 

ds* = du2 + vHv* (ix > 0), 

the Gaussian, or total, curvature K is given at points where /i5^0 by 

1 ÔV* 
( 5 ) * - - - • — , 

ix du2 

so that if K is of one sign over all of 5, then d2fx/du2 is of the opposite 
sign. Thus if S is a surface of negative curvature, then JU(W, i>o) is a 
convex function of u. 
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Let 
00 

(6) X Ö/.**'W* 

be a power series in two complex variables, which is convergent for a 
pair of values Zo, WQ neither of which is zero. That is, every simple 
series formed from the terms of (6) converges for s = 3o, w — wo. Then 
(6) converges absolutely for all z, w satisfying \z\ < \zo\, \w\ < \ w0\. 
A pair of positive numbers r and p such that the series converges for 

z\ <r and \w\ <p simultaneously, but diverges for \z\ >r and 
w\ >p simultaneously, is called a pair of associated radii of conver­

gence. Thus for 

A 1 
,=o 1 — zw 

clearly rp = l, so that l/p = r and log 1/p = log r. 
In 1902, Fabry [22] showed that if r and p are associated radii of 

convergence, then log 1/p is a convex function of log r, as illustrated 
in the above example. Faber [2l] and Hartogs [3l] showed con­
versely that if r and p are positive variables such that log 1/p is a 
convex function of log r, then there exist series of the form (6) fpr 
which r and p are associated radii of convergence. 

Minkowski [44] in 1903 studied convex bodies by means of Stiitz-
funktionen, which are particular convex functions of more than one 
independent variable. 

Possibly the convexity of some significant convex functions which 
were studied before 190S was recognized though not mentioned. Let 
f(z) be analytic for |z| gr , with a zero of order rn^O at 2 = 0, so that 

ƒ(*) » *mg{z)> 

where g(0) 5^0, and let the moduli of the zeros oif(z) in 0 < | z\ <r be 
ru 2̂, • • • i rn, with 0 O i < r 2 S • • • S*V Then we have the familiar 
formula 

g(0) I r w + n 

(7) r f ' log | f(re«)\d0 - log-

which can be written as 
1 C ix, i ., .« I „ I «(0) I rm+n 

(8) m0(r; | ƒ | ) m exp - f ' log | /(r«*•) 
lirJ o ^1^2 • ' * fn 

Thus as r increases from r = 0, the exponent tn+n increases by in-
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tegral amounts at the moduli of the zeros of ƒ(z), and the geometric 
mean 9D?o(r; | / | ) is, by successive intervals some of which might be 
degenerate, constant out to the modulus of the first zero of ƒ(*), then 
a linear function of r, then a quadratic, and so on. 

Clearly it follows from (7) and (8) that log 2ft0(r; | / | ) is a convex 
function of log r; this is a limting case of a theorem established by 
Hardy [29] in 1914. Actually it follows also from (8) that 9#0(r; | / | ) 
is a convex function of r [ó]. However, the discoverer of (7) remarked 
in this connection only that the left-hand member of (7) is a non-
decreasing function of r. Established in 1898, (7) is known as Jensen's 
formula [33]. 

5. Functions convex in the sense of Jensen. If f(x) is convex, then 
f(x) satisfies (2) as special case of (3) ; that is, if f(x) is convex, then 
f(x) is convex in the sense of Jensen, or convex ( / ) . Conversely, if 
f(x) is continuous and convex ( / ) , then ƒ(x) is convex. But, though a 
convex function must be continuous, a function which is convex (J) 
is not necessarily continuous. 

As Hamel [28] showed in 1905, the existence of discontinuous func­
t i o n s / ^ ) which satisfy (1) is readily established by means of a Hamel 
basis B for the real numbers. 

A Hamel basis B for the real numbers is a set of real numbers 6, 
the elements of B} such that each real xj*0 has a unique representa­
tion of the form 

n(x) 

where n(x) is finite, the ry are rational numbers with r / ^O, and the 
bj are elements of B. 

