
AN INEQUALITY CONCERNING POLYHEDRA1 

LASZLÓ FEJES TÓTH 

In 1897, at the mathematical competition of the Lor and Eötvös 
Mathematical and Physical Society, Professor L. Fejér, at the time 
still a student, noted the following interesting corollary of a well 
known elementary geometrical theorem of Euler:2 

If R denote the radius of the circumscribed circle and r the radius 
of the inscribed circle of a given triangle, then 

(1) R è It. 

This is easily established, since according to the theorem of Euler 
mentioned above, if d denotes the distance between the centers of the 
circumscribed and inscribed circles, then 

d2 = R2- 2rR. 

It follows that R2~2rR^0, and therefore R^2r. Equality holds 
only if the two circles are concentric, that is, if the triangle is equi­
lateral. 

The problem of generalizing the above result to space was pro­
posed by Professor L. Fejér. A young mathematician, I. Âdâm, de­
ported to Germany during the war—where all traces of him have 
been lost—found and communicated to Professor Fejér in 1943 a 
very simple proof of the above extremum property of the equi­
lateral triangle. His proof, which may be immediately generalized to 
space, runs as follows: 

If p is the radius of the circle passing through the midpoints of 
the sides of the triangle, then p = i?/2, and all that need be shown 
is that p is at least equal to the radius of the inscribed circle. This 
follows from the fact that the inscribed circle is the smallest among 
all circles which have common points with all three sides of the tri­
angle. Such a circle is, namely, the circle inscribed in a homothetic 
triangle containing the original one. 

Received by the editors June 15, 1947. 
1 Lecture held in the seminar of Professor L. Fejér in April 1946. 
2 T. Radó, On mathematical life in Hungary, Amer. Math. Monthly vol. 39 (1932) 

pp. 85-90; J. Kurschâk, Matematikaiversenytêtelek, Szeged, 1929. A sharper inequality 
than (1) is contained in a problem proposed by M. Schreier, Jber. Deutschen Math. 
Verein. vol. 45 (1935) p. 196. L. J. Mordell [Középiskolai Matematikai és Fizikai 
Lapok vol. 11 (1935) pp. 145-146, see also Amer. Math. Monthly vol. 44 (1937) p. 
252] has proved an analogous better inequality conjectured by P. Erdös: If Rit R2f R* 
are the distances of an inner point in a triangle from the vertices and fi, r2, r% the 
distances from the sides then Ri"hR2+Rs'^2(ri-{-r2-\-r^). 
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Equality in (1) can occur only if the inscribed circle passes through 
all three midpoints of the sides, that is, if the triangle is equilateral. 

In this paper we generalize (1) and the analogous inequality for 
tetrahedra R^3r to arbitrary convex polygons and polyhedra, re­
spectively. Our main results are the following two theorems: 

If Rn and rn denote the radii of If Rn and rn denote the radii of 
the least sphere containing, and the the least sphere containing, and the 
greatest sphere contained in, an greatest sphere contained in, an 
n-verticed convex polyhedron, then n-faced polyhedron, then 

(2) Rn/rn à 3112 tan — ^ ~ ^ • 
n — 2 6 

Equality holds only for a regular Equality holds only for a regular 
tetrahedron, octahedron and icosa- tetrahedron, hexihedron and do-
hedron. decahedron. 

Hence (2) is exact for w = 4, 6, and 12. Furthermore, the inequality 
(2) gives an exact asymptotic estimate for large values of n, that is, 
(2) gives the exact value of lim inf n{Rn—rn)/Rn. 

It is worth mentioning that the regular hexahedron and dodeca­
hedron are not the "best" polyhedra among the 8 or 20 verticed 
polyhedra and similarly the regular octahedron and icosahedron are 
not the best ones among the 8 or 20 faced polyhedra. This shows that 
in certain extremum problems for polyhedra they are the trigonal 
faced, in others the trihedral verticed regular polyhedra which play a 
distinguished roll. The natural question to transfer other well known 
extremum properties of the regular polygons to the trihedral verticed 
or trigonal faced regular polyhedra has—as far as I know—not been 
treated in literature, except for the few cases quoted in this paper. 

When Professor Fejér mentioned the above problem to me, I 
noticed that the extremum property in question can be related to the 
following two well known extremum properties: 

(1) Among all triangles inscribable in a given circle the equi­
lateral triangle has the greatest area. 

