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The purpose of this paper is to study Abelian groups with a norm 
whose values are in another Abelian group having an order relation. 
Postulates on the ordering are given which are sufficient for the 
space to be a topological group under the neighborhood system of 
this norm. It is seen that the added assumption that the ordering is 
Archimedian implies the space is a subset of a normed linear space. 
A differential is defined in the general space. This is seen to be closely 
related to the Fréchet differential if the ordering is Archimedian. 

DEFINITION 1. An S-space is a set S which is an Abelian group 
with a relation a>@ (or a</3) defined for some pairs a, /3 of elements 
of 5 and satisfying the postulates: 

1. If a>/3 , and j3>7, then a>y. 
2. If a i>«2 and az^a^ then ai+a3>a2+<X4. 
3. If ai>Ot and «2>0, then there exists an a 3 > 0 such that 

<xi>az and a2>#3. 
4. If O J > 0 , then a ^ O . 
DEFINITION 2. A set T with operations x+y and ||#|| defined for all 

elements x, y of T shall be said to be a G«-space if the following are 
t rue: 

1. T is an Abelian group with respect to x+y. 
2. To every x in T and every positive number n there exists a 

positive integer N and an x^ such that x = Nxx, where N>n. 
3. ||tf|| is a function from T to an S-space with the following proper­

ties: 

a. 
b. 
c. 

x\\ *£(), and \\x\\ = 0 if and only if x = 0. 

*+yNN|+lbl|. 
nx\\ = | n\ |p | | for all integers n. 

By use of condition (2) of Definition 1, it is easily seen that an 
equivalent definition of 5-spaces would result from replacing (4) by 
the condition that a>/3 implies the impossibility of ce<j3. Also, the 
proof of Theorem 1 would be much simpler if it were assumed that 
a > 0 whenever na>0 for some positive integer n. Condition (2) 
of Definition 1 would then be unnecessary as far as this theorem is 
concerned. An 5-space of a G8-space is more restricted than the 
postulates of Definition 1 alone would indicate. This is shown by the 
following two theorems : 
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THEOREM 1. For any element c > 0 of an S-space, define the neigh-
borhood UXQl€ of an element Xo of an associated G8-space as the totality 
of xÇïGs satisfying n\\x—Xo\\ <ne for some positive integer n. Then Gs 

is a topological A belian group if the neighborhood system is taken as the 
totality of all such neighborhoods. 

PROOF, (a) Clearly x0 is in every UXQ,t. 
(b) Suppose UXQt€1 and UXQ,e2 are two neighborhoods of Xo. Then 

€i>0, €2>0, and there is an e3>0 such that €i>€2 and €2>e3. If 
n\\x— Xo\\ <ne3, then w||#— Xo\\ <nei and w||#—#o|| <ne2. Thus UXQ,€i 

(c) If y0 is in UXOtey then ^| |^o~^o|| <p* for some positive integer 
p. If e'=^[€"~||yo—#o||], then Um>€> contains some element y^yo'if 
Uy0>l><X.UXQ,t. Choose yi and N^p so that y—yo = Nyi. Then there 
is a positive integer q such that giV||^i|| <q.€' = qp[e — ||3>o —#o||] 
and by (2) of Definition 1, ç^||ji| | < ^ [ € —||yo~"^o||]. Therefore 
Uyo,\\Vl^(ZUXOt€. 

(d) If tfo^Jo, then ||#o —^o||>0 follows from (3a) of Definition 2. 
There is then by (2) and (3c) of Definition 2 an element uÇ:G8 and 
an integer n^2 such that Xo—y§~nu and n\\u\\ = ||̂ Co—3̂ o||• If €==||w||> 
then UXQ,eC\ Uyo,e = 0. For suppose z is in both of these neighborhoods. 
Then for some positive integer pf pne~p\\xo—yo\\^p\\xo — z\\ 
+p\\z-y0\\<2ep, or pn\\u\\ <2p\\u\\. Hence p\\(n-2)u\\<0, which 
contradicts (3a) of Definition 2. 

This verifies that any Gs-space is a Hausdorff space [l, pp. 228-229, 
(A), (B), (C), (5)].1 To show that x+y is continuous, let Ux+y,e be 
any neighborhood of x+y. If there is an element z^x+y in Ux+y,€l 

then choose u with z — (x+y) =nu and n>2. As in (d) above, it fol­
lows that if €]=||tt||, then x'+y'ÇzUx+y.* if # '£#*,«i and yrÇï.Uy,€v 

If the only element in Ux+y>e is x+y, then Ux,e contains only x and 
Uy,e contains only y. For if p\ 
<ep and z+yÇz Ux+y>€; while if q\ 

\z~xl\Kep, then £||s+;y — (#+y) | | 
|s? —yjl <eq, then z+xÇzUx+y,€. Thus 

x+y is continuous. Since yÇ.Ux,e implies — yÇzU-Xtt, —x is also con­
tinuous. 

