CONCERNING AUTOMORPHISMS OF NON-ASSOCIATIVE ALGEBRAS

R. D. SCHAFER

In their studies of non-associative algebras A. A. Albert and N. Jacobson have made much use of the relationships which exist between an arbitrary non-associative algebra $\mathfrak A$ and its associative transformation algebra $T(\mathfrak A)$. In this paper we are interested in the automorphism group $\mathfrak G$ of $\mathfrak A$, and we sharpen the results of Jacobson $[3, \S 4]^1$ and Albert $[2, \S 9]$ in the sense that we prove $\mathfrak G$ isomorphic to a well-defined subgroup of the automorphism group of each of three associative algebras $(\S 2, 3)$.

Incidental to our proofs is the reconstruction (in the sense of equivalence) of an arbitrary non-associative algebra $\mathfrak A$ with unity element 1 from $T(\mathfrak A)$ and from either of the enveloping algebras $E(R(\mathfrak A))$, $E(L(\mathfrak A))$ of respectively the right or left multiplications of $\mathfrak A$. This paper has been expanded in accordance with suggestions of the referee to include a more detailed study of the right ideals used in this reconstruction process (§5).

1. **Preliminaries.** Our notations are chiefly those of Albert as given in [1]. We regard a non-associative algebra $\mathfrak A$ of order n over a field $\mathfrak F$ as consisting of a linear space $\mathfrak L$ of order n over $\mathfrak F$, a linear space $R(\mathfrak A)$ of linear transformations $R_{\mathfrak w}$ on $\mathfrak L$ of order $m \leq n$ over $\mathfrak F$, and a linear mapping of $\mathfrak L$ on $R(\mathfrak A)$,

$$(1) x \to R_x.$$

The elements R_x of $R(\mathfrak{A})$ are called *right multiplications*, and $R(\mathfrak{A})$ the *right multiplication space* of \mathfrak{A} . Multiplication in \mathfrak{A} is defined by

$$(2) a \cdot x = aR_x.$$

The linearity of the right multiplications and of (1) insures distributivity in $\mathfrak A$ as well as the usual laws of scalar multiplication. We shall use the fact that, in case $\mathfrak A$ contains no absolute right divisor of zero (an element x such that $a \cdot x = 0$ for all a in $\mathfrak A$), the mapping (1) is nonsingular and the order of $R(\mathfrak A)$ over $\mathfrak F$ is n.

The linear transformations L_x defined by

$$a \to x \cdot a = aL_x$$

Presented to the Society, August 23, 1946; received by the editors August 2, 1946, and, in revised form, November 13, 1946.

¹ Numbers in brackets refer to the references cited at the end of the paper.

are called left multiplications of A and form the left multiplication space $L(\mathfrak{A})$ of \mathfrak{A} . The algebra \mathfrak{A} may equally well be regarded as consisting of $\mathfrak{L}, L(\mathfrak{A})$, and the linear mapping

$$(4) x \to L_x$$

of \mathfrak{L} on $L(\mathfrak{A})$. Both $R(\mathfrak{A})$ and $L(\mathfrak{A})$ are linear subspaces of the total matric algebra $(\mathfrak{F})_n$ of all linear transformations on \mathfrak{L} .

If \mathfrak{M} is a subset of $(\mathfrak{F})_n$, the algebra of all polynomials in the transformations in M with coefficients in F is called the enveloping algebra of \mathfrak{M} , and is denoted by $E(\mathfrak{M})$. We are particularly concerned with the enveloping algebras $E(R(\mathfrak{A}))$ and $E(L(\mathfrak{A}))$ of respectively the right and left multiplications of A, and with the transformation algebra $T(\mathfrak{A}) = E(I, R(\mathfrak{A}), L(\mathfrak{A}))$ which is the algebra of all polynomials with coefficients in F in the right and left multiplications of A and the identity transformation I in $(\mathfrak{F})_n$. We shall have occasion to write an arbitrary element T of each of these algebras as follows:

(5)
$$T = f(R_x, R_y, \cdots) \qquad \text{for } T \text{ in } E(R(\mathfrak{A})),$$
(6)
$$T = f(L_x, L_y, \cdots) \qquad \text{for } T \text{ in } E(L(\mathfrak{A})),$$

(6)
$$T = f(L_x, L_y, \cdots) \qquad \text{for } T \text{ in } E(L(\mathfrak{A})),$$

(7)
$$T = f(I, R_x, L_x, R_y, \cdots) \quad \text{for } T \text{ in } T(\mathfrak{A}),$$

where x, y, \cdots are elements of \mathfrak{A} . In case \mathfrak{A} contains a unity element 1, then $R(\mathfrak{A})$ contains I, and we may write

(8)
$$T = f(R_x, L_x, R_y, \cdots) \qquad \text{for } T \text{ in } T(\mathfrak{A}),$$

 x, y, \cdots in \mathfrak{A} .

