A NOTE ON FINITE ABELIAN GROUPS1

L. J. PAIGE

- 1. Introduction. R. H. Bruck² has pointed out that every finite group of odd order is isotopic to an idempotent quasigroup. It can be shown that a necessary and sufficient condition that a group G be isotopic to an idempotent quasigroup is that there exist one-to-one mappings θ and η of G upon G satisfying the relationship $\eta(x) = x \cdot \theta(x)$, for all x of G. The same condition is sufficient to prove the existence of a loop M whose automorphism group contains G as a subgroup. We shall not attempt to show either of these applications; but, since there may be others, the present paper is concerned with the existence of suitable θ and η for any finite abelian group G. For this we have a complete answer. Our methods are constructive, but (unfortunately from the standpoint of generalization) they make considerable use of the commutative law.
- 2. Notation. We shall consider a finite abelian group G of order n = n(G).

The product of the n distinct elements of G will be designated by p = p(G).

Let $x \rightarrow \theta(x)$ be any one-to-one mapping (not necessarily an automorphism) of G upon G. Consider the derived mapping $x \rightarrow \eta(x) = x\theta(x)$. The order of η , denoted by $O(\eta)$, is the number of distinct elements $\eta(x)$, for x in G.

It is our purpose to prove the following theorem:

THEOREM 1. There exists a θ for which $O(\eta) = n(G)$ unless G possesses exactly one element of order 2. In the latter case there exists a θ for which $O(\eta) = n(G) - 1$.

3. Evaluation of p.

LEMMA 1. p(G) = 1 unless G possesses exactly one element of order 2. In the latter case, p(G) is the unique element of order 2.

PROOF. The set H consisting of the identity and all elements of G of order 2 is a uniquely defined subgroup of G. If $a \in G$ is of order

Presented to the Society, November 30, 1946; received by the editors October 17, 1946, and, in revised form, December 5, 1946.

¹ The author wishes to thank the referee for his suggestions which added considerably to the clarity of the paper.

² R. H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 19-52, especially pp. 35, 36.

greater than 2, $a \neq a^{-1}$; thus both a and a^{-1} appear in p(G) and hence p(G) = p(H).

If H has order 1, p(H) = 1. If H has order 2, elements 1, g, then $p(H) = 1 \cdot g = g$, and p(H) is the unique element of H (and hence of G) of order 2.

Now suppose H has order greater than 2; so that H has order 2^k , k>1. Then H has k generators g_1, \dots, g_k and every element of H has a unique representation in the form $g_1^{n_1}g_2^{n_2}\cdots g_k^{n_k}$ where n_i is 0 or 1. Hence $p(H)=\prod (g_1^{n_1}g_2^{n_2}\cdots g_k^{n_k})$, where the product is over the distinct ordered sets (n_1, \dots, n_k) with n_i taking the values 0 or 1. By symmetry $p(H)=(g_1g_2\cdots g_k)^m$ where $m=2^{k-1}$ and since k>1 we have p(H)=1.

4. A necessary condition. It is easily shown that there are abelian groups for which a suitable θ does not exist.

LEMMA 2. A necessary condition that $O(\eta) = n(G)$ is that p(G) = 1.

COROLLARY. If $p(G) \neq 1$, $O(\eta) < n(G)$ for all θ .

PROOF. Suppose there exists a θ for which $O(\eta) = n(G)$. Then if we denote the elements of G by x_i $(i=1, 2, \dots, n)$,

$$\prod_{i=1}^n [x_i\theta(x_i)] = \prod_{i=1}^n \eta(x_i),$$

and since G is abelian, θ and η one-to-one mappings of G upon G, we have $p^2 = p$ or p = 1. The corollary should be obvious.

5. **The main theorem.** In order to avoid complexity, we prove the following lemma before proceeding with the proof of Theorem 1.

LEMMA 3. If for θ , $O(\eta) \leq n-2$, where n = n(G), there exists a θ' such that $O(\eta') > O(\eta)$.