DEFINITION 3. An S-space is Archimedian if for every €i>0 and 
€2>0 of S there exists a positive integer n such that t2<nt\. 

The following is an example of a Gs-space whose S-space is not 
Archimedian. Let S be the set of complex numbers, and G8 the same 
set. Let | | ^ + ^ | | = | ^ | + | y | ^ , and a+bi>c+di if and only if b>d 
or b = d and a>c. These spaces clearly satisfy the postulates of Defi-
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nitions 1 and 2. But if a = l + 0 - i and j3 = l -H , then there is no num­
ber n such tha t na>fi. 

Let 5 be the set of all real numbers, G8 the set of all complex 
numbers x+yi with x and y rational, and ||#+;yi|| = | x + ^ " | . This 
is a Gv-space whose 5-space is Archimedian, but which is itself a sub­
set of the normed linear space of all complex numbers. The meaning 
of assuming that an 5-space is Archimedian is further shown by the 
following results. 

LEMMA 1. A G espace whose S-space is Archimedian is a normable 
topological Abelian group. 

PROOF. Let Gi be a Gy-space whose 5-space S\ is Archimedian. Let 
U€ be any neighborhood of zero. Then G\ is normable if U€ generates 
G\ and U€ is bounded and convex [2, Corollary 5.2]. 

(a) U€ generates G\. For let xÇzGi and choose an integer n such that 
W€>||x||. There is then a number N>n and an XN such that X=*NXN> 
But then JVr€>||^|| ==iVJ|*iv|| and N\\xN\\ <iVe. Thus xN&Ue and 

xeu^u€+ • - • ue. 
(b) Ue is bounded [2, Definition 2.3]. For let Ue

f be any other 
neighborhood of the identity and choose n so that ntr>e. Suppose 
that mx(~Ut for an m^n. Then p\\mx\\ <pe<pne'^pme' for some 
positive integer p. Hence pm\\x\\<pme' and xÇzUe'. 

(c) U€ is convex [2, Definition 2.1]. For suppose that nxÇzU" for a 
positive integers. Then nx = #i+#2 + • • • +xny where for each Xi there 
is a positive integer p{ such that pi\\xi\\ <pie. Thus n(pip2 • • • £n)||*|| 
<m(p!p2 • • • pn)e and xGU€. 

It follows from Lemma 1 that if 5 is Archimedian, then G8 is a 
normable topological Abelian ^group and therefore a subspace of a 
normed linear space [2, Theorem 4.1]. The following is a similar, but 
stronger, result. Hereafter a G«-space whose 5-space is Archimedian 
will be called an Archimedian G8-space. 

THEOREM 2. For a given Archimedian Gs-space G\ there is a normed 
linear space Ti which contains Gi as a subset and which is contained in 
every normed linear space containing G\. Also, every element of T\ is a 
limit point of elements of G\. 

PROOF. AS noted above, there is a normed linear space T with 
GiQT. Then J[%mlaiXiÇzT for any numbers a» and elements Xi of Gi, 
such multiplication being defined in T. The set T\ of all such elements 
of T is clearly a linear space and as a linear subset of T is a normed 
linear space. Because of (2) of Definition 2, for any number a and 
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element XoÇzGi there are numbers a* such that lim^acet*=a and otiXo 
is an element of Gi. Let #=2^„iat-#*€E2ni, where XiÇzGu and let 6 
be any positive number. Choose numbers a t such that |at---on] 
<e/n\\xi\\ and oaXiCLGx for each i. Then ||x—Xlt-i^*^*!!^6 a n d 

yE£miOL&i<E.Gi. Hence every element of jfi is a limit point of elements 
of G\. From this, it is clear that TiQT' for any normed linear space 
T' containing G\. 

The usual definition of a linear function as being additive and con­
tinuous will be used in the following. If the G8-space is Archimedian, 
then the theory of the differential as defined below becomes a con­
sequence of the established theory of Fréchet differentiation of func­
tions with arguments and values in normed linear spaces. 