The general solution of (1) is given by 

ƒ(*) - / ( Z rfi) = E rif(b,) (x * 0; /(O) - 0), 

where ƒ(&) denotes an arbitrary function on B. 
Since the set of real numbers is non-denumerable, and the r, are 

rational, the set of elements of B must be non-denumerable, and 
therefore there must be an accumulation point po of B in B. If, for 
instance, we define ƒ(b) to be 0 on B except at the accumulation point 
po, and take f(po) = 1 , then f(x) necessarily is discontinuous at po. 

To obtain a discontinuous function which is strictly convex (J ) , we 
might then, for instance, add x2 to the above function ƒ(#); or we 
might take the function 
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ƒ*(*) = max [x\f(x) + %*], 

which is bounded from below by y — x2. 

6. Generalizations of convex functions. In 1908, Phragmén and 
Lindelof [Si] showed that if f(z) is an entire function of finite order p, 
then the function 

log | f(rei6) | 
h(6) 22 lim sup 

has the following property: If O<02—0i<7r/p, and H(0) is the function 
of the form 

A cos p0 + B sin p0 

which coincides with h(d) at 0i and at 02, then for 0i <0<0 2 we have 

h(fi) ^ H(fi). 

Accordingly, h(0) is said to be a sub-trigonometric function. Pólya 
[53] showed that sub-trigonometric functions have certain differen­
tial properties in common with convex functions, and Valiron [69] 
extended the analysis to functions ƒ(x) dominated by functions of the 
form 

A<t>(x) + B\[s(x) 

for suitably restricted functions </>(x) and $(x). 
More generally, let {F(x)} be a family of continuous functions 

F(x) defined in an interval a<x<b, such that for given P i : (xi9 yi) 
and P 2 : (x2, 3>2), with a<Xi<X2<b, there is a unique member of 
{F(x)} through Pi and P2 . Functions f(x) dominated by {F(x)} 
might be said [ l ] to be convex relative to {F(x)}. With Bing [S], we 
have defined functions which are convex (J) relative to {F(x) ) . 

There are families {F(x)} which are not topologically equivalent 
to the family {L(x)} of all non-vertical line-segments terminating on 

b. And there are families {F(x)} such that f(x) might be 
convex relative to {F(x)} yet nowhere differentiate. But many 
properties of convex functions, particularly those concerning measure, 
do hold for these general functions. 

In terms of divided differences of order n} Popoviciu [55] has de­
fined convex functions of order n. If a convex function ƒ(x) of order n 
and a polynomial p(x) of degree n (or less) have equal values for 
n+1 values of x, then alternately ƒ (x) Sp{oc) and f(x)^p(x) in the 
successive subintervals bounded by these n+1 values of x. 

My colleague Drandell [20 ] is combining the notions of functions 



1948] CONVEX FUNCTIONS 445 

convex relative to {F(x)} and of convex functions of order n. Added 
in proof: Shortly before the delivery of this address, results in this 
same program were announced by Tornheim in Bull. Amer. Math. 
Soc. vol. 53 (1947) pp. 1119-1120. 

A function f(x, y) is said to be doubly convex provided that, in its 
domain of definition, ƒ(x, y) is a convex function of x for each y, and 
a convex function of y for each x. Thus/ (x , y) ^xy is doubly convex 
Of several additional generalizations of convex functions ƒ(#), we 
shall later consider two additional generalizations to functions of two 
(or more) independent variables; these are (i) convex functions of 
P : (#, y)y and (ii) subharmonic functions. 

To indicate the possibility of yet another generalization, we recall 
the inequality of Steiner [42]: For two continuous surfaces 

Si: z = zi(x, y), S2: z = z2(x, y), (x, y) in Rf 

where R is a Jordan region, let 5 defiote the surface 

S: z = [zi(x, y) + z2(x, y)]/2. 

If A (5) denotes the area of 5, then we have 

A(S)S [AÇS0 + AÇS*)]/2. 

7. Measure and connectedness. Investigations of the discontinu­
ous solutions of (1) and (2) have been concerned particularly with 
properties of measure and connectedness. 

