TOPOLOGICAL ABELIAN GROUPS WITH ORDERED NORMS R. C. JAMES, A. D. MICHAL, MAX WYMAN The purpose of this paper is to study Abelian groups with a norm whose values are in another Abelian group having an order relation. Postulates on the ordering are given which are sufficient for the space to be a topological group under the neighborhood system of this norm. It is seen that the added assumption that the ordering is Archimedian implies the space is a subset of a normed linear space. A differential is defined in the general space. This is seen to be closely related to the Fréchet differential if the ordering is Archimedian. DEFINITION 1. An S-space is a set S which is an Abelian group with a relation $\alpha > \beta$ (or $\alpha < \beta$) defined for some pairs α , β of elements of S and satisfying the postulates: - 1. If $\alpha > \beta$, and $\beta > \gamma$, then $\alpha > \gamma$. - 2. If $\alpha_1 > \alpha_2$ and $\alpha_3 \ge \alpha_4$, then $\alpha_1 + \alpha_3 > \alpha_2 + \alpha_4$. - 3. If $\alpha_1 > 0$, and $\alpha_2 > 0$, then there exists an $\alpha_3 > 0$ such that $\alpha_1 > \alpha_3$ and $\alpha_2 > \alpha_3$. - 4. If $\alpha > 0$, then $\alpha \neq 0$. DEFINITION 2. A set T with operations x+y and ||x|| defined for all elements x, y of T shall be said to be a $G_{\mathfrak{d}}$ -space if the following are true: - 1. T is an Abelian group with respect to x+y. - 2. To every x in T and every positive number n there exists a positive integer N and an x_N such that $x = Nx_N$, where N > n. - 3. ||x|| is a function from T to an S-space with the following properties: - a. $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0. - b. $||x+y|| \le ||x|| + ||y||$. - c. ||nx|| = |n| ||x|| for all integers n. By use of condition (2) of Definition 1, it is easily seen that an equivalent definition of S-spaces would result from replacing (4) by the condition that $\alpha > \beta$ implies the impossibility of $\alpha < \beta$. Also, the proof of Theorem 1 would be much simpler if it were assumed that $\alpha > 0$ whenever $n\alpha > 0$ for some positive integer n. Condition (2) of Definition 1 would then be unnecessary as far as this theorem is concerned. An S-space of a G_{\bullet} -space is more restricted than the postulates of Definition 1 alone would indicate. This is shown by the following two theorems: Presented to the Society, November 30, 1946; received by the editors August 23, 1946, and, in revised form, January 20, 1947. THEOREM 1. For any element $\epsilon > 0$ of an S-space, define the neighborhood $U_{x_0,\epsilon}$ of an element x_0 of an associated G_s -space as the totality of $x \in G_s$ satisfying $n||x-x_0|| < n\epsilon$ for some positive integer n. Then G_s is a topological Abelian group if the neighborhood system is taken as the totality of all such neighborhoods. PROOF. (a) Clearly x_0 is in every $U_{x_0,\epsilon}$. - (b) Suppose U_{x_0,ϵ_1} and U_{x_0,ϵ_2} are two neighborhoods of x_0 . Then $\epsilon_1>0$, $\epsilon_2>0$, and there is an $\epsilon_3>0$ such that $\epsilon_1>\epsilon_2$ and $\epsilon_2>\epsilon_3$. If $n||x-x_0||< n\epsilon_3$, then $n||x-x_0||< n\epsilon_1$ and $n||x-x_0||< n\epsilon_2$. Thus U_{x_0,ϵ_2} . - (c) If y_0 is in $U_{x_0,\epsilon}$, then $p||y_0-x_0|| < p\epsilon$ for some positive integer p. If $\epsilon' = p[\epsilon ||y_0-x_0||]$, then $U_{y_0,\epsilon'}$ contains some element $y \neq y_0$ if $U_{y_0,\epsilon'} \subset U_{x_0,\epsilon}$. Choose y_1 and $N \geq p$ so that $y-y_0=Ny_1$. Then there is a positive integer q such that $qN||y_1|| < q\epsilon' = qp[\epsilon ||y_0-x_0||]$ and by (2) of Definition 1, $qp||y_1|| < qp[\epsilon ||y_0-x_0||]$. Therefore $U_{y_0,||y_1||} \subset U_{x_0,\epsilon}$. - (d) If $x_0 \neq y_0$, then $||x_0 y_0|| > 0$ follows from (3a) of Definition 2. There is then by (2) and (3c) of Definition 2 an element $u \in G_s$ and an integer $n \geq 2$ such that $x_0 y_0 = nu$ and $n||u|| = ||x_0 y_0||$. If $\epsilon = ||u||$, then $U_{x_0,\epsilon} \cap U_{y_0,\epsilon} = 0$. For suppose z is in both of these neighborhoods. Then for some positive integer p, $pn\epsilon = p||x_0 y_0|| \leq p||x_0 z|| + p||z y_0|| < 2\epsilon p$, or pn||u|| < 2p||u||. Hence p||(n-2)u|| < 0, which contradicts (3a) of Definition 2. This verifies that any G_s -space is a Hausdorff space [1, pp. 228–229, (A), (B), (C), (5)]. To show that x+y is continuous, let $U_{x+y,\epsilon}$ be any neighborhood of x+y. If there is an element $z \neq x+y$ in $U_{x+y,\epsilon}$, then choose u with z-(x+y)=nu and n>2. As in (d) above, it follows that if $\epsilon_1 = ||u||$, then $x'+y' \in U_{x+y,\epsilon}$ if $x' \in U_{x,\epsilon_1}$ and $y' \in U_{y,\epsilon_1}$. If the only element in $U_{x+y,\epsilon}$ is x+y, then $U_{x,\epsilon}$ contains only x and $U_{y,\epsilon}$ contains only y. For if $p||z-x|| < \epsilon p$, then $p||z+y-(x+y)|| < \epsilon p$ and $z+y \in U_{x+y,\epsilon}$; while if $q||z-y|| < \epsilon q$, then $z+x \in U_{x+y,\epsilon}$. Thus x+y is continuous. Since $y \in U_{x,\epsilon}$ implies $-y \in U_{-x,\epsilon}$, -x is also continuous. DEFINITION 3. An S-space is Archimedian if for every $\epsilon_1 > 0$ and $\epsilon_2 > 0$ of S there exists a positive integer n such that $\epsilon_2 < n\epsilon_1$. The following is an example of a G_s -space whose S-space is not Archimedian. Let S be the set of complex numbers, and G_s the same set. Let ||x+yi|| = |x|+|y|i, and a+bi>c+di if and only if b>d or b=d and a>c. These spaces clearly satisfy the postulates of Defi- ¹ Numbers in brackets refer to the references cited at the end of the paper. nitions 1 and 2. But if $\alpha = 1 + 0 \cdot i$ and $\beta = 1 + i$, then there is no number n such that $n\alpha > \beta$. Let S be the set of all real numbers, G_s the set of all complex numbers x+yi with x and y rational, and ||x+yi|| = |x+yi|. This is a G_s -space whose S-space is Archimedian, but which is itself a subset of the normed linear space of all complex numbers. The meaning of assuming that an S-space is Archimedian is further shown by the following results. LEMMA 1. A G_s-space whose S-space is Archimedian is a normable topological Abelian group. PROOF. Let G_1 be a G_s -space whose S-space S_1 is Archimedian. Let U_{ϵ} be any neighborhood of zero. Then G_1 is normable if U_{ϵ} generates G_1 and U_{ϵ} is bounded and convex [2, Corollary 5.2]. - (a) U_{ϵ} generates G_1 . For let $x \in G_1$ and choose an integer n such that $n \in > ||x||$. There is then a number N > n and an x_N such that $x = Nx_N$. But then $N \in > ||x|| = N||x_N||$ and $N||x_N|| < N \epsilon$. Thus $x_N \in U_{\epsilon}$ and $x \in U_{\epsilon}^N = U_{\epsilon} + \cdots U_{\epsilon}$. - (b) U_{ϵ} is bounded [2, Definition 2.3]. For let $U_{\epsilon'}$ be any other neighborhood of the identity and choose n so that $n\epsilon' > \epsilon$. Suppose that $mx \in U_{\epsilon}$ for an $m \ge n$. Then $p||mx|| < p\epsilon < pn\epsilon' \le