COROLLARY. There exists a θ for which $O(\eta) = n(G) - 1$.

PROOF. Let θ be a mapping for which $O(\eta) = r \le n-2$. Denoting the elements of G by x_i $(i=1, \dots, n)$, let $\eta(x_i)$ $(i=1, \dots, r)$ be the r distinct elements of $\eta(x)$, for x in G. If there exist integers h, k > r such that $x_h \theta(x_k) \ne \eta(x_i)$ $(i \le r)$, the problem is solved by setting $\theta'(x_h) = \theta(x_k)$, $\theta'(x_k) = \theta(x_h)$ and $\theta'(x) = \theta(x)$ for the remaining elements of G. Hence, assume that this is not the case. Since $\eta(x_{r+1}) = \eta(x_i)$ for some $i \le r$, there is no loss in generality in assuming that $\eta(x_{r+1}) = \eta(x_1)$. If $x_1 \theta(x_{r+2}) \ne \eta(x_i)$ $(i \le r)$, we can set $\theta'(x_1) = \theta(x_{r+2})$, $\theta'(x_{r+2}) = \theta(x_1)$ leaving $\theta'(x) = \theta(x)$ for the remaining elements of G

and thus construct a θ' with $O(\eta') > r$. But if $x_1\theta(x_{r+2}) = \eta(x_i)$ for some $i \le r$, we note that $x_1\theta(x_{r+2}) \ne \eta(x_1)$. Hence we may assume without loss of generality that $x_1\theta(x_{r+2}) = \eta(x_2)$.

Now $x_2\theta(x_1) \neq \eta(x_1)$, $\eta(x_2)$. If $x_2\theta(x_1) \neq \eta(x_i)$ ($i \leq r$), we could change θ by setting $\theta'(x_1) = \theta(x_{r+2})$, $\theta'(x_2) = \theta(x_1)$, $\theta'(x_{r+2}) = \theta(x_2)$ and thus construct θ' with $O(\eta') > r$. Otherwise we may assume without loss of generality that $x_2\theta(x_1) = \eta(x_3)$.

Continue in this manner and suppose we have reached the point where

$$(1) x_1\theta(x_{r+2}) = \eta(x_2), x_{i+1}\theta(x_i) = \eta(x_{i+2}) (i = 1, 2, \dots, k),$$

From (1) we derive the equations

(2)
$$\eta(x_1)\theta(x_{r+2}) = \eta(x_{i+1})\theta(x_i)$$
 $(i = 1, 2, \dots, k+1).$

In fact $\eta(x_1)\theta(x_{r+2}) = x_1\theta(x_1)\theta(x_{r+2}) = x_1\theta(x_{r+2})\theta(x_1) = \eta(x_2)\theta(x_1)$; so assume $\eta(x_1)\theta(x_{r+2}) = \eta(x_{j+1})\theta(x_j)$ for some j, with $1 \le j \le k$. Then $\eta(x_{j+1})\theta(x_j) = x_{j+1}\theta(x_j)\theta(x_{j+1}) = \eta(x_{j+2})\theta(x_{j+1})$; and the result follows by induction.

Now $x_{k+2}\theta(x_{k+1}) \neq \eta(x_i)$ $(i \leq k+2)$, for using (2) this would imply $\eta(x_i)\theta(x_{k+2}) = x_{k+2}\theta(x_{k+1})\theta(x_{k+2}) = \eta(x_{k+2})\theta(x_{k+1}) = \eta(x_i)\theta(x_{i-1})$, or $\theta(x_{k+2}) = \theta(x_{i-1})$, which is impossible since $i \leq k+2$. If $x_{k+2}\theta(x_{k+1}) \neq \eta(x_i)$ $(i \leq r)$, we could change θ by setting $\theta'(x_1) = \theta(x_{r+2})$, $\theta'(x_{i+1}) = \theta(x_i)$ $(i = 1, 2, \dots, k+1)$, $\theta'(x_{r+2}) = \theta(x_{k+2})$ and thus construct a θ' with $O(\eta') > r$. If $x_{k+2}\theta(x_{k+1}) = \eta(x_i)$ for some $i \leq r$ we may assume without loss of generality that i = k+3 and add to (1) the equation $x_{k+2}\theta(x_{k+1}) = \eta(x_{k+3})$. However, since $O(\eta)$ is finite, we must reach a product $x_i\theta(x_{j-1}) \neq \eta(x_i)$ $(i \leq r)$. This completes the proof of Lemma 3. The corollary is obvious.