Jensen [35] proved that if f(x) satisfies (2) and is bounded from 
above, then f(x) is continuous. This result has been extended by 
Bernstein and Doetsch [9], Blumberg [ l l ] , Sierpenski [67], and 
Ostrowski [49]. 

If f(x) is convex (J) and is not continuous, then f(x) cannot be 
bounded on any subinterval or even on a set of positive measure; ƒ(x) 
cannot be a measurable function ; and either the set M of points of the 
graph of y=f(x) is dense in the entire strip a<x<b, — <*> <y< + °°, 
or there is a continuous convex function <f>{x) such that the set M lies 
in a<x<b, cj>(x) <;y< + <*>, and is dense there. For example, the 
graph of the above function ƒ*(#) is dense in the part of the plane 
above y=x2. For any circular disc D such that M is dense in D} the 
^-projection of the part of M in D has zero interior measure and 
positive exterior measure. 

I t has been shown by Jones [36] that the graphs y—fix) of the dis­
continuous solutions of (1) serve to illustrate relatively easily certain 
weird topological properties of connected sets. Thus there are discon­
tinuous solutions of (1) for which the graphs are connected, and 
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others for which the graphs are totally disconnected. But even though 
the graph might be connected, it must be punctiform; that is, it can 
contain no nondegenerate continuum. 

We shall return to considerations of measure and connectedness in 
discussing convex sets. 

8. Convex sets. A set S of points in the plane or in space is convex 
provided that for each pair of points Pi and P% in 5, the entire line-
segment P1P2 is contained in S [44, 13]. 

A function /(P) , defined on a convex set 5, is said to be convex 
provided that for each pair of points Pi and P2 in 5, and for all posi­
tive Q\ and £2 satisfying #1+22 = 1, we have 

f(qiPi + (72P2) g <7i/(Pi) + qrfiPt), 

where qiPx+qzP* has its obvious meaning. 
To illustrate the connection between convex functions and convex 

sets, I shall state a simple theorem suggested to me by Newburgh, one 
of my colleagues; I think you might enjoy supplying the few lines nec­
essary for its proof. 

THEOREM. For a closed set S and a variable point P, let 

d(P; S) s min distance (P, Q). 
QonS 

A necessary and sufficient condition that S be a convex set is that d(P; S) 
be a convex function of P. 

Two of my colleagues, Green and Gustin [23], have defined sub-
convex sets 5 of points as follows. Let X denote a non-null set of 
points in the interval 0 < # < 1 . Then the set S is sub-convex, or convex 
relative to X, provided that for each pair of points Pi and P% of S, all 
the points of the image of X under the homothetic mapping of the 
line-segment 0 < x < l on the line-segment PiP2 are contained in 5. 

If S is convex, then S is convex relative to any X. 
Green and Gustin have found that many properties concerning 

measure and connectedness of solutions of (1) have analogues in the 
theory of sub-convex sets. Thus if a set 5, convex relative to X, 
contains a nonlinear continuum, or is of positive interior measure, 
then 5 is nearly convex; that is, there is a convex set T such that S is 
contained in P, and S coincides with T except for the possible omis­
sion of part of the boundary of T. Again, if a set 5, convex relative 
to X, contains a nonlinear connected set, then 5 is connected. 

9. Inequalities. Jensen gave the study of (algebraic) inequalities as 
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principal object of his investigation of convex functions. He showed 
that the basic inequality (4) holds provided f(x) is convex (J) and 
the qj are rational, whence it follows that if f(x) is continuous and 
convex (J) then the hypothesis that the qj are rational can be 
dropped. 

The inequality (4) has been generalized by McShane [43]. 
Applications of (4) to certain convex functions yield familiar alge­

braic inequalities, including the three which are usually taken to be 
fundamental: the inequality between the geometric and arithmetic 
means, the inequality of Holder, and the inequality of Minkowski. 