If \mathfrak{B} is a linear subspace of \mathfrak{A} , the set of all R_b for b in \mathfrak{B} is a linear subspace $R(\mathfrak{B}, \mathfrak{A})$ of $R(\mathfrak{A})$, and the set of all L_b is a linear subspace $L(\mathfrak{B},\mathfrak{A})$ of $L(\mathfrak{A})$.

An automorphism S of an algebra $\mathfrak A$ is a nonsingular linear transformation $x \rightarrow xS$ of \mathfrak{A} on itself such that

$$(9) (a \cdot x)S = aS \cdot xS$$

for all a, x in \mathfrak{A} . In terms of right and left multiplications, (9) may be written equivalently as

$$R_x S = S R_{xS}$$

or

$$(11) L_x S = S L_{xS}$$

for all x in \mathfrak{A} . We shall use the facts that, if S is an automorphism of \mathfrak{A} , then S^{-1} is also, and if \mathfrak{A} has a unity element 1, then 1S=1.

Inasmuch as the elements T of subalgebras of $(\mathfrak{F})_n$ are themselves linear transformations, we shall denote linear transformations on subalgebras of $(\mathfrak{F})_n$ —such as $T(\mathfrak{A})$, $E(R(\mathfrak{A}))$, $E(L(\mathfrak{A}))$ —by Greek capitals, so that if Σ is a linear transformation on $T(\mathfrak{A})$, say, we may write (without confusion) the image of T under Σ as $T\Sigma$.

An automorphism S of \mathfrak{A} determines an automorphism Σ of $T(\mathfrak{A})$ as follows: let T in $T(\mathfrak{A})$ be written in the form (7); then Σ is the mapping

(12)
$$T \to T \Sigma = f(I, R_{xS}, L_{xS}, R_{yS}, \cdots) = S^{-1}TS.$$

For if S is an automorphism of \mathfrak{A} , then $R_x = SR_{xS}S^{-1}$, $L_x = SL_{xS}S^{-1}$ by (10), (11), and $T = f(I, R_x, L_x, R_y, \cdots) = f(I, SR_{xS}S^{-1}, SL_{xS}S^{-1}, SR_{yS}S^{-1}, \cdots) = Sf(I, R_{xS}, L_{xS}, R_{yS}, \cdots)S^{-1} = S(T\Sigma)S^{-1}$, or $T\Sigma = S^{-1}TS$. The mapping (12) is obviously an automorphism of $T(\mathfrak{A})$. Moreover, Σ induces automorphisms (which we do not distinguish notationally from Σ) on the subalgebras $E(R(\mathfrak{A}))$, $E(L(\mathfrak{A}))$ of $T(\mathfrak{A})$:

(13)
$$T \to T \Sigma = f(R_{xS}, R_{yS}, \cdots), \qquad T \text{ in } E(R(\mathfrak{A})) \text{ as in (5),}$$

(14)
$$T \to T \Sigma = f(L_{xS}, L_{yS}, \cdots), \qquad T \text{ in } E(L(\mathfrak{A})) \text{ as in (6)}.$$

If S determines Σ as in (12), then

(15)
$$R(\mathfrak{A}) \Sigma = R(\mathfrak{A}), \qquad L(\mathfrak{A}) \Sigma = L(\mathfrak{A}),$$

since $R_x\Sigma = R_{xS}$ in $R(\mathfrak{A})$ while $L_x\Sigma = L_{xS}$ in $L(\mathfrak{A})$, and the nonsingularity of Σ eliminates the possibility of proper inclusion.

2. Automorphisms of an algebra with unity element. Let $\mathfrak A$ be a non-associative algebra of order n over $\mathfrak F$ with unity element 1. We consider the elements of $\mathfrak A$ as comprising a linear space $\mathfrak E$ of order n over $\mathfrak F$. Let $\mathfrak B$ be any (associative) algebra of linear transformations on $\mathfrak E$ which contains either $R(\mathfrak A)$ or $L(\mathfrak A)$. We intend to reconstruct $\mathfrak A$ (in the sense of equivalence) as an algebra of residue classes of $\mathfrak B$.