DEFINITION 4. Let G\ and G2 be any two Gy-spaces. If f(x) is a func­
tion on a neighborhood U\ of #o£Gi to G2, then f(x) is differentiate 
at x~xo if there exists a function ƒ(x0; ôx) on G\ to G% defined for all 
elements ôx of Gi and such tha t : 

1. f(xo] ôx) is linear in ox, 
2. For any integer n>0 there exists a p > 0 such that w||/(xo+8tf) 

—/(#o)— /(#oî ôx)\\ <||S#|| for all ôx such that 0<| |8#| | <p . 
In this case,/(^oî ôx) is called the differential of f(x) at #0. 

THEOREM 3. Let G\ and G% be any two Archimedian G9-spaces. If 
the f unction f (x) on t / i C d to Gi has the differential f (xo; ôx) at #o£ Z7i, 
and T\ and T% are the smallest normed linear spaces containing Gi and 
G2, respectively, then there is a function F on 7 \ to T% such that: 

1. F(x)=f(x)for allxEUi. 
2. F has the differential F(xo', ôx) at Xo, where F(xo; ôx) is the unique 

linear function on Ti to Tifor which F(XQ; ÔX) =/(#0 ; Sx) for all xÇzGi. 

PROOF. Let x be any element of T\. The existence of elements Xi&Gi 
with x~limi^Xi follows from Theorem 2. Define F(x0; x) as 
lim^oo/Cffoî Xi)- Such sequences are clearly Cauchy sequences and con­
verge to an element of any Banach space containing TV But F(XQ] X) 
is then a linear function on T\ to this Banach space, and is therefore 
homogeneous of degree one in x. Since ^=2Z?«i^i3;* f° r some ele­
ments 3>t£Gi and numbers a^ this implies that F(xo', ^tmidiy%) 
= Z X i a ^ f c o ; y{) and is an element of T2 [F(x0] 3>i)=/(tfo; yùGGziî 
yiÇzGi]. Thus F(x0; x) is a linear function on T\ to T2. Since G\ is 
dense in Ti, it follows that this is the only linear function with 
F(x0; ôx)=f(xo; ôx) for ôxÇiGi. Now define F on T\ by the relation 
F(x)=f(x) if xEUi, and 

F(x) = F(x0) + F(x0; x - ^0) 
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otherwise. If n is any positive integer, then there is a number p > 0 
such that 0< | |Sx | |<p implies xo+ôxÇiUi and n\\f(x0+ôx) —f(x0) 
-ƒ(*<>; 8x)\\ <\\Sx\\ if ôxGGi. But then n\\F(x0+ôx) - F(x0) - F ( s 0 ; ôx)\\ 
<||ôx|| if 0< | |Sx | |<p and ôxÇiTi, since this is satisfied for ôx if 
ôxEGi and 0< | ]ox | |<p , while F(x0+ôx) ~F(xo) + F(xo; ôx) if 8x is 
not in UiQGi. Hence F has the differential F(XQ] OX) at x0; while 
F(x) =f(x) if x £ Ui and F(x0; x) =f(x0; x) if x £ G i . 

THEOREM 4. Let T\ and Ti be any two normed linear spaces. If a 
f unction f on 7\ to T2 has a differential f (xo; 8x) at the point xo (in the 
sense of Definition 4), then /(xoî 8x) is a Frêchet differential o f f at XQ. 

PROOF. Let e be any positive number and choose an integer n such 
that 0<l/n^e. By assumption, there is a number p such that 
n\\f(xo+8x)~f(xo) —ƒ(#<>; ôx)\\ <||5x|| for all ôx with 0<||Sx|| <p . But 
then \\f(xo+ôx)— f(x0)— f(x0; dx)\\<e\\ôx\\ if 0< | |Sx | |<p . Hence 
f(xo; ôx) is the Fréchet differential of f(x) at xo. 

COROLLARY 1. Let Gi and Gi be any two Archimedian G8-spaces, 
andf(x) be a function on a neighborhood of x0G.Gi to G2. Then: (1) If a 
differential of f(x) exists, it is unique, (2) If f(x) is differentiable at 
x = Xo, then f (x) is continuous at x=x0. (3) If f(x) is differentiable at 

then it is also differentiable in the sense of Michal [3], and the 
two differentials are equal. 

COROLLARY 2. Let Gi, G%, and G3 be three Archimedian Gs-spaces, 
Suppose <j>(x) is a function on a neighborhood of xoGGi to G% and is dif­
ferentiable at x0y while f (4>) is a f unction on a neighborhood ofcj>(xo) £C?2 
to Gz which is differentiable at (j>(xo). Then ƒ [<£(#)] is differentiable at 
Xo, and this differential is f[<f>(xo); $(x0; 8x)], 
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