Thus from the convexity of —log x for x>0 we obtain [54] 

(
w \ n n 

z) wn ^ - m Ci iog ai = - log n <# o? > 
0) 

or 

(9) n«^Iw;, 
/=1 j= l 

which is the inequality between the geometric and arithmetic means. 
Holder's inequality can be obtained from (9), and Minkowski's 

inequality follows from Holder's [65]. 
The inequality between the geometric and arithmetic means is a 

special case of a more general inequality [lO]. We define the mean 
of order / for positive values (a) s= (ax, a2, • • • , a»), n ^ 2, and positive 
weights (a)ss(2 l , g2, • • • , qn) with 227-i ffi^1» bY 

( n A l / < 

2 q&n ( - °° < t < o or o < t < + co), 
and 

n 
9tto(<*; ç) = I I 0*y, Stt-coO*; #) = min (a), 5DÎ+00(aî g) = max (a). 

/=i 

Thus for / = — 1, 0, 1, and 2, SD?* is respectively the harmonic mean, 
the geometric mean, the arithmetic mean, and the "root-mean-
square. " 

For positive continuous functions f(x) and q(x) in (a, &), with 
Jlq{x)dx~l, the integral analogue of %Jlt(a; q) is given by 

2».tf;?)- { ƒ \(«)[ƒ(*)]tf*}1" 

( - » < J < 0 or 0 < t < + oo), 
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and 

9W-.oo(/; q) = min ƒ (s), S0î+«,(/î g) « max ƒ(*), 

SWo(/î ?) s exp I ç(a) log ƒ(*)<**. 

The function 9K*(a; g) is a continuous function of t for — oo <£/<; 

The general inequality to which we have referred is 

2R.(a; g) ^ 2«i(a; g) ( - *> â * < * ;S + «>), 

where the sign of equality holds if and only if all the aj are equal. 
The sums of order /, defined by 

( n v l / l 

S ay j ( - oo < / < 0 or 0 < t < + oo), 
behave quite differently [S6, 35], with 

(10) ©.(a) > @,(a) (5 < t), 

provided s and / are both positive or both negative. Further, 

lim ©*(#) = min (#), lim ©*(#) = 0, 

lim ©«(a) = + co, Hm ©«(a) = max (a). 
*-»o,i>o *-*+» 

The inequality (10) is sometimes [30] called Jensen's inequality, 
though I prefer to reserve this term for (4). Actually, neither inequal­
ity originated with Jensen. 

10. Further study of known inequalities. The inequalities which 
we have been discussing express the fact that certain functions are 
nondecreasing or nonincreasing functions of certain parameters. The 
inequalities do not, however, tell how the functions increase or de­
crease. 

Thus since the graph of y = 9D?*(#; q) has two horizontal asymptotes, 
it must have at least one inflection point [48]. Does it necessarily 
have exactly one inflection point, so that 9K*(a; q) must be a convexo-
concave function, or might there be several inflection points? There 
are examples in the literature [48] showing that at 2 = 0, d2<3Rt/dt2 

might be positive, negative, or zero, so that if there were necessarily 
only one inflection point it would seem to be an elusive one. 

I t is known [30] that log { [9K*(#; #)]*} is a convex function of /, 
as is log { [©«(a)]*} ; it follows that [Wlt(a\ q)V a n d [©*(#)]' a r e con-
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vex functions of t, since the convexity of the logarithm of a function 
implies the convexity of the function itself. 

It is known also [39] that log Wlt(a\ q) and log ©*(#) are convex 
functions of 1/t for / > 0 , and concave functions of 1/t for / < 0 . 

Recently Shniad [66], one of my colleagues, has shown that 
yflt(a\ q) is not necessarily a convexo-concave function of /. Explicitly, 
for the function 

/ l 8 1 V / f 

»<«;,) - ( _ , + _,.. + _,.) , 
the second derivative is positive at / = — 2, negative at / = — 1, posi­
tive at 2 = 0, and negative at 2 = 4. 

On the other hand, the ingenious analysis which led Shniad to con­
sider the above example yielded the positive result that for any given 
(a; q) there exist (finite) values /y = / ;(a; q), j = l, 2, such that log 
2Jh(a; q) is a convex f unction of tfor t<tu and a concave f unction of t 
for t>t2. Consequently, 9ft*(a; q) also must be a convex function of tfor 
t<h. 