Denote by \mathfrak{N} the set of all transformations N in \mathfrak{B} which annihilate 1, that is, for which 1N=0. Then \mathfrak{N} is a right ideal of \mathfrak{B} . For if N, N_1 are in \mathfrak{N} , then $1(\alpha N+\beta N_1)=\alpha 1N+\beta 1N_1=0$ for α , β in \mathfrak{F} , while 1NT=0T=0 for any transformation T in \mathfrak{B} . Denote by \mathfrak{D} whichever set $R(\mathfrak{A})$ or $L(\mathfrak{A})$ is assumed to be contained in \mathfrak{B} , and by D_x correspondingly the transformation R_x or L_x . Then \mathfrak{B} is the supplementary sum $\mathfrak{B}=\mathfrak{D}+\mathfrak{N}$. For T in \mathfrak{B} may be written uniquely in the form $T=D_t+N$, 1T=t, N in \mathfrak{N} .

Since 1TN = tN which is not necessarily zero, \mathfrak{N} is not in general a two-sided ideal of \mathfrak{B} and we are not able to form the difference algebra $\mathfrak{B} - \mathfrak{N}$ when we take residue classes [T] modulo \mathfrak{N} . Instead we form

the difference group $\mathfrak{B}-\mathfrak{N}$ of residue classes [T] modulo \mathfrak{N} and have as usual a linear set over \mathfrak{F} with respect to the operations [T]+[U]=[T+U], $\lambda[T]=[\lambda T]$ of addition and scalar multiplication. Define multiplication in this linear set as follows:

(16)
$$[T][U] = [X]$$
 where $1X = 1T \cdot 1U$,

where the multiplication on the right is that in \mathfrak{A} . To see that for any T, U in \mathfrak{B} such an X exists, we need only to note that, if $X = D_x$ for $x = 1T \cdot 1U$ in \mathfrak{A} , then $1X = 1T \cdot 1U$. This definition of multiplication is independent of the representatives T, U since if $[T] = [T_1]$, $[U] = [U_1]$, then there exist N, N_1 in \mathfrak{A} such that $T_1 = T + N$, $U_1 = U + N_1$, and $1T_1 \cdot 1U_1 = 1(T + N) \cdot 1(U + N_1) = 1T \cdot 1U$. With this multiplication the distributive laws hold in $\mathfrak{B} - \mathfrak{A}$. Hence $\mathfrak{B} - \mathfrak{A}$ is a non-associative algebra over \mathfrak{F} . Since there are no difference algebras used in this paper, there should be no confusion in the use of the notation $\mathfrak{B} - \mathfrak{A}$ for this algebra with multiplication defined by (16).

THEOREM 1. Let $\mathfrak A$ be a non-associative algebra over $\mathfrak F$ with unity element 1, and $\mathfrak B$ be any (associative) algebra of linear transformations on $\mathfrak A$ containing either $R(\mathfrak A)$ or $L(\mathfrak A)$. If $\mathfrak A$ is the right ideal of transformations in $\mathfrak B$ annihilating 1, then the non-associative algebra $\mathfrak B-\mathfrak A$ with multiplication defined by (16) is equivalent to $\mathfrak A$.

For in each residue class [T] there is a unique transformation D_t in \mathfrak{D} ($=R(\mathfrak{A})$ or $L(\mathfrak{A})$) such that $1T=1D_t=t$. Then, since \mathfrak{A} contains neither absolute right nor absolute left divisors of zero, the (obviously linear) mapping

$$(17) x \to D_x \to [D_x]$$

is one-to-one on \mathfrak{A} to $\mathfrak{B}-\mathfrak{N}$. But

(18)
$$[D_x][D_y] = [D_{xy}], x, y \text{ in } \mathfrak{A},$$

since $xy = 1D_x \cdot 1D_y = 1D_{xy}$. Then (17) is an equivalence of \mathfrak{A} and $\mathfrak{B} - \mathfrak{R}$ since $xy \to D_{xy} \to [D_{xy}] = [D_x][D_y]$ under (17).

Now $T(\mathfrak{A})$, $E(R(\mathfrak{A}))$, $E(L(\mathfrak{A}))$ are among the algebras of linear transformations on the vector space \mathfrak{A} underlying \mathfrak{A} which contain either $R(\mathfrak{A})$ or $L(\mathfrak{A})$ —or both, as in the case of $T(\mathfrak{A})$ —and may be used as the algebra \mathfrak{B} in Theorem 1. We denote by \mathfrak{N}_T the set of all N in $T(\mathfrak{A})$ annihilating 1 and write $\mathfrak{N}_R = \mathfrak{N}_T \cap E(R(\mathfrak{A}))$, $\mathfrak{N}_L = \mathfrak{N}_T \cap E(L(\mathfrak{A}))$. Then Theorem 1 implies that if multiplication in the respective algebras of residue classes is defined by (16) we have $\mathfrak{A} \cong T(\mathfrak{A}) - \mathfrak{N}_T \cong E(R(\mathfrak{A})) - \mathfrak{N}_R \cong E(L(\mathfrak{A})) - \mathfrak{N}_L$.

