CONCERNING AUTOMORPHISMS OF
NON-ASSOCIATIVE ALGEBRAS

R. D. SCHAFER

In their studies of non-associative algebras A. A. Albert and
N. Jacobson have made much use of the relationships which exist
between an arbitrary non-associative algebra N and its associative
transformation algebra T'(%). In this paper we are interested in the
automorphism group ® of ¥, and we sharpen the results of Jacobson
[3, §4]* and Albert [2, §9] in the sense that we prove & isomorphic
to a well-defined subgroup of the automorphism group of each of three
associative algebras (§§2, 3).

Incidental to our proofs is the reconstruction (in the sense of equiv-
alence) of an arbitrary non-associative algebra 9 with unity element 1
from T(A) and from either of the enveloping algebras E(R(X)),
E(L()) of respectively the right or left multiplications of . This
paper has been expanded in accordance with suggestions of the referee
to include a more detailed study of the right ideals used in this re-
construction process (§5).

1. Preliminaries. Our notations are chiefly those of Albert as given
in [1]. We regard a non-associative algebra % of order # over a field
T as consisting of a linear space & of order # over {, a linear space
R(Y) of linear transformations R, on { of order m<#n over §, and a
linear mapping of € on R(¥),

(1) x— R..

The elements R, of R(N) are called right multiplications, and R(%) the
right multiplication space of A. Multiplication in ¥ is defined by

2 ¢ % = aR,.

The linearity of the right multiplications and of (1) insures distribu-
tivity in % as well as the usual laws of scalar multiplication. We shall
use the fact that, in case A contains no absolute right divisor of zero
(an element x such that a-x=0 for all ¢ in %), the mapping (1) is
nonsingular and the order of R() over § is #.

The linear transformations L, defined by

3) a—x-a=aL,
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are called left multiplications of A and form the left multiplication space
L) of A. The algebra A may equally well be regarded as consisting
of €, L(A), and the linear mapping

4) x—L,

of € on L(A). Both R(Y) and L(A) are linear subspaces of the total
matric algebra (&), of all linear transformations on g.

If 9 is a subset of ()., the algebra of all polynomials in the trans-
formations in I with coefficients in § is called the enveloping algebra
of M, and is denoted by E(IM). We are particularly concerned with
the enveloping algebras E(R()) and E(L()) of respectively the
right and left multiplications of ¥, and with the transformation alge-
bra T(N)=E, R(A), L(A)) which is the algebra of all polynomials
with coefficients in § in the right and left multiplications of U and
the identity transformation I in (). We shall have occasion to write
an arbitrary element T of each of these algebras as follows:

5) T=f(Rsy Ryy -+ +) for T in E(R(Y)),
(6) T =fLgyLy--+) for T in E(L()),
@) T=fI,RasyLs Ry, ---) for T in T(%),
where x, ¥, - - - are elements of A. In case ¥ contains a unity ele-
ment 1, then R(Y) contains I, and we may write

® T=f(RsyLsy Ry, --) for T in T(%),
x,9, - ind

If B is a linear subspace of ¥, the set of all R, for b in B is a linear
subspace R(B, A) of R(NA), and the set of all L, is a linear subspace
L($B, A) of L(A).

An automorphism S of an algebra ¥ is a nonsingular linear trans-
formation x—x.S of % on itself such that

9 (a-x)S = aS-xS

for all @, x in %. In terms of right and left multiplications, (9) may be
written equivalently as

(10) R.S = SR.s
or

for all x in . We shall use the facts that, if S is an automorphism
of ¥, then S—!is also, and if % has a unity element 1, then 1S=1.
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Inasmuch as the elements T of subalgebras of ({). are themselves
linear transformations, we shall denote linear transformations on sub-
algebras of (§).—such as T(X), E(R(¥)), E(L(A))—by Greek capi-
tals, so that if ¥ is a linear transformation on T'(X), say, we may
write (without confusion) the image of T under X as T2.

An automorphism S of ¥ determines an automorphism 2 of T'(%)
as follows: let T in T(A) be written in the form (7); then X is the
mapping

(12) T—T 2= f(Iy st; LzSy RyS; cre ) = S_ITS.

