
THE CENTER OF A JORDAN RING1 

N. JACOBSON 

If H is an arbitrary associative ring we can symmetrize and anti-
symmetrize the multiplication defined in 21 to obtain two non-
associative rings. We set 

(1) {ab} = ab + ba, [ab] = ab — ba 

and call the former the Jordan product and the latter the commutator 
or Lie product of a and b. If we use {ab} as product in place of the 
originally defined ab we obtain the Jordan ring 21/ determined by 21. 
Similarly the Lie ring 2tj is obtained by using [ab] in place of ab. 
Naturally if 21 has characteristic 2 then 21/=21*. I t is customary to 
exclude this case from consideration but in most of our discussion 
we shall not find it necessary to do so. Clearly {ab} = {ba), [ab] 
= — [ba]. Also we recall the following well known identity of 
Jacobi's: 

(2) [[ab]c]+ [[bc]a]+ [[ca]b]=0. 

If 9t is any non-associative ring one defines the center of 9t to be the 
totality of elements c that commute, 

(3) c-a « a-c, 

and associate, 

(ab)-c = a-(b'c)t (ac)'b = a-(c-b)t 
(4) 

{ca)'b = c-(a-b), 

with all a, b in 9t.2 I t is known that the center is a subring of 9Î. 
Clearly this subring is associative. I t is also known that the center 
of a simple ring is either 0 or a field. I t is easy to see that the middle 
condition in (4) is a consequence of (3) and the other conditions in 
(4). Also it is clear tha t if 91 is commutative then the first condition 
of (4) characterizes the center. 

We consider now the centers (£/ and (Ei respectively of 21/ and 21*. 

Received by the editors May 6,1947, and, in revised form, July 3, 1947. 
1 1 am indebted to A. H. Clifford for a number of valuable conversations on the 

subject of this note. 
2 See Jacobson, Structure theory of simple rings without finiteness assumptions. 

Trans. Amer. Math. Soc. vol. 57 (1945) p. 239, or T. Nakayama, Über einfache distribu­
tive Système unendlicher Range, Proc. Imp. Acad. Tokyo vol. 20 (1944) p. 62 for this 
definition and for the results quoted in this paragraph. 
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First let cE&i- Then by (1) and (3), 2[ca]~0. By (4) and Jacobi's 
identity, [[ca]ft]=0. Hence 

(5) 2[<?a]-0, [ [ ca ] j ]«0 

holds. It is also easy to see that these conditions are sufficient that 

Next let cG6y. We introduce the Jordan associator 

A{a,b,c) - {{ab}c} - {a{bc}} 

and we can verify that 

(6) A(a,b,c) - [[ca]b]. 

Hence 

(7) [[ca]b] - 0 

is a necessary and sufficient condition that c£E/. Thus we see that 
Sz^Sy. If we denote the center of SI by (S, c(ES if and only if [ca] = 0. 
Hence <SC<S,C<£y. 

Let cGS/ and a, &, d be arbitrary in SI. Then [[c> ab]d] = 0. Since 

[ç, ab] = [CÖ]J + a[cô] 

we obtain 

(8) [*a][M]+ [ad][cb] = 0. 

This simple relation has a number of interesting consequences. In the 
first place if we set d=*c', a second element in Ey, we obtain [ca] [be'] 
+ [ac'][cb]=0. If we use the fact that [cJ]66 this reads 

(9) M k 6 ] + [cb][cfa] = 0. 

It is easy to see that this implies 

(10) [[ccf, a]b] = 0. 

Thus cc'GSy. It is clear also that if 2[ca]=0 and 2[c'a]=0 then 
2[cc', a ]=0 . Hence we have the following theorem. 

THEOREM 1. The Jordan center Sy and the Lie center (Si are {ordinary) 
subrings of 31. 

If we specialize d — a and 6 = c successively in (8) we obtain 

(11) [ca][ba] = 0 , [ca][cd] = 0. 

In particular 
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(12) [ca]2 « 0. 

This implies the following theorem. 

THEOREM 2. If 9t is an associative ring whose center S contains no 
nilpotent elements not equal to 0 then the Jordan center (Sy coincides with 
6. 

For if cE&y, [ca]2 = 0 for any a£91. Since [ca]£(S this implies 
that [ca]=0. Hence c(E£. 

It is easy to see that if a ring contains a nilpotent element in its 
center then it contains a nilpotent two-sided ideal. Hence we have the 
following corollary. 

COROLLARY. If 91 is a ring that has no nilpotent two-sided ideals then 
its Jordan center Sy coincides with the ordinary center. 