In the proof of the next theorem we must distinguish between the

cases $\mathfrak{D} = R(\mathfrak{A})$ and $\mathfrak{D} = L(\mathfrak{A})$, and we use the following equations:

(19)
$$[R_x][R_y] = [R_{xy}] = [R_x R_y], \qquad x, y \text{ in } \mathfrak{A},$$

(20)
$$[L_x][L_y] = [L_{xy}] = [L_yL_x], \qquad x, y \text{ in } \mathfrak{A},$$

verification of which is similar to that of (18).

THEOREM 2. Let \mathfrak{A} , \mathfrak{B} , and \mathfrak{A} be as in Theorem 1, and \mathfrak{D} be $R(\mathfrak{A})$ or $L(\mathfrak{A})$, whichever is assumed to be in \mathfrak{B} . If Σ is an automorphism of \mathfrak{B} such that $\mathfrak{A}\Sigma = \mathfrak{A}$ and $\mathfrak{D}\Sigma = \mathfrak{D}$, then Σ determines an automorphism S_{Σ} of \mathfrak{A} as follows:

(21)
$$S_{\Sigma}: x \to [D_x] \to [D_x \Sigma] = [D_{x'}] \to x' = xS_{\Sigma},$$

for x, x' in \mathfrak{A} , where the $[D_x]$ are elements of $\mathfrak{B} - \mathfrak{N} \cong \mathfrak{A}$.

Note first that the mapping

$$[T] \to [T \Sigma]$$

of $\mathfrak{B}-\mathfrak{N}$ on itself is well-defined, since if $[T]=[T_1]$ then $T=T_1+N$ for N in \mathfrak{N} , and $T\Sigma=(T_1+N)\Sigma=T_1\Sigma+N\Sigma=T_1\Sigma+N_1$ with N_1 in \mathfrak{N} since $\mathfrak{N}\Sigma=\mathfrak{N}$. Hence $[T\Sigma]=[T_1\Sigma]$. Inasmuch as the correspondences $x\to[D_x]$ and $[D_{x'}]\to x'$ are equivalences between \mathfrak{A} and $\mathfrak{B}-\mathfrak{N}$, we need only to show that (22) is an automorphism of $\mathfrak{B}-\mathfrak{N}$ in order to show that (21) is an automorphism of \mathfrak{A} . Now (22) is linear since $\alpha[T]+\beta[U]=[\alpha T+\beta U]\to[(\alpha T+\beta U)\Sigma]=[\alpha T\Sigma+\beta U\Sigma]=\alpha[T\Sigma]+\beta[U\Sigma]$, and is nonsingular since $[T]\to[T\Sigma]=[0]$ implies $T\Sigma=N$ in \mathfrak{N} , $T=N\Sigma^{-1}=N_1$ in \mathfrak{N} , [T]=[0]. Since $\mathfrak{D}\Sigma=\mathfrak{D}$, there exists an element x_1 of \mathfrak{A} such that $D_x\Sigma=D_{x_1}$. But then $x_1=x'$ since there is a unique transformation in \mathfrak{D} in each residue class of \mathfrak{B} modulo \mathfrak{N} . We may write $x'=xS_{\Sigma}$ and

$$(23) D_x \Sigma = D_{xS_{\Sigma}}.$$

We distinguish now between the cases $\mathfrak{D}=R(\mathfrak{A})$ and $\mathfrak{D}=L(\mathfrak{A})$. Let $\mathfrak{D}=R(\mathfrak{A})$ so that (19) holds. Then, since Σ is an automorphism of \mathfrak{B} , we have $[R_x][R_y]=[R_xR_y] \rightarrow [(R_xR_y)\Sigma]=[(R_x\Sigma)(R_y\Sigma)]=[R_{xS_{\Sigma}}R_{yS_{\Sigma}}]=[R_xS_{\Sigma}][R_yS_{\Sigma}]=[R_x\Sigma][R_y\Sigma]$ under (22) which is an automorphism of $\mathfrak{B}-\mathfrak{A}$ as desired. In case $\mathfrak{D}=L(\mathfrak{A})$ it follows from (20) that $[L_x][L_y]=[L_yL_x] \rightarrow [(L_yL_x)\Sigma]=[(L_y\Sigma)(L_x\Sigma)]=[L_{yS_{\Sigma}}L_{xS_{\Sigma}}]=[L_{xS_{\Sigma}}][L_{yS_{\Sigma}}]=[L_x\Sigma][L_y\Sigma]$ under (22), completing the proof of the theorem.