As for ©*(a), Bonnesen [12] has shown that this is a convex func­
tion of / for t>l. Later, by a different method, I obtained [3] the 
same result for / > 0 . 

Several results which I shall mention later also involve the im­
provement of known inequalities by the establishment of convexity 
properties. 

11. A hierarchy of convexity conditions. I have remarked that the 
convexity of the logarithm of a positive function implies the con­
vexity of the function itself. This result holds as an instance of the 
following continuous hierarchy of convexity conditions. 

Let Ca denote the class of positive functions p(x) defined in (a, b) 
such that the function 

sg («)[#(*)!« ( a ^ O ) , 

or 

log p(x) (a = 0), 

is a convex function of x in (a, b), where sg(ce) = — 1 for a < 0 and 
sg(a) = + l for ce>0. 

Then p(x) is a member of Ca if and only if p(x) is a member of Cpfor 
all$>a [57]. 

The class Co of functions whose logarithms are convex is particu­
larly amenable to analysis, in that the class is closed both under addi-
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tion and under multiplication [7]. The class also is particularly 
important, in that several physically significant functions are mem­
bers of Co. 

Thus in complex variable theory there are several functions, some 
of which we have mentioned already, which are members of Co rela­
tive to log r as independent variable : 

For associated radii of convergence, log 1/p is a convex function of 
logr. 

In the theory of meromorphic functions, the Nevanlinna function 

Tif) = — f T iog+ | f(reiS) | de + log — - — 
2lT J o f 1̂ 2 • * * fn 

involves logarithms in such a way that it seems natural to consider 
the function 

U(r) = exp T{f). 

A fundamental result of Nevanlinna [47] is that log U(r) is a convex 
function of log r. 

The Hadamard Three Circles Theorem expresses the convexity of 

logtf(r; |/ |)^log9tt+oo(ri | / | ) 

as function of log r. 
For the geometric mean Wo(r; \f\) we have pointed out the result 

that log 2Ro(r; | / | ) is a convex function of log r. 
But we have indicated also that 9K<>0'; |jf| ) satisfies the additional 

condition that %Jlo(r; \f\ ) itself is a convex function of r itself. 
Which is the stronger convexity condition on a positive function 

p(r)t the condition that log p(r) be a convex function of log r, or the 
condition that p(r) be a convex function of r? The answer is that 
neither implies the other, for each can hold in the absence of the other 

We shall pursue this matter further in the next section, in which we 
discuss a continuum of functions whose logarithms are convex func­
tions of log r. 

12. Hardy's theorem. In 9R«(r; | / | ) , O g / ^ + oo, we have a con­
tinuum of functions of class Co, in accordance with the following 
theorem of Hardy [29] to which we referred in §4. 

HARDY'S THEOREM. Let f(z) be an analytic function of the complex 
variable z in | « | < 1 . Then log 2R,(r; | / | ) is a {nondecreasing) convex 
function of r for any non-negative value t. 
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We already have considered the limiting cases t = 0 and t = + <». 
The question arises as to whether or not SD?«(r; | / | ) is necessarily a 

convex function of r for O^t^ + °°. 
Gustin, Shniad, and I currently are investigating the above ques­

tion, and have obtained the following results. 
For any f unction ƒ (JS) analytic in | s | < 1 , and for any / satisfying 

0 ^ ^ + oo, let p(t; | / | ) denote the least upper bound of values p 
such that ffllt(r; \f\ ) is convex for 0 < r < p . Let p(t) denote the great­
est lower bound of p(/; \f\ ) for ƒ ranging over the class of functions 
analytic in \z\ < 1. Then 0Sp(t) ^p{t\ |ƒ| ) 2ü 1, and we have indicated 
thatp(0) = l. 

For the function 

Fto)m7-r-^- ( o < a < i f | s | <i) , 
1 + az 

the maximum-value function 

Mir; \F\)^m+n(r; \F\) 

is strictly concave for 0 <r < 1. Accordingly, we have p ( + <*> ; | F\ ) = 0, 
whence p ( + <*>) = 0 . 

Also, since 9K«—>SDî+00 as J—»+ °°, and since the limit of a convergent 
sequence of convex functions is convex, it follows that 

lim p{t) = 0. 