(2) Among all triangles circumscribable about a given circle, the 
equilateral triangle has the smallest area. 

In other words: 
(la) Among all circles circumscribed about triangles having the 

same area, the circle circumscribed about the equilateral triangle is 
the smallest. 

(2a) Among all circles inscribed in triangles having the same area, 
the circle inscribed in the equilateral triangle is the largest. 
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The circle circumscribed about a non-equilateral triangle is there­
fore greater, and the inscribed circle smaller, than the circles cir­
cumscribed about, and inscribed in, an equilateral triangle of the 
same area. 

The following obvious generalization of the above results suggests 
itself: If tn and Tn denote the areas of two ellipses the first of which 
is contained in an »-sided polygon of area /, and the second of which 
contains the same polygon, then 

n T n 2T 
tn — tan — ^ t ^ Tn — sin — • 

7T n 2ir n 

It follows that for any two ellipses satisfying the above condition, 

Equality can occur only for an affine regular w-sided polygon. 
Corresponding to this result, (2) shall be proved under the follow­

ing more general conditions: 

THEOREM. Let Vn and vn denote the volumes of two ellipsoids, the 
first containing, the second contained in, a convex polyhedron having 
either n vertices or n faces. In both cases we have 

(3) Vn/vn £ 38 '2 tan8 "* -
(n - 2)6 

This inequality is exactz for w = 4, 6, 12 and gives an exact asymptotic 
estimate for large values of n.A 

This theorem is a direct generalization of the following known re­
sult:5 If a convex polyhedron with n faces (or n vertices) lies between 

* Equality holds if the number of vertices is given for affine regular triangular-
faced polyhedra, or if the number of faces is given for affine regular polyhedra with 
trihedral vertices. 

4 (3) gives the exact value of lim inf n(Vn—vn)/Vn. 
6 L. Fejes, Egy gömbfelület befedése egybevâgô gömbsüvegekkel, Matematikai és 

Fizikai Lapok vol. 50 (1943) pp. 40-46. Other generalizations of (4) are the two 
following equivalent theorems [L. Fejes, Über einige Extremaleigenschaften der 
regul'dren Polyeder und des gleichseitigen Dreiecksgitters, Annali délia R. Scuola 
Normale Superiore di Pisa (under publication). L. Fejes, Extremâlis pontrendszerek a 
sikban, a gömbfelületen ès a térben. Acta Sci. Math, et Nat. 23. Kolozsvâr 1944]: 
If a polyhedron with n faces having only trihedral vertices contains a sphere with 
unit radius then the arithmetic mean of the distances Rh R2, • • • , R*n-4 between the 
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two concentric spheres with radii rn and Rn, then 

(4) Rn/rn ^ 3"* tan ** -
(w — 2)6 

The theorem for polyhedra with w vertices follows from the theorem 
for polyhedra with n faces, and conversely. This is a consequence 
of the following lemma. 

LEMMA. Let Fi, F2, F3 denote three ellipsoids, Ft <wd V3 being polar-
reciprocals of each other with respect to F2. Between the volumes6 of the 
ellipsoids the following inequality holds : 

(5) F3/F2 è VI/VL 

Equality holds only if Ft, F2, Vz are concentric. 

PROOF. I t can be supposed that F2 is the unit sphere, with center 
a t the origin, and that the x> y, z, axes are parallel to the principal 
axes, 2a, 2&, 2c, of FL, respectively. Because, by the polar-reciprocity 
with respect to F2, FL is carried into an ellipsoid, it follows that FL 
contains the center of F2 and thus if the coordinates of the center of 
F2 are £, 77, f, we have 

Ul<a, \v\<b, lr |<*. 
The reciprocity, applied to the tangent planes of V\ a t the end 

points of the axis of length 2a, yields two points of F3, the distance 
between which is given by 

1 1 2a 2 

+ = , £ _ . 
a + £ a- % a 2 - J 2 a 

Similar considerations applied to the other axes of Ft yield three 
mutually perpendicular chords of F8 whose lengths are not less than 
2/a, 2/6, 2/c, respectively. A fortiori F3 has three mutually per­
pendicular diameters of length 2a', 20', 2c' such that 

centre O of the sphere and the vertices satisfies the following inequality: (a) 
(2&+*i+ • • • +**-i) / (2fi-4) fc3* tan (»/(»-2))(x/6). 