We shall have occasion in the proof of the next theorem to use the fact that if \mathfrak{B} contains both $R(\mathfrak{A})$ and $L(\mathfrak{A})$, and if both $R(\mathfrak{A})$ and $L(\mathfrak{A})$ —as well of course as \mathfrak{A} —are their own images under an automorphism Σ of \mathfrak{B} , then

$$(24) R_x \Sigma = R_{xS_{\Sigma}}, L_x \Sigma = L_{xS_{\Sigma}}$$

for S_{Σ} defined by (21).

THEOREM 3. Let \mathfrak{A} be a non-associative algebra with unity element 1 and automorphism group \mathfrak{G} . Let \mathfrak{F}_T be the group of automorphisms Σ of $T(\mathfrak{A})$ such that $\mathfrak{N}_T\Sigma=\mathfrak{N}_T$, $R(\mathfrak{A})\Sigma=R(\mathfrak{A})$, $L(\mathfrak{A})\Sigma=L(\mathfrak{A})$. Then the correspondence $S\to\Sigma$ of (12) is an isomorphism of \mathfrak{G} onto \mathfrak{F}_T .

If S is in \mathfrak{G} and $S \to \Sigma$ under (12), then $1(N\Sigma) = 1S^{-1}NS = 1NS = 0S$ = 0 for N in \mathfrak{N}_T . The nonsingularity of Σ gives $\mathfrak{N}_T\Sigma = \mathfrak{N}_T$. By (15) we have Σ in \mathfrak{F}_T . By Theorem 2 this Σ determines an automorphism S_Σ of \mathfrak{A} :

$$S_{\Sigma}$$
: $x \to [R_x] \to [R_x \Sigma] = [R_{xS}] \to xS = xS_{\Sigma}$

for all x in \mathfrak{A} , or $S = S_{\Sigma}$. Conversely, let Σ be in \mathfrak{G}_T . Then Σ determines an automorphism S_{Σ} of \mathfrak{A} which in turn determines an automorphism

(25)
$$\Sigma_*: T \to T \Sigma_* = S_{\Sigma}^{-1} T S_{\Sigma}, \qquad T \text{ in } T(\mathfrak{Y}),$$

of $T(\mathfrak{A})$ by (12). Write T in the form (8). Then $T\Sigma_* = f(R_{xS_{\Sigma}}, L_{xS_{\Sigma}}, R_{yS_{\Sigma}}, \cdots) = \{f(R_x\Sigma, L_x\Sigma, R_y\Sigma, \cdots) = \{f(R_x, L_x, R_y, \cdots)\}\Sigma = T\Sigma$ by (12), (24), and the fact that Σ is an automorphism of $T(\mathfrak{A})$. That is, $\Sigma_* = \Sigma$. It is clear then that $S \to \Sigma$ is a one-to-one mapping of \mathfrak{G} onto \mathfrak{F}_T . To see that $S \to \Sigma$ is an isomorphism we note only that if S_1 , S_2 are in \mathfrak{G} , $S_1 \to \Sigma_1$, $S_2 \to \Sigma_2$, then for T in $T(\mathfrak{A})$ we have $T\Sigma_1 = S_1^{-1}TS_1$, $T\Sigma_1\Sigma_2 = S_2^{-1}(S_1^{-1}TS_1)S_2 = (S_1S_2)^{-1}T(S_1S_2)$, or $S_1S_2 \to \Sigma_1\Sigma_2$.

Variations in the proof of the following theorem from the proof above are trivial, consisting only of changes due to the fact that elements of $E(R(\mathfrak{A}))$ or $E(L(\mathfrak{A}))$ are generated by right or left multiplications alone.

THEOREM 4. The correspondences $S \to \Sigma$ of (13) and (14) are isomorphisms of \mathfrak{G} onto \mathfrak{F}_R and \mathfrak{F}_L respectively, where \mathfrak{F}_R is the group of automorphisms Σ of $E(R(\mathfrak{A}))$ such that $\mathfrak{N}_R\Sigma = \mathfrak{N}_R$, $R(\mathfrak{A})\Sigma = R(\mathfrak{A})$, and \mathfrak{F}_L is the group of automorphisms Σ of $E(L(\mathfrak{A}))$ such that $\mathfrak{N}_L\Sigma = \mathfrak{N}_L$, $L(\mathfrak{A})\Sigma = L(\mathfrak{A})$.