pm\epsilon'$ for some positive integer p. Hence $pm||x|| < pm\epsilon'$ and $x \in U_{\epsilon'}$. - (c) U_{ϵ} is convex [2, Definition 2.1]. For suppose that $nx \in U_{\epsilon}^{n}$ for a positive integer n. Then $nx = x_{1} + x_{2} + \cdots + x_{n}$, where for each x_{i} there is a positive integer p_{i} such that $p_{i}||x_{i}|| < p_{i}\epsilon$. Thus $n(p_{1}p_{2} \cdots p_{n})||x|| < m(p_{1}p_{2} \cdots p_{n})\epsilon$ and $x \in U_{\epsilon}$. It follows from Lemma 1 that if S is Archimedian, then G_s is a normable topological Abelian group and therefore a subspace of a normed linear space [2, Theorem 4.1]. The following is a similar, but stronger, result. Hereafter a G_s -space whose S-space is Archimedian will be called an Archimedian G_s -space. THEOREM 2. For a given Archimedian G_s -space G_1 there is a normed linear space T_1 which contains G_1 as a subset and which is contained in every normed linear space containing G_1 . Also, every element of T_1 is a limit point of elements of G_1 . PROOF. As noted above, there is a normed linear space T with $G_1 \subset T$. Then $\sum_{i=1}^n a_i x_i \in T$ for any numbers a_i and elements x_i of G_1 , such multiplication being defined in T. The set T_1 of all such elements of T is clearly a linear space and as a linear subset of T is a normed linear space. Because of (2) of Definition 2, for any number a and element $x_0 \in G_1$ there are numbers α_i such that $\lim_{i \to \alpha} \alpha_i = a$ and $\alpha_i x_0$ is an element of G_1 . Let $x = \sum_{i=1}^n a_i x_i \in T_1$, where $x_i \in G_1$, and let ϵ be any positive number. Choose numbers α_i such that $|a_i - \alpha_i| < \epsilon/n ||x_i||$ and $\alpha_i x_i \in G_1$ for each i. Then $||x - \sum_{i=1}^n \alpha_i x_i|| < \epsilon$ and $\sum_{i=1}^n \alpha_i x_i \in G_1$. Hence every element of T_1 is a limit point of elements of G_1 . From this, it is clear that $T_1 \subset T'$ for any normed linear space T' containing G_1 . The usual definition of a linear function as being additive and continuous will be used in the following. If the G_s -space is Archimedian, then the theory of the differential as defined below becomes a consequence of the established theory of Fréchet differentiation of functions with arguments and values in normed linear spaces. DEFINITION 4. Let G_1 and G_2 be any two G_8 -spaces. If f(x) is a function on a neighborhood U_1 of $x_0 \in G_1$ to G_2 , then f(x) is differentiable at $x = x_0$ if there exists a function $f(x_0; \delta x)$ on G_1 to G_2 , defined for all elements δx of G_1 and such that: - 1. $f(x_0; \delta x)$ is linear in δx . - 2. For any integer n>0 there exists a $\rho>0$ such that $n||f(x_0+\delta x)-f(x_0)-f(x_0;\delta x)||<||\delta x||$ for all δx such that $0<||\delta x||<\rho$. In this case, $f(x_0;\delta x)$ is called the differential of f(x) at x_0 . THEOREM 3. Let G_1 and G_2 be any two Archimedian G_6 -spaces. If the function f(x) on $U_1 \subset G_1$ to G_2 has the differential $f(x_0; \delta x)$ at $x_0 \in U_1$, and T_1 and T_2 are the smallest normed linear spaces containing G_1 and G_2 , respectively, then there is a function F on T_1 to T_2 such that: - 1. F(x) = f(x) for all $x \in U_1$. - 2. F has the differential $F(x_0; \delta x)$ at x_0 , where $F(x_0; \delta x)$ is the unique linear function on T_1 to T_2 for which $F(x_0; \delta x) = f(x_0; \delta x)$ for all $x \in G_1$. PROOF. Let x be any element of T_1 . The existence of elements $x_i \in G_1$ with $x = \lim_{i \to \infty} x_i$ follows from Theorem 2. Define $F(x_0; x)$ as $\lim_{i \to \infty} f(x_0; x_i)$. Such sequences are clearly Cauchy sequences and converge to an element of any Banach space containing T_2 . But $F(x_0; x)$ is then a linear function on T_1 to this Banach space, and is therefore homogeneous of degree one in x. Since $x = \sum_{i=1}^n a_i y_i$ for some elements $y_i \in G_1$ and numbers a_i , this implies that $F(x_0; \sum_{i=1}^n a_i y_i) = \sum_{i=1}^n a_i F(x_0; y_i)$ and is an element of $T_2[F(x_0; y_i) = f(x_0; y_i) \in G_2$ if $y_i \in G_1$. Thus $F(x_0; x)$ is a linear function on T_1 to T_2 . Since G_1 is dense in T_1 , it follows that this is the only linear function with $F(x_0; \delta x) = f(x_0; \delta x)$ for $\delta x \in G_1$. Now define F on T_1 by the relation F(x) = f(x) if $x \in U_1$, and $$F(x) = F(x_0) + F(x_0; x - x_0)$$ otherwise. If n is any positive integer, then there is a number $\rho > 0$ such that $0 < \|\delta x\| < \rho$ implies $x_0 + \delta x \in U_1$ and $n \| f(x_0 + \delta x) - f(x_0) - f(x_0; \delta x) \| < \|\delta x\|$ if $\delta x \in G_1$. But then $n \| F(x_0 + \delta x) - F(x_0) - F(x_0; \delta x) \| < \|\delta x\|$ if $0 < \|\delta x\| < \rho$ and $\delta x \in T_1$, since this is satisfied for δx if $\delta x \in G_1$ and $0 < \|\delta x\| < \rho$, while $F(x_0 + \delta x) = F(x_0) + F(x_0; \delta x)$ if δx is not in $U_1 \subset G_1$. Hence F has the differential $F(x_0; \delta x)$ at x_0 ; while F(x) = f(x) if $x \in U_1$ and $F(x_0; x) = f(x_0; x)$ if $x \in G_1$. THEOREM 4. Let T_1 and T_2 be any two normed linear spaces. If a function f on T_1 to T_2 has a differential $f(x_0; \delta x)$ at the point x_0 (in the sense of Definition 4), then $f(x_0; \delta x)$ is a Fréchet differential of f at x_0 . PROOF. Let ϵ be any positive number and choose an integer n such that $0 < 1/n \le \epsilon$. By assumption, there is a number ρ such that $n||f(x_0 + \delta x) - f(x_0) - f(x_0; \delta x)|| < ||\delta x||$ for all δx with $0 < ||\delta x|| < \rho$. But then $||f(x_0 + \delta x) - f(x_0) - f(x_0; \delta x)|| < \epsilon ||\delta x||$ if $0 < ||\delta x|| < \rho$. Hence $f(x_0; \delta x)$ is the Fréchet differential of f(x) at x_0 . COROLLARY 1. Let G_1 and G_2 be any two Archimedian G_8 -spaces, and f(x) be a function on a neighborhood of $x_0 \in G_1$ to G_2 . Then: (1) If a differential of f(x) exists, it is unique. (2) If f(x) is differentiable at $x = x_0$, then f(x) is continuous at $x = x_0$. (3) If f(x) is differentiable at $x = x_0$, then it is also differentiable in the sense of Michal [3], and the two differentials are equal. COROLLARY 2. Let G_1 , G_2 , and G_3 be three Archimedian G_8 -spaces. Suppose $\phi(x)$ is a function on a neighborhood of $x_0 \in G_1$ to G_2 and is differentiable at x_0 , while $f(\phi)$ is a function on a neighborhood of $\phi(x_0) \in G_2$ to G_3 which is differentiable at $\phi(x_0)$. Then $f[\phi(x)]$ is differentiable at x_0 , and this differential is $f[\phi(x_0); \phi(x_0; \delta x)]$. ## REFERENCES - 1. F. Hausdorff, Mengenlehre, Berlin, 1927. - 2. R. C. James, Topological groups as subgroups of linear topological spaces, Duke Math. J. vol. 10 (1943) pp. 441-453. - 3. A. D. Michal, Differentials of functions with arguments and values in topological Abelian groups, Proc. Nat. Acad. Sci. U.S.A. vol. 26 (1940) pp. 356-359. CALIFORNIA INSTITUTE OF TECHNOLOGY AND UNIVERSITY OF ALBERTA