If a polyhedron with n vertices bounded only by triangles is contained in a 
sphere with unit radius with center an inner point 0 of the polyhedron then the 
harmonic mean of the distances rh r2, • • • , rn+i between O and the faces satisfies the 
following inequality: (b) (2w~4)/( l /r1+l/f2+ HA*i-«)2S(31'y3) cot 
G * / ( I I - 2 ) ) ( » / 6 ) . 

6 In what follows we denote the area or volume of a spherical or solid domain 
by the same letter. 
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U'b'c' è 
abc 

Let us replace one of the diameters of the octahedron with diam­
eters 2a', 2b\ 2c'', for example, 2ô', by the diameter 2&" conjugate 
with respect to Vz to the diameter 2a' lying in the plane a'b'. Simi­
larly let us replace 2c' by the diameter 2c" conjugate to the diametral 
plane a'&". The volume of the original octahedron 4a 'ô 'c ' /3 has been 
increased by both steps. The diameters of the octahedron thus ob­
tained are pair by pair conjugate with respect to Vz and thus if 
â, 5, c denote the principal axes of F8, we have 

4 w 4 4 1 
— âlc à — a'ftV è 
3 3 3 aJc 

Hence 
47T 47T , / 4 7 T \ 2 2 

FiPt « — a f c — a f c à l — 1 - F2, 
3 3 \ 3 / 

which proves the lemma. 
Let us suppose now that the statement of the theorem concerning 

the number of vertices has been proved. Let Pn denote a convex 
w-faced polyhedron, vn an ellipsoid contained in Pw, Vn an ellipsoid 
containing Pn. Taking polar reciprocals with respect to vn, there cor­
responds to Pn a polyhedron with n vertices contained in vn and con­
taining the ellipsoid V„ reciprocal to V». According to the lemma 
and our hypothesis 

Vjvn è vjV: è 33/2 tan8
 /

 W ^ — ; 
(n — 2) 6 

which is the statement of the theorem for polyhedra with n faces. 
In a similar manner we may obtain the theorem for w-vertices from 
the theorem for n faces.7 

We shall prove the statement of the theorem for polyhedra with n 
vertices. 

Analogously to our considerations concerning the plane, our 
theorem is the consequence of two inequalities. Let vn denote the 
volume of any w-verticed convex polyhedron contained in the unit 
sphere. Then8 

7 Another interesting consequence of our lemma is that for the w-hedron (or for 
the polyhedron with n vertices) which has a minimal value of Vn/vn the respective 
ellipsoids are concentric. This can be seen by making use twice of polar reciprocation. 

8 See the second and the third paper referred to in footnote 5. 
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( n T\ n 
3 — cot2 ) cot 

n — 2 6 / n — 

n — 2 / w TT\ W 7T 

(6) 

Let Vn be the volume of any w-verticed convex polyhedron con­
taining the unit sphere. Then9 

(7) Vn è ( 3 tan2 1 ). 
2 \ n-2 6 / 

In the proof of (6) it can be supposed that the vertices d of vn He 
on the unit sphere 5 with centre 0 , and that all faces of vn are tri­
angular. If dCjCk is one of the faces, the tetrahedron OdCjCk shall 
be denoted by Vijk and the spherical triangle dCjCk by ƒ#*. I t will 
be shown that if the area of ƒ#* is given, v^k has maximal volume if 
dCjCk is equilateral. 

The existence of the extremum being assured by Weierstrass' 
theorem, it is sufficient to show that, for instance, in the case 
CiCk^CkCj, the volume v^k can be increased. For that purpose let 
us move Ck on the Lexell circle passing through the points CI, Cj 
diametrically opposed to Ct-, Cj respectively, and through the original 
position of Ck* The area of ƒ#k remains unaltered and the volume of 
Vijk takes its maximal value if CiCk~CkCj, since the height of the 
tetrahedron drawn from the point Ck is in every other case less. 

This extremum property is expressed—making an elementary 
calculation—by the inequality 

^ 1 / „ nfijk + ir\ 
Vijk S — 13 — cot2 ) cot 

12 \ 6 / 

f ijk + n 

But the function of fijk which shall be denoted for the sake of brevity 
by v(fijk) is concave from below in the interval (0, 2w) since 

cos (ƒ + 7r)/3 
*'(ƒ) = J 

24 sin4 (f+ir)/6 

is a monotonically decreasing function of ƒ in the interval (0, 2 T ) . 
Therefore—taking into account the fact that a convex polyhedron 
with triangular faces having n vertices has 2n — 4 faces—by adding 
the last inequalities for each face of vni and by using Jensen's in­
equality10 we obtain 

9 The analogous estimate concerning polyhedra with n faces was found by M. 
Goldberg, The isoperimetric problem for polyhedra, Tohôku Math. J. vol. 40 (1935) pp. 
226-236. 