For if S is an automorphism of ¥, then R,=SR,sS"!, L,=SL,sS™!
by (10), (11), and T=f(I, Rasy L, Ry, + - - ) =f(I, SR,3S~*, SL,sS™?,
SRysS™Y, + + - )=Sf(I, Rzs, Lzs, Rys, -+ - )S *=S(T2)S"Y, or TZ
=S-1TS. The mapping (12) is obviously an automorphism of T'(2).
Moreover, 2 induces automorphisms (which we do not distinguish
notationally from ) on the subalgebras E(R(2)), E(L(X)) of T(N):

(13) T —TZ = f(Ras, Rys, -+ + ), T in E(R(Y)) as in (5),

(14) T—TZ=f(LssyLys, -+ ), T in E(L(Y)) as in (6).
If S determines 2 as in (12), then

(15) RO = =R, LY== L),

since R,2 = R,s in R(YA) while L,2 =L,sin L(¥), and the nonsingular-
ity of 2 eliminates the possibility of proper inclusion.

2. Automorphisms of an algebra with unity element. Let U be a
non-associative algebra of order # over § with unity element 1. We
consider the elements of 2 as comprising a linear space & of order n
over §. Let 8B be any (associative) algebra of linear transformations
on € which contains either R(¥) or L(¥A). We intend to reconstruct A
(in the sense of equivalence) as an algebra of residue classes of B.

Denote by 9 the set of all transformations N in 8 which annihilate
1, that is, for which 1N =0. Then 9 is a right ideal of 8. For if N, N
are in N, then 1(aN+BN,) =alN+B1N:=0 for o, B in §, while
INT =0T =0 for any transformation T in 8. Denote by © whichever
set R(A) or L(Y) is assumed to be contained in B, and by D, corre-
spondingly the transformation R, or L,. Then 9 is the supplementary
sum B=D+N. For T in B may be written uniquely in the form
T=D;+N,1T=¢, Nin N.

Since 1T N =tN which is not necessarily zero, i is not in general a
two-sided ideal of B and we are not able to form the difference algebra
B—N when we take residue classes [T'] modulo N. Instead we form
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the difference group B—N of residue classes [7'] modulo N and have
as usual a linear set over § with respect to the operations [T"]+ [U]
= [T+ U], N\[T] = [AT] of addition and scalar multiplication. Define
multiplication in this linear set as follows:

(16) [T][U] = [x] where 1X = 1T-1U,

where the multiplication on the right is that in ¥. To see that for
any T, U in ¥ such an X exists, we need only to note that, if X =D,
for x=1T-1U in ¥, then 1X =1T-1U. This definition of multiplica-
tion is independent of the representatives T, U since if [T]=[T1],
[U]l=[Ui], then there exist N, N; in R such that Ti=T-N,
Uy=U+Ny, and 1T1-1U1=1(T+N) - 1(U+N,) =1T-1U. With this
multiplication the distributive laws hold in $—N. Hence —N is a
non-associative algebra over §. Since there are no difference algebras
used in this paper, there should be no confusion in the use of the no-
tation B—N for this algebra with multiplication defined by (16).

THEOREM 1. Let U be a non-associative algebra over § with unity ele-
ment 1, and B be any (associative) algebra of linear transformations
on U containing either R(N) or L(N). If N is the right ideal of transforma-
tions in B annihilating 1, then the non-associative algebra B—N with
multiplication defined by (16) is equivalent to .

For in each residue class [T] there is a unique transformation D,
in ® (=R(A) or L(A)) such that 1T =1D,;=¢. Then, since ¥ contains
neither absolute right nor absolute left divisors of zero, the (obvi-
ously linear) mapping

17 «—D,— [D,]
is one-to-one on ¥ to B—N. But
(18) [D.][Dy] = [Da], %, yin ¥,

since xy=1D,-1Dy,=1D,,. Then (17) is an equivalence of ¥ and
B—N since xy—D,y— [D,y] = [D.][D,] under (17).

Now T(%), E(R(¥)), B(L(XN)) are among the algebras of linear
transformations on the vector space ® underlying ¥ which contain
either R(N) or L(A)—or both, as in the case of T(A)—and may be
used as the algebra 8B in Theorem 1. We denote by R the set of all N
in T() annihilating 1 and write Re=NrNER)), N =NrNE(L()).
Then Theorem 1 implies that if multiplication in the respective alge-
bras of residue classes is defined by (16) we have A=T(A) —Nr
= E(R(YU)) —Ne=E(L(A)) —N:.