In order to prove Theorem 1 we may assume, by the corollary of Lemma 3, a θ for which $O(\eta) = n(G) - 1$. Hence, let $\eta(x_i)$ $(i = 1, \dots, n-1)$ be the n-1 distinct elements of $\eta(x)$, for x in G; z the unique element of G not equal to some $\eta(x_i)$. Then since

$$\prod_{i=1}^{n-1} \left[x_i \theta(x_i) \right] = \prod_{i=1}^{n-1} \eta(x_i)$$

we have $px_n^{-1}p\theta(x_n)^{-1}=pz^{-1}$, where p=p(G) as defined in §2. Thus $p^{-1}x_n\theta(x_n)=z$ or $p^{-1}\eta(x_n)=z$. Hence if p(G)=1, we see that $O(\eta)=n(G)$. But if $p(G)\neq 1$ we know by Lemma 2 that $O(\eta)< n(G)$ for all θ . This completes the proof.

Although there exist groups G for which a θ , such that $O(\eta) = n(G)$, is easily represented explicitly (for example, if G is of odd order let $\theta(x) = x$), the author found it necessary to use repeated applications

of Lemma 3 to obtain suitable θ 's for groups of the form $Z_1 \times Z_2 \times Z_3$ where Z_i are cyclic of order 2^n . However, it should be noted that if $G \cong G_1 \times G_2$, a one-to-one mapping θ of G upon G may be defined by

$$\theta[(x, y)] = [\theta_1(x), \theta_2(y)]$$

where θ_1 and θ_2 are one-to-one mappings of G_1 upon G_1 and G_2 upon G_2 respectively. Moreover θ satisfies the relationship $O(\eta) \ge O(\eta_1) \cdot O(\eta_2)$. Thus if $O(\eta_1) = n(G_1)$, $O(\eta_2) = n(G_2)$ we would have $O(\eta) = n(G_1 \times G_2)$ and θ is represented explicitly in terms of θ_1 and θ_2 .

University of Wisconsin

ON RINGS WHOSE ASSOCIATED LIE RINGS ARE NILPOTENT

S. A. JENNINGS

1. Introduction. With any ring R we may associate a Lie ring $(R)_l$ by combining the elements of R under addition and commutation, where the commutator $x \circ y$ of two elements $x, y \in R$ is defined by

$$x \circ y = xy - yx$$
.

We call $(R)_i$ the Lie ring associated with R, and denote it by \Re . The question of how far the properties of \Re determine those of R is of considerable interest, and has been studied extensively for the case when R is an algebra, but little is known of the situation in general. In an earlier paper the author investigated the effect of the nilpotency of \Re upon the structure of R if R contains a nilpotent ideal N such that R/N is commutative. In the present note we prove that, for an arbitrary ring R, the nilpotency of \Re implies that the commutators of R of the form $x \circ y$ generate a nil-ideal, while the commutators of R of the form $(x \circ y) \circ z$ generate a nilpotent ideal (cf. §3). If R is finitely generated, and \Re is nilpotent then the ideal generated by the commutators $x \circ y$ is also nilpotent (cf. §4).

2. A lemma on L-nilpotent rings. We recall that the Lie ring \Re is said to be nilpotent of class γ if we have

Received by the editors December 23, 1946.

¹ Central chains of ideals in an associative ring, Duke Math. J. vol. 9 (1942) pp. 341-355, Theorem 6.5.