10 Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta 
Math. vol. 30 (1906) pp. 175-193. 
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Vn = S Viih ^ X) »(ƒ<**) S (2^ - 4)» ( - -J 
\2n — 4 / 

which was to be proved. 
(7) can be proved in a similar manner. For this purpose we use 

the following elementary extremum property. The central projection 
from 0 of the spherical triangle ƒ#* with given surface on a plane p 
which does not intersect S has minimal area if ƒ,7* is equilateral and 
p is tangential to S a t the center of ƒ#*. Accordingly, if the area of a 
face of F n is denoted by Ujh, and its projection on 5 is denoted by ƒ#*, 
we have 

33/2 / 27T - ƒ;,•* \ 

^ x ( 3 c o t 2 - T V ' 
The function *(/»7*) being convex from below in (0, 2w), we have 

- 1 ^ ! T-^ 2 ^ - 4 / 4 T T \ 

v. s T E «„. È T E <(/,,) s -y-* ( ^ > 
Now it follows from (6) and (7) that if the ellipsoid with volume 

vn is contained in a polyhedron with n vertices with volume V, and 
the ellipsoid with volume Vn contains the same polyhedron, we have 

3 31'2(w - 2) / n ir 
3 tan2 1 ) 

» - 2 6 / 4TT 2 

3 n — 2 / w 7T\ W TT 3 n — 2 / n w\ 
ÛV ^ Vn ( 3 - c o t 2 Jcot — 

4f 6 \ w — 2 6 / » • 
2 6 

Thus (3) has been proved. The cases of equality can be immedi­
ately established. The meaning of the estimate for large values of n 
shall be illustrated by an application. 

As a corollary to our theorem we can prove that if n > 2 spherical 
segments (of one base) with equal surfaces fn cover the whole sur­
face of the sphere of unit radius, we have 

(8) 
/ 31 '2 » i r \ 

fn ^ lie ( 1 COt ). 
V 3 n-2 6 / 

The "density" d of this system of spherical segments is accordingly 
given by 

nfn n / 3 1 / 2 n i r \ 
«*- — è — ( 1 cot ] . 

4a- 2 \ 3 n-2 6/ 
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Since the right side is greater than 2-31/27r/9,n for every value of 
n > 2, we have, for the density, d, of any system of congruent spherical 
segments smaller than the hemisphere covering the whole surface of 
the sphere, 

2-31/V 
(9) d> ( = 1.209- • • ). 

This remarkable inequality implies that of R. Kershner12 which 
expresses the fact that the density of any system of congruent circles 
covering the plane is not less than 2-31/27r/9. 

For n = 3y (8) expresses the simple fact that the surface of the 
sphere cannot be covered by three spherical segments which are 
smaller than the hemisphere. Therefore it is sufficient to restrict 
ourselves to w ^ 4 . Since the spherical segments cover the sphere of 
unit radius, the w-hedron Pn determined by the planes of the bases 
of the spherical segments is contained in S. Further the heights of the 
spherical segments being fn/27r, Pn contains the sphere with radius 
1 — fn/2w. Thus according to our theorem 

1/(1 "" fn/2*) ê 31 '2 tan — — — 
n — 2 6 

which is equivalent to (8). 
An analogous result holds for the density d of an arbitrary system 

consisting of n > 2 congruent segments of the unit sphere having no 
common inner points.13 In this case we have 

n / 1 n TC\ 31/27T 
d>— ( 1 sin"1 ) > ( = 0.907 • • • )• 

" 2 \ 2 n-2 6 / 6 
BUDAPEST, HUNGARY 

11 See the third paper in footnote 5. 
12 R. Kershner, The number of circles covering a set, Amer. J. Math. vol. 61 (1939) 

pp. 665-671. 
18 See L. Fejes, Über eine Abschatzung des kürzesten Abstandes zweier Punkte eines 

auf einer Kugelflüche liegenden Punksystems, Jber. Deutschen Math. Verein vol. 
53 (1943) pp. 65-68, and the third paper referred to in footnote 5. 