3. Automorphisms of an algebra without unity element. In case we are concerned with an algebra \mathfrak{A}_0 of order (n-1) over \mathfrak{F} without a unity element, we can easily modify the results of §2 to include \mathfrak{A}_0 . For we adjoin a unity element 1 to \mathfrak{A}_0 in the usual fashion to obtain an algebra \mathfrak{A} of order n over \mathfrak{F} containing \mathfrak{A}_0 (in the sense of equivalence) as an ideal. Every element x of \mathfrak{A} may be written uniquely in the form

(26)
$$x = \xi 1 + x_0, \qquad \xi \text{ in } \mathfrak{F}, x_0 \text{ in } \mathfrak{A}_0,$$

and if $y = \eta 1 + y_0$, then $x + y = (\xi + \eta)1 + (x_0 + y_0)$, $\delta x = (\delta \xi)1 + (\delta x_0)$ for δ in \mathfrak{F} , $xy = (\xi \eta)1 + (\eta x_0 + \xi y_0 + x_0 y_0)$. We shall write $\mathfrak{A} = 1\mathfrak{F} + \mathfrak{A}_0$ for the algebra so defined. Any automorphism S_0 of \mathfrak{A}_0 may be extended in a unique fashion to an automorphism S of \mathfrak{A} by defining

(27)
$$S: x \to xS = \xi 1 + x_0 S_0,$$

x as in (26). Note that S induces the automorphism S_0 within \mathfrak{A}_0 .

It is apparent that an automorphism S_0 of \mathfrak{A}_0 determines a unique automorphism Σ of $T(\mathfrak{A})$ as follows: $S_0 \rightarrow S$ by (27), $S \rightarrow \Sigma$ by (12). Moreover, the linear subspaces $R(\mathfrak{A}_0, \mathfrak{A})$ and $L(\mathfrak{A}_0, \mathfrak{A})$ of $T(\mathfrak{A})$ are their own images under Σ . For if x_0 is in \mathfrak{A}_0 , then $R_{x_0}\Sigma = R_{x_0S} = R_{x_0S}$ is in $R(\mathfrak{A}_0, \mathfrak{A})$ and $L_{x_0}\Sigma = L_{x_0S} = L_{x_0S}$ is in $L(\mathfrak{A}_0, \mathfrak{A})$.

If $\mathfrak{B}-\mathfrak{N}$ is the non-associative algebra equivalent to \mathfrak{A} which was defined in §2, then \mathfrak{A}_0 is equivalent to the ideal \mathfrak{C}_0 of $\mathfrak{B}-\mathfrak{N}$ consisting of residue classes $[D_{x_0}]$ for x_0 in \mathfrak{A}_0 , that is, for D_{x_0} in $\mathfrak{D}_0=R(\mathfrak{A}_0,\mathfrak{A})$ or $L(\mathfrak{A}_0,\mathfrak{A})$ according as $\mathfrak{D}=R(\mathfrak{A})$ or $L(\mathfrak{A})$. For, by Theorem 1, \mathfrak{A} is isomorphic to $\mathfrak{B}-\mathfrak{N}$ under the mapping (17). Since \mathfrak{A}_0 is an ideal of \mathfrak{A} , the mapping

$$(28) x_0 \to [D_{x_0}], x_0 \text{ in } \mathfrak{A}_0,$$

determines an ideal \mathfrak{C}_0 of $\mathfrak{B} - \mathfrak{N}$, and $\mathfrak{C}_0 \cong \mathfrak{A}_0$.

Let Σ be an automorphism of \mathfrak{B} such that $\mathfrak{R}\Sigma = \mathfrak{R}$ and $\mathfrak{D}_0\Sigma = \mathfrak{D}_0$. Then Σ determines an automorphism $S_{0\Sigma}$ of \mathfrak{A}_0 as follows:

(29)
$$S_{0\Sigma}: x_0 \to [D_{x_0}] \to [D_{x_0} \Sigma] = [D_{x_0'}] \to x_0' = x_0 S_{0\Sigma},$$

for x_0 , x_0' in \mathfrak{A}_0 . For $\mathfrak{D}=I\mathfrak{F}+\mathfrak{D}_0$, and any automorphism of \mathfrak{B} leaves invariant the subspace $I\mathfrak{F}$ of order 1, so that $\mathfrak{D}\Sigma=\mathfrak{D}$. Then by Theorem 2, Σ determines an automorphism S_{Σ} of \mathfrak{A} . But S_{Σ} induces on \mathfrak{A}_0 the automorphism (29) since $D_{x_0}\Sigma=D_{x_0'}$ in \mathfrak{D}_0 implies x_0' is in \mathfrak{A}_0 . Thus $x_0 \to [D_{x_0}] \to [D_{x_0}\Sigma] = [D_{x_0'}] \to x_0' = x_0 S_{\Sigma}$ is in \mathfrak{A}_0 , or S_{Σ} induces $S_{0\Sigma}$ on \mathfrak{A}_0 .