In the proof of the next theorem we must distinguish between the
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cases D=R(¥) and D=L(%A), and we use the following equations:
19 [R.][R,] = [Roy] = [R.R,], %, v in ¥,
(20) [Z.][Ls] = [Lay] = [LoLe], %, yin ¥,
verification of which is similar to that of (18).

THEOREM 2. Let A, B, and N be as in Theorem 1, and D be R(A) or
L), whichever is assumed to be in B. If Z is an automorphism of B
such that R =N and D=2, then T determines an automorphism Sz
of A as follows:

(21) Sz: x— [D,]—> [D.Z] = [Da] = &' = 253,
for x, x’ in N, where the [D,] are elements of B—N=.

Note first that the mapping
(22) [T]— [T 2]

of B—N on itself is well-defined, since if [T']=[T1] then T=T1+N
for Nin %, and T2=(T1+N)Z=T1Z+NZ=T,2+ N, with Ny in
since N=Z=N. Hence [TZ]=[T1Z]. Inasmuch as the correspond-
ences x—[D,] and [D,/]—x’ are equivalences between % and B—N,
we need only to show that (22) is an automorphism of $—N in order
to show that (21) is an automorphism of 9. Now (22) is linear since
ofT] + U] =[aT+BU] — [(2T+BU)2] = [aTZ+BUZ] =a[TZ]
+B[UZ], and is nonsingular since [T']—[TZ]=[0] implies TZ=N
in N, T=NZ-1=N, in N, [T]=[0]. Since DT =D, there exists an
element x; of A such that D,2 =D,. But then x;=x' since there is a
unique transformation in ® in each residue class of B modulo RN.
We may write x'=xS3 and

(23) D.Z = Dag,.

We distinguish now between the cases D=R(N) and D=L(NA). Let
D =R(N) so that (19) holds. Then, since 2 is an automorphism of B,
we have [R,][Ry]=[RoR,]=[(R:R) 2] = [(RaZ)(R,2) ] = [RusyRus, ]
= [Rusy][Rysy] = [R:Z][RyZ] under (22) which is an automor-
phism of B—N as desired. In case D=L(Y) it follows from (20)
that [L.][L,] = [L,L.] = [(L,L.)Z] = [(L,2)(L.2)]= [LvszLﬁSz]
= [Lasy][Lysg] = [L.Z][L,Z] under (22), completing the proof of the
theorem.

We shall have occasion in the proof of the next theorem to use the
fact that if B contains both R(¥) and L(¥), and if both R(A) and
L(A)—as well of course as M—are their own images under an auto-
morphism 2 of B, then
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(24) R.Z2 = stzy L2 = Lzsz
for Sz defined by (21).

THEOREM 3. Let U be a non-associative algebra with unity element 1
and automorphism group ®. Let Dr be the group of automorphisms Z
of T(N) such that RrZ=Nr, RANZ=R(A), L) Z=L(N). Then the
correspondence S—Z of (12) is anisomorphism of & onto Or.

If Sisin @ and S—2 under (12), then 1(NZ) =1S"INS=1NS=0S
=0 for N in Ns. The nonsingularity of = gives NrZ =Nr. By (15) we

have 2 in §r. By Theorem 2 this Z determines an automorphism
S h)] of 2{:

Szt x— [R.] = [R.Z] = [Rus] = 25 = xS3

for allxin o, or S=Ss. Conversely, let Z be in 7. Then = determines
an automorphism Sz of A which in turn determines an automorphism

(25) Zy: T— T2, =S5 TSs, T in T(Y0),

of T(A) by (12). Write T in the form (8). Then T2y =f(Rass5 Lasy,
Rvsz; v )=f(RzE, sz’ szv vt )= {f(sz Lzy Rm vt )}2=T2
by (12), (24), and the fact that ¥ is an automorphism of T(). That
is, 24 =2. It is clear then that S—ZX is a one-to-one mapping of ®
onto Hr. To see that S—2 is an isomorphism we note only that if
Si, S; are in ®, S1—2;, S:—Z,, then for T in T(A) we have
T2,=87TS;, T2122=S;1(S;1TS1)32= (5152)—111(5152), or $15;— 2 2.

Variations in the proof of the following theorem from the proof
above are trivial, consisting only of changes due to the fact that ele-
ments of E(R(A)) or E(L(NA)) are generated by right or left multi-
plications alone.