If ƒ (z) has at most one zero in \z\ < 1, then we have the result that 

P(f\ l / l ) = 1 ( 0 £ * £ 2 ) ; 

if ƒ(z) has at most two zeros, then 

P(*; l / l ) = l ( o ^ S l ) ; 

and there are similar results for any number of zeros. 
Irrespective of the number of zeros of ƒ (2), we have 

p(0 = 1, (* = 2/k; k = 1, 2, • • • , n, • • • ). 

The previously noted result p(0) = 1 follows by a limiting process, 
with k—>+ 00. 

Whether or not there are other values of / for which p(/) = l, or 
any values of t for which 0 <p(t) < 1, we do not now know. 

Added in proof. Shortly after the delivery of this address, Shniad 
showed that we have p{t) < 1 for all / > 8 . 

As an application, we recall the known result that the length l(r) 
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of the image of \z\ *=r under the transformation w—f(z) is a nonde-
creasing function of r: if 0<r i<f2<l , then l(ri) ^/(r2). It now can be 
shown that l{r) is a convex f unction of r. 

One of the most attractive results concerning p(t\ \f\ ) was obtained 
by Shniad as a consequence of the theorem of Hardy: namely, we 
have 

P('; I ƒW — ƒ(o) I ) - i ( 0 £ * 2 S + oo). 

This result, which is an instance of a theorem of Nehari [46], involves 
an interesting implication relative to the lemma of Schwarz, as we 
shall see in the next section. 

13. The lemma of Schwarz and convexity. Recalling that 

Wl+„(r; l / l ) - max | / 0 O | , 
0£6<2ir 

we may state the Lemma of Schwarz as follows. 

LEMMA OF SCHWARZ. Let f(z) be an analytic function of the complex 
variable zin \z\ <1 , with f (0) = 0. If for all r, 0 O < l , we have 

SDMr; l / l ) 2S 1, 

then we have 

m+»(r, l / l ) ^ r (0 < r < 1) 

and 

1/(0)1 £1 , 
the signs of equality holding if and only if f(z) =e*'% where a is a real 
constant. 

Thus if the origin is mapped on the origin by the analytic function 
w—f{z)y and the map of the unit circle |z| <1 lies in the unit circle 
\w\ < 1 , then the map of any smaller concentric circle of radius r lies 
in the concentric circle of radius r, and reaches the boundary \w\ —r 
if and only if the map is a rotation. 

It is known [38] that the Lemma of Schwarz extends to means of 
other orders. In the statement of the lemma, we have only to replace 
2tt+oo throughout by 9)ï<0, 0^ /oâ + °°. Indeed, for 0 < r i O 2 < l , we 
have [38], more precisely, 

2fl«o(>V> I / I ) r* 

Now (11) does not imply that the curve y = 2W*0(r; | / | ) is convex, 
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but only that arcs of the curve having one end point at the origin lie 
nowhere above the corresponding chords. However, as we pointed 
out in §12, since/(0) = 0 the curve ^ = SDrli0(r; | / | ) actually is convex. 

14. Subharmonic functions. In studying associated radii of con­
vergence, Hartogs [3l] in 1906 used as tool a real function i?(f) 
of the complex variable f, defined as follows. 

Let ƒ(z, w) be analytic at the point (f, 0), 

ƒ(*, w) s ]T) aitk(z - ?)%*, 

and let r and p=0( r ) be associated radii of convergence of the series. 
Then by definition we have 

R(t) e lim *(r). 
r-+0 

Hartogs showed that the function 

g(x, y) = log—— (f = * + *y) 

is upper semi-continuous in its domain of definition Z>, and has the 
following property. If D' is a domain lying together with its boundary 
B' in J9, and h(x, y) is harmonic in D' and continuous in D'+B', and 
we have g(x, y) ^h(x, y) on B', then necessarily we have also g(xf y) 
£h(xt y) throughout D'. 