THEOREM 5. Let \mathfrak{A}_0 be a non-associative algebra without unity element, and let $\mathfrak{A}=\mathfrak{I}_{\mathfrak{F}}+\mathfrak{A}_0$. Let $\mathfrak{F}_{\mathfrak{T}}^0$ be the group of automorphisms Σ of $T(\mathfrak{A})$ such that $R(\mathfrak{A}_0,\mathfrak{A})\Sigma=R(\mathfrak{A}_0,\mathfrak{A})$, $L(\mathfrak{A}_0,\mathfrak{A})\Sigma=L(\mathfrak{A}_0,\mathfrak{A})$, $\mathfrak{N}_T\Sigma=\mathfrak{N}_T$. Then the correspondence $S_0{\to}S{\to}\Sigma$ of (27) and (12) is an isomorphism of the automorphism group \mathfrak{G}_0 of \mathfrak{A}_0 onto \mathfrak{F}_T^0 .

For if S_0 is in \mathfrak{G}_0 , then $S_0 \rightarrow S \rightarrow \Sigma$ in \mathfrak{F}_T^0 and $\Sigma \rightarrow S_{\Sigma} = S$ by Theorem 3. But then S induces the automorphism $S_{0\Sigma}$ within \mathfrak{A}_0 . That is, $S_{0\Sigma} = S_0$. Conversely, if Σ is in \mathfrak{F}_T^0 , then $\Sigma \rightarrow S_{0\Sigma}$ in \mathfrak{G}_0 by (29). But $S_{0\Sigma} \rightarrow S_{\Sigma} \rightarrow \Sigma_*$ by (27) and (12) and $\Sigma_* = \Sigma$ by Theorem 3. Hence the

mapping $S_0 \rightarrow S \rightarrow \Sigma$ of \mathfrak{G}_0 on \mathfrak{F}_T^0 is one-to-one, and is by Theorem 3 an isomorphism.

The results analogous to Theorem 4 for algebras \mathfrak{A}_0 without unity quantity may be stated as follows: let \mathfrak{S}_R^0 be the group of automorphisms Σ of $E(R(\mathfrak{A}))$ such that $R(\mathfrak{A}_0, \mathfrak{A})\Sigma = R(\mathfrak{A}_0, \mathfrak{A})$, $\mathfrak{R}_R\Sigma = \mathfrak{R}_R$. Then the correspondence $S_0 \to S \to \Sigma$ of (27) and (13) is an isomorphism of the automorphism group \mathfrak{G}_0 of \mathfrak{A}_0 onto \mathfrak{F}_R^0 . Let \mathfrak{F}_L^0 be the group of automorphisms Σ of $E(L(\mathfrak{A}))$ such that $L(\mathfrak{A}_0, \mathfrak{A})\Sigma = L(\mathfrak{A}_0, \mathfrak{A})$, $\mathfrak{R}_L\Sigma = \mathfrak{R}_L$. Then the correspondence $S_0 \to S \to \Sigma$ of (27) and (14) is an isomorphism of \mathfrak{G}_0 onto \mathfrak{F}_L^0 .

4. Inner automorphisms Σ of $T(\mathfrak{A})$. An automorphism Σ of the associative algebra $T(\mathfrak{A})$ is called *inner* in case $T \rightarrow T\Sigma = K^{-1}TK$ for some nonsingular element K of $T(\mathfrak{A})$. We are concerned in this section with automorphisms S of \mathfrak{A} which determine inner automorphisms Σ of $T(\mathfrak{A})$ under (12).