THEOREM 4. The correspondences S— = of (13) and (14) are isomor-
phisms of & onto Dr and Dy, respectively, where Dr s the group of auto-
morphisms Z of E(R(N)) such that NrZ =Nzr, R(A)Z=R(N), and .,
is the group of automorphisms Z of E(L(N)) such that NLZ =N,
LOHZ=L).

3. Automorphisms of an algebra without unity element. In case we
are concerned with an algebra ¥, of order (n—1) over § without a
unity element, we can easily modify the results of §2 to include ¥,.
For we adjoin a unity element 1 to %, in the usual fashion to obtain
an algebra ¥ of order # over § containing ¥, (in the sense of equiva-

lence) as an ideal. Every element x of % may be written uniquely in
the form
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(26) x = £l + %, £in §, xo in Ao,

and if y=11+7y,, then x+y=(£4+n)14 (xo-+¥0), 0x=(88)1 4 (dx,) for
6in §, xy= ()14 (mxo+£yo+x0y0). We shall write A=1F+U, for
the algebra so defined. Any automorphism Sy of %, may be extended
in a unique fashion to an automorphism .S of ¥ by defining

27 S: x> xS = £1 + xS,

x as in (26). Note that .S induces the automorphism Sy within .

It is apparent that an automorphism .S, of %, determines a unique
automorphism 2 of T'(A) as follows: Sy—S by (27), S—2 by (12).
Moreaover, the linear subspaces R(o, A) and L(Ao, A) of T(A) are
their own images under 2. For if x¢ is in %o, then R;;Z = Ru)s = Rays,
is in R(No, A) and L, 2 =Lays=Layg, is in L(A,, A).

If B—N is the non-associative algebra equivalent to Y which was
defined in §2, then ¥, is equivalent to the ideal €, of B—N consisting
of residue classes [D,,] for x, in o, that is, for D,, in Do=R (Ao, A)
or Lo, A) according as D=R(A) or L(A). For, by Theorem 1, A is
isomorphic to B —N under the mapping (17). Since Ao is an ideal of ¥,
the mapping

(28) %0 — [Ds,)], %o in Ao,

determines an ideal €y of B—N, and E,=2Y,.
Let Z be an automorphism of B such that RZ =N and DX =D..
Then Z determines-an automorphism Soz of ¥, as follows:

(29) Soz: %= [Day] = [Dsy 2] = [Diy] = 2 = xS0z,

for xo, x¢ in Ao. For D=IF+ Dy, and any automorphism of B leaves
invariant the subspace I§ of order 1, so that D2 =9. Then by Theo-
rem 2, 2 determines an automorphism Sz of . But Sz induces on
Ao the automorphism (29) since D,,Z=D,; in D, implies x¢ is in Yo.
Thus x0—[Ds,]—[Ds2] = [Ds;]—xd =x6Sz is in Ao, or Sz induces
Soz on ?Io.

THEOREM 5. Let Uo be a non-associative algebra without unity ele-
ment, and let A=1F+Uo. Let Oy be the group of automorphisms T of
T(N) such that R(No, A)Z =R (o, A), L(Wo, W) Z=L Ao, A), NrZ=N~.
Then the correspondence So—S—2Z of (27) and (12) is an isomorphism
of the automorphism group &, of Ao onto HY.

For if Sy is in @y, then S¢—S—Z in 7 and Z—Sz=.S by Theo-
rem 3. But then S induces the automorphism Soz within %,. That is,
Soz=3S,. Conversely, if = is in %, then £—S,z in @ by (29). But
Soz—S3—Z4 by (27) and (12) and Z4+ =2 by Theorem 3. Hence the
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mapping So—S—2 of @, on P} is one-to-one, and is by Theorem 3
an isomorphism.

The results analogous to Theorem 4 for algebras %o without unity
quantity may be stated as follows: let £% be the group of automor-
phisms 2 of E(R(¥)) such that R, A)Z=R(Wo, A), Nz =Nz
Then the correspondence S¢—S—2Z of (27) and (13) is an isomor-
phism of the automorphism group &, of Ay onto H}. Let H} be the
group of automorphisms Z of E(L(%)) such that L(o, A)Z =L (Ao, A),
N2 =N Then the correspondence Sy—S—2 of (27) and (14) is an
isomorphism of & onto £5.