It is clear from Jacobi's identity that if c£(Sy then [[a&]c] =0 for 
all a, b. Thus c commutes with every commutator. Clearly the ele­
ments that have this property form a subring S3 of 91. It will be shown 
in a forthcoming paper by Kaplansky that if 91 is a semi-simple ring 
then S3 = S.3 Thus Kaplansky's result has both a stronger hypothesis 
and a stronger conclusion than our Theorem 2. The following ex­
amples will serve to illustrate these results. 

EXAMPLE 1. Let 9Ï be the ring of triangular matrices 

(13) 

an 

0 

«22 

Otnn) 

with elements in a field $. It is easy to see that (S is the set of scalar 
matrices. Hence Sy = S. On the other hand it can be seen that S3 is the 
set of matrices 

[a 0 

(14) 

0 

EXAMPLE 2. Let 91 be the set of triangular matrices for which 
an—an— • • • =a w n =a. Here Ê is the set of matrices of the form 

8 Added in proof» This paper has now appeared: Semi-automorphisms of rings, Duke 
Math. J. vol. 14 (1947),pp. 521-527. 
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(14) and 33 is the set of matrices of the form 

(a 0 • • • 0 y 0] 

I ' ' ' € ô\ 
- 0 

<15) • ' • : • . • 

I «J 

Finally (£y is the subset of 33 of the matrices of the form (15) in 
which e = 0. 

We derive next another property of the element c in (£y. If a, b, d 
are arbitrary in 31, 

[[<*,»!<*] = [(a[cb] + c[ab]), d] 

- [ad][cb] + [cd][ab] + c[[ab]d]. 

If we interchange a and d in (8) we see that 

[**][<*]+ [cd][ab] = 0 . 

Hence 

[[ca9 b]d] « <?[[o&]<*]. 

This implies also that [[a, c&]d]=c[[a&]d]. By Jacobi's identity we 
obtain finally [[a&]cd]=c[[aô]d]. Thus 

(16) c[[ab]d] - [[ca, b]d] « [[a, cb]d] = [[a6]a*]. 

This can also be written in the following form in terms of the asso-
ciator -4(6, dt a) ~[[ab]d]: 

(16') cA(b, d% a) = A(b, d, ca) = A(cb, d, a) = A(b, cd, a). 

In the remainder of this note we consider rings U that are subrings 
of a Jordan ring of the form Sly. By the enveloping (associative) ring 
of U in 31 we mean the subring of 31 generated by U. If (5 is the en­
veloping ring of U clearly U is also a subring of the Jordan ring (Sy. 
Hence we can suppose that (g = 2t. 

If c is in the Jordan center Sy(U) of U then [[#*]&] =0 holds for 
all a, &GU. Since tl is a Jordan ring 

fk {ab}]d] = 0 
for all a, 6, d in U. Also we have [c[a&]]=0 so that [[c, [a&]]d]=0. 
Hence by addition 
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(17) 2[[c,ab]d] = 0, 

We shall assume now that the ring SI contains no element that has 
order two in the additive group. Then by (17), [[c, ab]d] = 0 for all 
a, by d in U. As before this leads to the relation (8) and to its conse­
quence [ca]2 = 0. On the other hand since [[ca]&] =0, [ca] commutes 
with every b in U. Hence it commutes with every b in the enveloping 
ring 2Ï. Thus [ca] is in the center (S of 21. This shows that if some 
[ca] ?*0 then the center of 2t possesses nilpotent elements. Hence we 
have the following theorem. 

THEOREM 3. Let 21 be an associative ring that has no elements of order 
2 and that has no nilpotent elements (s^O) in its center. Let M be a sub-
ring of the Jordan ring 21; such that the enveloping ring of U is 21. Then 
the Jordan center £;(U) coincides with the totality of elements c of U 
that commute with every a in U {or in 21). 

A. A. Albert has recently studied the structure of the subalgebras 
U of a Jordan algebra Sty, 21 a matrix algebra 3>n over a field 3>.4 In 
the course of this study he has defined the center of U to be the 
totality of elements c such that [ca] = 0 for all a in U. We shall show 
in an example that Albert's definition is unsatisfactory for arbitrary 
Jordan algebras since it is not invariant under isomorphism. On the 
other hand it will also be shown that in the case of simple algebras 
over a field of characteristic 0—and this case is the only one for which 
Albert uses his definition—Albert's center coincides with the Jordan 
center as defined in the present paper. We remark that Theorems 2 
and 3 give other cases for which this identity holds. In all of these 
cases Albert's definition can not lead to any difficulties. We con­
sider now the following example. 

