ON THE REPRESENTATION OF ¢-COMPLETE
BOOLEAN ALGEBRAS

L. H. LOOMIS

A g-complete Boolean algebra is a Boolean algebra in which for
every sequence of elements a;, 2=1, - - -, there is an element U a,,
the countable union of the a;, such that ¢;CUya, for every ¢, and
such that if ¢;Cx for every ¢ then Ufe.Cx. The dual operation,
countable intersection, can be introduced through complementation,
and the distributive law eNUre,=Ur (eMNa,) and its dual can be
proved (see [3, p. 93]).! Certain types of Boolean algebras have repre-
sentations as algebras of point sets, the representation preserving all
the operations of the algebra. Among these are ordinary Boolean
algebras with no further operations (Stone [1, p. 106]) and complete
Boolean algebras for which very general operations and distributive
laws are assumed (Tarski [2, pp. 197-198]). On the other hand it is
well known that a o-complete Boolean algebra has in general no such
representation. For example, the quotient of the algebra of Lebesgue
measurable subsets of [0, 1] modulo the ideal of sets of measure zero
is a o-complete Boolean algebra which is not ¢-isomorphic to any
g-complete Boolean algebra of point sets. The following theorem,
which we shall prove in this note, shows that this example illustrates
the general situation.

THEOREM. Every o-complete Boolean algebra is o-isomorphic to a
a-complete Boolean algebra of point sets modulo a o-ideal in that algebra.

In particular, every abstract measure algebra can be considered as
an algebra of point sets modulo sets of measure zero. Bischof [4] has
recently obtained a proof of this special case of the theorem, but his
proof leans heavily on the existence of a measure and does not gen-
eralize.

If we are given a representation of an abstract collection R of ob-
jects onto a family F of sets, then each point p of the representation
space determines a subfamily of sets F, and hence a subcollection R,
of R, namely, those objects in R whose image sets in F contain p. This
suggests the way to define points in attempting to build up a represen-
tation. A point will be a certain kind of subset of R, the image a of a
will be the set of points containing @, and the representation R of R

Received by the editors February 12, 1947.
1 Numbers in brackets refer to the bibliography at the end of the paper.

757



758 L. H. LOOMIS [August

will be the collection of such sets a. If R is closed under a complemen-
tation operation and the representation is to preserve complements,
then clearly a point must be a “selection subset” of R, which for each
aER contains ¢ or ¢’ but not both. If R is a Boolean algebra and the
representation is to be an isomorphism with respect to Boolean opera-
tions, then a point P must be a selection subset and must have the
further properties that (1) if ¢ &R and bEP then a\JbEP, and (2) if
a;€P,i=1, - - -, n, then Nja;is in P and is not null. Such a subset of
R is called a dual prime ideal. Stone’s theorem asserts that the corre-
spondence a—a, where a is the set of dual prime ideals containing a,
is actually an isomorphism. If R is a o-complete Boolean algebra and
the representation is to be a o-isomorphism, then the point P must
be not only a dual prime ideal, but must also have the stronger multi-
plicative property that if a;EP, =1, - - -, , then Ny a;is in P and
is not null. Such a dual ideal could be called a dual prime ¢-ideal. It
can easily be shown that the correspondence a—a is a a-isomorphism
if and only if the set a of dual prime o-ideals containing a is nonvoid
for every non-null a in R. In general there are not enough dual prime
g-ideals. In fact, the above mentioned algebra of measurable subsets
of [0, 1] modulo sets of measure 0 has #no dual prime o-ideals. For let
a; be the set of numbers in [0, 1] which in dyadic representation have
0 at the 7th place. Then m(a;) =m(a!)=1/2, and the measure of the
product of any 7 such sets or their complements is at most 2=, Thus
any dual prime o-ideal would have to contain an infinite product of
measure 0 and consequently, in the quotient space, a null product,
which contradicts the definition of a dual prime o-ideal. This proves
the assertions we have made about this example, and it also shows
that in defining points for our representation we cannot use the strin-
gent requirements of dual prime g-ideals.

We shall, in fact, go back to our weakest definition and take a point
to be simply a selection subset with respect to complementation. We
repeat that the set a corresponding to the element a is the set of all
points containing @, and that R is the collection of such sets a. The
correspondence a—a clearly preserves complementation. Let B(R) be
the o-complete Boolean algebra (Borel field) of point sets generated
by R, that is, the smallest family of sets including R and closed under
the operations of complementation and countable union. Let 9 be
the family of sets of $(R) of the form N7a; if Nfa:=0 or N a; if
N1 a:;=0. Let §(N) be the o-ideal generated by N, thatis, the smallest
family of sets including M and closed under the operations of count-
able union and of intersection with any set of B(R). Let R be the
quatient o-complete Boolean algebra B(R) /I (N) and let @ be the ele-
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ment (coset) of & containing a. The theorem can be stated more ex-
actly as follows.

THEOREM. The a-complete Boolean algebras R and R are a-isomorphic
under the correspondence a—a.

First, the correspondence a—a is a o-homomorphism onto the whole
of R. For if a=Ua, then aMNNfa, =0 and a’Na;=0 for every 7.
Therefore, by the definition of N, aNNTas EN and a’Na; EN for
every 1, so that a=U[&,, which proves the correspondence to be a
g-homomorphism. The images @ of the elements of R thus form a
o-complete Boolean algebra and hence cover the whole of § (which is
generated by these images). That this ¢-homomorphism onto % is a
g-isomorphism is the obvious content of the following lemma, the
proof of which depends ultimately upon an application of the diagonal
process.

LeMMA. If 6=0 (¢hat is, aEI(N)) then a =0.

Any element of (M) is included in a countable sum of elements
of N, for the elements of F(N) having this property clearly form a

g-ideal including M. Thus, to prove the lemma it is sufficient to prove
that

(1) if agU ﬁa:. then o & 0 ﬁa:,.

n=1 m=1 n=1 m=1

Because of the more intuitive distributive law involved we shall prove
the complementary form

)] if ﬁ ﬁa:.ga then ﬁﬁa:._C_a.

n=1 m=1 n=1 m=1
The hypothesis of (2) implies that

n

3) ﬁ Uy S @ for every function m(n).
n=l

This can occur only if (i) @ occurs in the sequence ap,), or if (ii) the

sequence contains a complementary pair. For otherwise we can form

a point P containing all the elements anyy and also containing a’,

invalidating the inclusion (3). But the conditions (i) or (ii) imply the

conclusion of (2). For suppose on the contrary that

) (N Ga’;)-—.b,-éo.

n=1 m=1
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Since 8CU,,.1ap, for every #n, we can find an index m(1) such that
by #0, an index m(2) such that (0M\apw)MName #0, and, induc-
tively, indices m(¢) such that MNjanu 70. The sequence apg so
chosen cannot have the property (ii), and since 8Ca’ it cannot have
the property (i). The hypothesis (4) thus leads to a contradiction and
(2) has been established.
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