4. Inner automorphisms = of T(%). An automorphism X of the
associative algebra T'(Y) is called inner in case T—T2=K-'TK for
some nonsingular element K of T(X). We are concerned in this section
with automorphisms S of ¥ which determine inner automorphisms
Z of T'(A) under (12).

The group & of all inner automorphisms of T() is an invariant
subgroup of the automorphism group of T'(). If $r is the group of
automorphisms of T(%) described in Theorem 3, then the intersection
OrN K is an invariant subgroup of Hr. But then there is an invariant
subgroup & of the automorphism group ® of U such that I=HrN Y
under the correspondence S—2 of (12). The elements of & are char-

acterized as those automorphisms of 9 which are themselves elements
of T(A) by

THEOREM 6. Let U be a non-associative algebra over § with unity ele-
ment 1 and automorphism S determining an automorphism Z of T()
by (12). Then Z is inner if and only if S is in T(X).

If Sis in T(¥), then T—TX=S"TS is an inner automorphism of
T(AN). Conversely, if 2 is inner, there exists a nonsingular element
K of T(¥) such that T2 =K-'TK for all T in T(¥). In particu-
lar, R.s=R,2Z=K"R,K. Let 1K=F so that xSLy=Fk-xS=FEkR.s
=1KK'R,K =xK for all x in ¥, or SL;=K. Since S and K are non-
singular, Li! exists. Moreover, Li' is in T(Y), and S=KL;! is in
T(N).

Perhaps it should be pointed out that Theorem 6 yields nothing
in the case of central simple algebras (that is, algebras which are
simple for all scalar extensions). For although it is true that, if ¥ is
central simple, then T'(%) is also and—by a well known theorem con-
cerning associative algebras—every automorphism Z of T'(¥) is inner,
so that Theorem 6 implies that every automorphism S of ¥ is in
T(), it is also true [1, §8] that in this case T(A) = (§F)n, the algebra
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of all linear transformations on . Of course it is vacuous then to say
that Sis in T°().

5. The right ideals Ny, N, Nz. We now make a more thorough
analysis of the right ideals Nz, Nr, N of T(A), E(R(A)), E(L(A)),
respectively, and arrive in particular at criteria for the (right, left)
simplicity of an algebra % with unity quantity.

THEOREM 7. An algebra N with unity quaniity is both commutative
and associative if and only if Nr=0.

For Nr=0 implies that L,~R,=R,Ry—R,,=0 for all x, ¥ in .
That s,

(30) R;g = Lz, R;Ry = .Rz”,

9 is both commutative and associative. Conversely, if (30) holds for
all x, y in ¥, then T in T'(A) has the form T =f(R,, L, Ry, + - +)
=g(Rs, Ry, * * * )=Ry,y,... Then 1T =0 implies g(x, ¥, - - - ) =0
or T=0. Hence Nr=0.

The center 3 of U consists of all elements ¢ in ¥ such that

(31) ac =cx,  c(xy) = (cx)y = x(cy),
or equivalently
32) ¢cL, = ¢cR,, ¢R,y = ¢R,Ry = ¢cR,L,

for all x, v in .

THEOREM 8. An element ¢ is in the center B of an algebra U with unity
quantity if and only if cNr=0.

Certainly L,—Rz, Rzy—R.Ry, R:y—R,L, are in N for all x, y
in %. Hence if ¢Nr=0, it follows that ¢(L,—R,) =c(R,y—R:R,)
=¢(Rsy—RyLz) =0 or (32) holds, ¢ is in the center of %. Conversely,
if ¢ is in the center of ¥, and if we write T in T(¥) as in (8), it is seen
by repeated application of (32) that ¢TI =c¢f(Rsy, Ls, Ry, + - )
=cRy@,y,- -y where the non-associative polynomial g(x, ¥, - - -)
=1f(Rz, Ls Ry, - -+ )=1T. But if T is in Ny, then 1T=0 so that
g(x, 9, + + - )=0and ¢T' =0, c<Rr=0.

An algebra 2, which is not the zero algebra of order 1, is called
simple (right simple, left simple) in case the only ideals (right ideals,
left ideals) of A are 0 and 2.

THEOREM 9. A non-associative algebra N with unity quantity is right
simple if and only if Nr is a maximal proper right ideal of E(R()).