Since a harmonic function h(xt y) is by definition a solution of the 
partial differential equation 

d2h d2h 
A J s + = 0, 

dx2 dy2 

the class of harmonic functions is a generalization, to functions of two 
(or more) independent variables, of the class of linear functions of one 
variable. Accordingly, the above property of domination by harmonic 
functions is a generalization of the defining property of convex func­
tions of one variable. 

Harmonic functions h(xt y) are characterized by the mean-value 
property that if the circular disc (x — Xo)2+(y—yo)2^r2 is in the 
domain of definition, then 

I f 2 ' 
h(xot y0) = — I h(xo + r cos 0, yo + r sin 6)d$. 

2irJo 

If the above function g(x, y) is ^ — » , then g(x, y) satisfies the 
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mean-value inequality 

1 r2v 

(12) g(x0, yo) S — I g(*o + r cos 0, yQ + r sin 0)dd, 
2TTJQ 

though Hartogs did not explicitly give this result. 
Hartogs showed that if the above function g(x, y) is continuous 

together with its partial derivatives of the first and second orders, 
then g(x, y) satisfies the differential inequality 

d2g d2g 
A g e — ~ + — i ^ O . 

dx2 dy2 

Later Levi [41 ] in 1910 and Julia [37] in 1925 used functions 
analogous to g(x, y) in the study of poles and essential singularities 
of analytic functions of several complex variables. 

In 1922, Riesz [61 ] made the remarkable discovery that the theo­
rem of Hardy, to which we have referred, and which previously had 
been proved only with considerable difficulty, can be established 
very simply from the fact that \f(z) \ ' satisfies the mean-value in­
equality (12). 

In a series of papers starting in 1923, by Perron [SO], Remak [60], 
Radó and Riesz [59], Wiener [72], Whitney [71 ], and Carathéodory 
[IS], the solution of the Dirichlet problem in potential theory was 
put in very elegant form by means of functions having the property 
to which we have referred. Actually, as Riesz [64] pointed out in 
1926, the idea of domination by harmonic functions was involved in 
potential theory as early as 1887 in the sweeping-out process of 
Poincaré [52]. 

I t now appeared that the class of functions involved was of in­
trinsic interest, because of its various applications and because of its 
relation to convex functions. Riesz [62, 63, 64] defined a subharmonic 
function to be an upper semi-continuous function ƒ(#, y) which satis­
fies — oo gf(x, y) < + oo, f(x, y) ^ — oo, and which is dominated by 
harmonic functions as described above. 

To be exact, Riesz assumed the apparently but (as Evans [58] 
pointed out) not actually stronger condition that f(x, y) is not equal 
to — oo on a set of points dense in the domain of definition D, in 
place of the condition that f(x, y) is not identically equal to — oo. 
Personally, for several reasons, I prefer to include the function 
f(x, y) = — oo in the class of subharmonic functions. 

Essentially, subharmonic functions were involved in the study of 
differential geometry by Weil [70] in 1926, when he extended the 
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isoperimetric inequality 

(13) a^T12 

Air 

to surfaces of negative curvature, after Carleman [17] had shown 
in 1921 that (13) holds for Jordan regions of area a and length of per­
imeter I on minimal surfaces. The inequality (13) characterizes [8] 
surfaces of non-positive Gaussian curvature. 

Thus properties of subharmonic functions now are investigated 
from four points of view: the study of properties of subharmonic func­
tions for their intrinsic interest, in particular as they relate to convex 
functions [45]; and the study of applications in potential theory, 
complex variable theory, and differential geometry. The four studies 
are mutually stimulating. 

To illustrate the first point of view, we might ask the following 
question: If h(x, y) is harmonic, and s(x, y) subharmonic, in the unit 
circle x 2 + ^ 2 < l , and h(x, y)^s(xy y) on x2+y2*=rl for some ro with 
0 < r 0 < l , do we necessarily have h(x, y)^*s(x, y) for rl<x2+y2<lt 

We shall conclude our remarks with some observations concerning 
differential geometry as related to convex functions, subharmonic 
functions, and functions of complex variables. 

15. Differential geometry. Both convex functions and subharmonic 
functions serve as tools in the study of differential geometry. 

