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LEMMA 6. If 2 is recursive at x, then S is recursive at x. 

PROOF. Let U be an open neighborhood of x. By Lemma 4 there 
exists a compact set M in T such that xMC U and HQSM*1. Let V 
be a neighborhood of x for which VMQ U. There exists an admissible 
set A such that AC.2 and xAQV. Hence xAMCU. Define 
B = SfY4 ikf. Since A QBM"1, B is an admissible set. Also BC.S and 
xBQU. The proof is completed. 

The following theorem is an immediate consequence of Lemmas 
5 and 6. 

THEOREM. If T is recursive at x, then S is recursive at x. 

An interpretation of admissibility arises if we define an admissible 
subset of T to be a relatively dense subset of T. The term "recursive" 
is then replaced by "almost periodiek For other applications, see the 
paper cited above. 
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If M is a bounded continuum in a Euclidean plane E which does 
not separate E and T is an interior continuous transformation of M 
onto a subset of E which contains M, does T leave a point of M in­
variant? It is the purpose of this paper to answer this question in 
the affirmative for certain types of locally connected continua. 

Using a notation introduced by Eilenberg [2, p. 168 J1 a continuum 
M will be said to have property (b) provided every continuous trans­
formation of M into the unit circle 5 in the Cartesian plane, with 
center at o, is homotopic to a constant mapping, that is, a trans­
formation which transforms each point of M into a single point of S. 
If T is a continuous transformation of a subset A of the plane E into 
a subset B of £, then for each point x of A let Tf(x) be the point y of S 
such that the directed line segment oy is parallel in direction and sense 
to the directed line segment x, T(x). Then T' will be referred to as the 
transformation of A into S derived from T. Such a transformation 
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has often been considered in the study of fixed point properties of 
continua as for instance by Alexandrofï and Hopf [l, p. 479]. If T 
is a continuous transformation of a subset A of E into a subset B of 
£ , A will be said to have property (b') with respect to T if T leaves 
no point of A invariant and the transformation Tf of A into 5 derived 
from T is homotopic to a constant mapping. 

LEMMA 1. There does not exist a bounded plane continuum M which 
has property (b') with respect to a continuous interior transformation T 
of M onto a topological 2-cell I which contains M. 

PROOF. Suppose the lemma is not true and that there does exist 
such a bounded plane continuum M. Without loss of generality we 
may take I to be the circular 2-cell in the Cartesian plane with 
center at o, radius 1, and boundary 5. Let T' designate the trans­
formation of M into 5 derived from T. By assumption, M has prop­
erty (b') with respect to T and hence T' is homotopic to a constant 
mapping. By a theorem of Eilenberg [2, p. 168, Theorem 1'] there 
exists a continuous real valued function $ which transforms M into 
a subset of R, the set of real numbers, such that for each point x of 
My T'(x) is the point e**(a°. Since M is closed and bounded, $(M) is 
a bounded and closed subset of R. For each point x of 7, let X desig­
nate the set consisting of all real numbers $00, for y belonging to 
T~x{x)y and let 0{x) be the greatest lower bound of the set X. Since T 
is an interior continuous transformation, it follows by a lemma of 
Eilenberg [2, p. 174] that T""1 is a continuous multi-valued trans­
formation of I onto M, and hence that 0 is a continuous transforma­
tion of I into i?. For each point x of I let xz designate the directed 
half line with initial point at x which is parallel in direction and 
opposite in sense to the directed line segment oyf where y is the point 
eid(x)f a n d let r2(aO be the first point on xz distinct from x which xz 
has in common with 5. We know T2&) exists for each point x in I 
since M is a subset of I and since, from the continuity of 0 and T~l 

and the assumption that T leaves no point of M invariant, it fol­
lows that there is a point of M distinct from x lying on xz and hence 
a point of S distinct from x lying on xz. Thus, since 0 is a continuous 
transformation of I into i?, it follows that T2 is a continuous trans­
formation of I into the boundary of I which leaves no point of I in­
variant. But this contradicts the Brouwer fixed point theorem for 
2-cells. The lemma is therefore true. 

THEOREM 1. If T is an interior continuous transformation of a locally 
connected unicoherent bounded plane continuum M onto a topological 
2-cell which contains M, then T leaves a point of M invariant. 
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PROOF. For suppose T leaves no point of M invariant. Then the 
continuous transformation T' of M into S derived from T exists 
and, by a theorem of Eilenberg [2, p. 168, Theorem 6'], since M is 
unicoherent and locally connected, M has property (b), and hence has 
property (b') with respect to T. But this contradicts Lemma 1. 

COROLLARY. If T is an interior continuous transformation of a 
bounded locally connected plane continuum which does not separate the 
plane onto a topological 2-cell which contains Mt then T leaves a point of 
M invariant. 

PROOF. For a plane continuum which does not separate the plane is 
unicoherent. 

THEOREM 2. If T is an interior continuous transformation of a topo­
logical 2-cell I onto a continuum M which contains J, then T leaves a 
point of I invariant. 

PROOF. Suppose T leaves no point of I invariant. Then the derived 
transformation T' exists and, since I is unicoherent, it follows by the 
previously cited theorem of Eilenberg that I has property (b) and 
hence has property (b') with respect to T. But T transforms some 
subset Noil onto I. Then N has property (b') with respect to T. But 
this contradicts Lemma 1. 

It is easy to construct an example to show that Theorem 2 would 
not be true if the condition that T be interior were omitted from the 
hypothesis of the theorem. 

Applications of the theorems of this paper to the theory of func­
tions of a complex variable are suggested by the fact that a function 
of a complex variable, analytic in a region R, defines an interior con­
tinuous transformation of R into a subset of the complex plane. 
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