If Mz is a maximal proper right ideal of E(R()), then the only
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right ideal of E(R(¥)) containing Nz properly is E(R(2)) itself. We
assume that ¥ is not right simple, so that ¥ has a right ideal 0,
A. Let P be the linear set P=R(Q, A)+Nz. Then P in P has the
form P=R;+N, g in L, N in Nz, and any element T of E(R(H))
may be written as T=R;+N,, ¢t in %A, N, in Ng, so that PT
=(R¢+N)(Ri+N)=RR:+RN1+NT=Ry;+(RR:—Ry:) + RNy
+NT. Now RgNi=R,+N, for a in A, N, in Nz, and 1R,N:=1R,
+1N;, or a=¢N1. Since N1=f(R,, Ry, - - - ) while £ is a right ideal
of ¥, it follows that a=¢N1=gf(R,, Ry, - --) is in Q. Hence
PT =R o+ (RR;—Ry+ N2+ NT) is in P since ¢¢+¢N; is in Q
while RyR;— R+ N+ NT is in Ne. Hence P is a right ideal of
E(R(N)) containing Ng. Since =0, U, it follows that R(Q, A), being
of the same dimension over §§ as Q, is neither 0 nor R(¥), and then
B=Nr, E(R(N)), a contradiction. Hence ¥ is right simple.

Conversely, let PB be any proper right ideal of E(R(2)) which con-
tains Ng. Consider the set L of residue classes [P] modulo Nz for
P in P. Then Q is a linear subset of E(R(N)) —Nr==. Moreover, if
[P] is any element of Q, we write P=R,+ N for p in U, N in Nz.
Let [R;] be any element of E(R(¥)) —Nz. Then PR,=R,R,+NR,
=P; in P since P is a right ideal of E(R(N)). Then

(33) [P][R] = [R,][R.] = [R,R,] = [P:]

in Q by (19), and Q is a right ideal of E(R(Y)) —Na=A. If A is
right simple, then either Q= [0] or Q =E(R(Y)) —Nz. In the latter
case, Q contains [I], B contains I+ N; for some N; in Ng. Since P
also contains Vi, it follows that I is in P, whence P =E(R(N)), a con-
tradiction. Hence Q = [0], B =Nz, and Nz is a maximal proper right
ideal of E(R(%)).

An exactly symmetrical argument, involving left multiplications
instead of right multiplications, suffices to prove

THEOREM 10. A non-associative algebra N with unity quaniity is left
simple if and only if Ny is a maximal proper right ideal of E(L(N)).

Only obvious variations on the proof above are required in the
proof of

THEOREM 11. A non-associative algebra N with unity quantity is sim-
ple if and only if Nr is a maximal proper right ideal of T(N).

For example, to prove the converse part of the theorem, we let B
be any proper right ideal of T'(%) which contains Nz, and let Q be the
linear space of residue classes [P] modulo 9tr for P in . We may
write P=R,+N=L,+N, for N, Ny in Rr, and let [R;]=[L.] be
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any element of T(A) —Nr. Then we have (33) as before, where now
the quantities involved are residue classes of T'(2) modulo Nz, but
also we have PL,=L,L,+NoL,=P;in P so that [L;][P]=[L:][L,]
=[L,L:]=[P,] in by (20), and Q is an ideal of T(A) —Nr=.
The remainder of the proof is as befare.

We conclude with an analysis of the structure of the right ideal
Nrof T(A) in case A of order n over §F (with unity quantity) is simple.
In this case T'(%) =(8), where the center 8 of ¥ is a field of degree ¢
over §, and n=st (see [1, §§8, 19]).

THEOREM 12. Let U be a simple non-assoctative algebra of order n=st
over § with unity quantity and with center 3 of degree t over §. Then
N =R+ (B)s—1, where the radical R of Nr has order (s—1) over B and
the semi-simple component of Nr is the total mairic algebra (3).—1 of
degree (s—1) over 8.

For ¥ is central simple over 8. Let (1, us, - - -, %,) be a fixed basis
of A over B. Then, since T(A) = (B)., it follows from Theorem 8 that
Nz (over B) consists of all s-by-s matrices with first row zero. But the
structure of this algebra of matrices, with principal idempotent

o 7..)
E = ,
0 Is—l

is easily determined. Its radical R consists of all matrices (with ele-
ments in 3) of the form
(v o)
u o

where U is any (s—1)-by-1 matrix. Its semi-simple component con-
sists of all matrices (with elements in B) of the form

G v)

where V is any (s—1)-rowed square matrix. This is a total matric
algebra (8),.1.
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