EXAMPLE 3. Let 21 be the algebra over * that has the basis zu z2 

such that ZiZj = 0. The Jordan ring 2ty has the basis zi, z% with the 
multiplication table 

{sisi} = 0, {*iz2} = 0, {0222} - 0. 

Let 33 be the algebra over $ that has the basis Zi, Z%, Z3 with the 
multiplication table 

Z\ = Zi = Zz = 0, Z1Z2 = — Z2Z1 = Z3, Z2Z3 = Z3Z2 — 0, 

Z3Z1 = Z1Z3 = 0. 

Since any product of three Z's is 0, S3 is an associative algebra. We 
4 On Jordan algebras of linear transformations, Trans. Amer. Math. Soc. vol. 59 

(1946) p. 540. 
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have the Jordan multiplication table 

{Z£x\ « 0, {ZxZ*} - 0, {ZA} - 0. 

Hence U = (Zi, Z%) is a subalgebra of $3/ isomorphic to 21/. The totality 
of elements of 21/ that commute with all the elements of 21/ is 21/ it­
self. However, the elements Z\ and Z% do not commute with all the 
elements of U. Evidently the Jordan center of 21/ is 21/. 

We shall now consider the Jordan center of any simple Jordan 
algebra with a finite basis over a field of characteristic 0. At first we 
consider any associative algebra 21 over a field $. As before let 21/ de­
note the Jordan algebra obtained from 2Ï by using the operations 
a+6, aa for a in $ and {ab} = ab+ba. If U is a subalgebra of 21/ it is 
clear that the center S/(U) is a subalgebra. Let cGS/(U) and let a 
be any algebraic element of U. Then there exists a polynomial 
<KX)T^0 in $[X] such that <t>(a) = 0. Since [ca] commutes with 
a, [c, ah\ — kah-'l[ca]. Hence 

(18) 0 = M(<*)] =<t>'(a)[ca\ 

where <£'(X) is the derivative of the polynomial <HX). We assume next 
that c is algebraic and that a is arbitrary. Then a similar argument 
shows that if ^(X) is a polynomial not equal to 0 such that yp(c) = 0 
then 

(19) V(c)[co] = 0. 

We suppose now that 21 = 4>», 3> of characteristic 0. Let U be a 
simple subalgebra of 21/. Then it has been shown by Albert that U has 
an identity e? Evidently e is in the Jordan center S/(U). Hence 
S/(U) ?^0 and it follows that (£/(U) is a field. Since ea+ae = af e2~e/2< 
If we set e' = 2e then (e')2 — e' and (e'a+ae')/2 = a. Hence 

e 'a/4 + eW/2 + ae'/4 » (e'a + ae')/2 

and 

a = (e'a + ae')/2 = e'ae'. 

It follows that e'a~a — ae'. Thus e' acts as an identity for all the 
elements of U and therefore for all the elements of the enveloping 
algebra 6 of U. 

Suppose now that c£(£/(U) and that /z(X) is the minimum poly­
nomial of c regarded as an element of 6/(U). Then if ixÇb)—\m 

5 Albert (loc. cit., footnote 3)' uses the multiplication a • b « {ab} /2. Clearly an alge­
bra is simple relative to the dot multiplication if and only if it is simple relative to 
{ }. Moreover, if e' is an identity relative to •, then e*=*e'/2 is one relative to { }. 
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+YiVl~1 + • • • +7m, 

(20) {c}™ + yi{c}m~l+ • • • + ym~ic + yme ~ 0 

where {c}r is defined inductively by {c}r= {{c}'""1, c}. Since 
{c}' = 2*-V, (20) yields 

(2i) c« + Ç c ^ i + . . . + 2=Ll
c + ^^«o . 

2 2*»""1 2 W 

Thus if ^(X) =2->(2X) then \p(c) =0. Since S,-(U) is a separable field, 
//(X) is prime to /x(X). Hence ^'(X) is prime to ^(X). It follows that 

^'(c) = wc"»-1 + (m - 1) — cm~2 + • • • H e' 
w 2 2W~1 

has an ordinary inverse relative to e'. Hence by (19), [ca] =0 for all a. 
This proves the following theorem. 

THEOREM 4. Le/ SI = <ï>n tóe wzg of nXn matrices over afield of char­
acteristic 0 awd /e/ U be a simple Jordan subalgebra of Sty. Then the 
center of U coincides with the totality of elements c of U that commute in 
the ordinary multiplication with every a in U. 
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