The use of convex functions in differential geometry, which, as we 
mentioned, was initiated by Hadamard, has been extended to Rie-
mannian spaces by Car tan [18], 

In our local peripatetic seminar, Professor Busemann [14] recently 
has shown how, without use of differentiability hypotheses, the same 
results can be carried over to general metric spaces S of nonpositive 
curvature: 5 is said to be of nonpositive curvature provided each 
point of S has a neighborhood N such that the side be of any geodesic 
triangle abc in N is at least twice as long as the (shortest) geodesic arc 
connecting the midpoints &', c' of the other two sides: 

¥c' £ bc/2. 

On the other hand, elementary calculus can be used [4] to obtain, 
from (5), various inequalities and convexity conditions involving 
length and area on surfaces of nonpositive curvature and on surfaces 
of non-negative curvature. 

Subharmonic functions are related to differential geometry espe­
cially in accordance with the following two theorems [7, 8], 
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THEOREM A. Three real functions x(u, v), y(u, v), z(u, v), continuous 
in a domain D, are coordinate functions of a minimal surface in con­
formai representation, that is, the functions are harmonic and satisfy 

E~G = \(u, v), F = 0, 

where 

2 2 2 2 2 2 

E = xu+ yu+ Zn, F = Xu%v + yuyv + Zutv, G = xv + yv + zv, 
if and only if the distance f unction 

p(u, v; a, b, c) = {[x(u, v) - a]2 + [y(u, v) - b]2 + [z(u, v) - c]2}1'2 

satisfies the condition that log p is a subharmonic f unction of (u, v) for 
every choice of the real constants a, b, c. 

THEOREM B. A necessary and sufficient condition that a surface S, 

5: x = x(u, v), y = y(u, v), z = z(u, v), 

given in conformai representation, 

E = G = \(u, v), F = 0, 

be a surface of nonpositive Gaussian curvature is that log \be a subhar­
monic f unction of (u, v). 

Briefly, in accordance with Theorem A the principle of the maxi­
mum for the moduli \f(z) | of analytic functions f(z) of the complex 
variable z carries over essentially intact to minimal surfaces. And, 
insofar as this principle applies to \f'(z)\, in accordance with Theo­
rem B the principle largely carries over to the class of surfaces of non-
positive curvature. Since minimal surfaces are special surfaces of non-
positive curvature, the latter results hold in particular on minimal 
surfaces. 

For example, we shall consider space analogues of the Lemma of 
Schwarz. These analogues might suggest various problems relative 
to the many ramifications and generalizations of the Lemma of 
Schwarz in complex variable theory. In particular, we note the result 
of Carathéodory [16] that the hypotheses of the Lemma of Schwarz 
imply \f'(z)\ g l for \z\ g2 1 / 2 - l . 

You will note that the Lemma of Schwarz applies to distances in 
the containing space, not to distances on the map w—f(z). From Theo­
rem A we can obtain the following result [7]. 

Let S, 

S: x = x(u, v), y = y(u, v), z = z(u, v), u2 + v2 < 1, 
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be a minimal surface given in conformai representation, such that (0, 0) 
is carried into (0, 0, 0). If S is comprised in the unit sphere, x2+y2-\-z2 

:g l , then for u2-\-v2^r2, 0 < r < l , we have 

[x(u, v)]2 + [y(u, v)]2 + [z(u, v)]2 g r2; 

further, we have X(0, 0) ^ 1. The signs of equality hold if and only if S 
is a simply-covered circular disc with unit radius. 

But now Theorem B suggests the possibility of an analogue of the 
Lemma of Schwarz for surfaces of nonpositive curvature involving 
distances on the surface S itself [2], We shall state the result only for 
the special case of a plane map. 

Let w=f(z) be analytic for \z\ < 1 . If the length f unction 

Kr,0)m fr \f(peid)\dp 

satisfies 

i(r, ») =s i 

for all (r, Ô) with 0 < r < l , then we have 

l{r, B) g r (0 < r < 1) 

and 

| / ' ( 0 ) | S 1 , 

the signs of equality holding if and only if f(z) =e*% where a is a real 
constant. 
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