The group \Re of all inner automorphisms of $T(\mathfrak{A})$ is an invariant subgroup of the automorphism group of $T(\mathfrak{A})$. If \mathfrak{F}_T is the group of automorphisms of $T(\mathfrak{A})$ described in Theorem 3, then the intersection $\mathfrak{F}_T \cap \mathfrak{R}$ is an invariant subgroup of \mathfrak{F}_T . But then there is an invariant subgroup \Im of the automorphism group \Im of \Im such that $\Im \cong \mathfrak{F}_T \cap \Re$ under the correspondence $S \to \Sigma$ of (12). The elements of \Im are characterized as those automorphisms of \Im which are themselves elements of $T(\Im)$ by

THEOREM 6. Let $\mathfrak A$ be a non-associative algebra over $\mathfrak F$ with unity element 1 and automorphism S determining an automorphism Σ of $T(\mathfrak A)$ by (12). Then Σ is inner if and only if S is in $T(\mathfrak A)$.

If S is in $T(\mathfrak{A})$, then $T \rightarrow T\Sigma = S^{-1}TS$ is an inner automorphism of $T(\mathfrak{A})$. Conversely, if Σ is inner, there exists a nonsingular element K of $T(\mathfrak{A})$ such that $T\Sigma = K^{-1}TK$ for all T in $T(\mathfrak{A})$. In particular, $R_{xS} = R_x\Sigma = K^{-1}R_xK$. Let 1K = k so that $xSL_k = k \cdot xS = kR_{xS} = 1KK^{-1}R_xK = xK$ for all x in \mathfrak{A} , or $SL_k = K$. Since S and K are nonsingular, L_k^{-1} exists. Moreover, L_k^{-1} is in $T(\mathfrak{A})$, and $S = KL_k^{-1}$ is in $T(\mathfrak{A})$.

Perhaps it should be pointed out that Theorem 6 yields nothing in the case of central simple algebras (that is, algebras which are simple for all scalar extensions). For although it is true that, if $\mathfrak A$ is central simple, then $T(\mathfrak A)$ is also and—by a well known theorem concerning associative algebras—every automorphism Σ of $T(\mathfrak A)$ is inner, so that Theorem 6 implies that every automorphism S of $\mathfrak A$ is in $T(\mathfrak A)$, it is also true $[1, \S 8]$ that in this case $T(\mathfrak A) = (\S)_n$, the algebra

of all linear transformations on \mathfrak{A} . Of course it is vacuous then to say that S is in $T(\mathfrak{A})$.

5. The right ideals \mathfrak{N}_T , \mathfrak{N}_R , \mathfrak{N}_L . We now make a more thorough analysis of the right ideals \mathfrak{N}_T , \mathfrak{N}_R , \mathfrak{N}_L of $T(\mathfrak{A})$, $E(R(\mathfrak{A}))$, $E(L(\mathfrak{A}))$, respectively, and arrive in particular at criteria for the (right, left) simplicity of an algebra \mathfrak{A} with unity quantity.

THEOREM 7. An algebra $\mathfrak A$ with unity quantity is both commutative and associative if and only if $\mathfrak N_T=0$.

For $\mathfrak{N}_T = 0$ implies that $L_x - R_x = R_x R_y - R_{xy} = 0$ for all x, y in \mathfrak{A} . That is,

$$(30) R_x = L_x, R_x R_y = R_{xy},$$

 $\mathfrak A$ is both commutative and associative. Conversely, if (30) holds for all x, y in $\mathfrak A$, then T in $T(\mathfrak A)$ has the form $T=f(R_x, L_x, R_y, \cdots) = g(R_x, R_y, \cdots) = R_{g(x,y,\cdots)}$. Then 1T=0 implies $g(x, y, \cdots) = 0$ or T=0. Hence $\mathfrak A_T=0$.

The center 3 of \mathfrak{A} consists of all elements c in \mathfrak{A} such that

$$(31) xc = cx, c(xy) = (cx)y = x(cy),$$

or equivalently

$$cL_x = cR_x, \qquad cR_{xy} = cR_xR_y = cR_yL_x$$

for all x, y in \mathfrak{A} .

THEOREM 8. An element c is in the center 3 of an algebra $\mathfrak A$ with unity quantity if and only if $c\mathfrak N_T=0$.

Certainly $L_x - R_x$, $R_{xy} - R_x R_y$, $R_{xy} - R_y L_x$ are in \mathfrak{N}_T for all x, y in \mathfrak{A} . Hence if $c\mathfrak{N}_T = 0$, it follows that $c(L_x - R_x) = c(R_{xy} - R_x R_y)$ = $c(R_{xy} - R_y L_x) = 0$ or (32) holds, c is in the center of \mathfrak{A} . Conversely, if c is in the center of \mathfrak{A} , and if we write T in $T(\mathfrak{A})$ as in (8), it is seen by repeated application of (32) that $cT = cf(R_x, L_x, R_y, \cdots)$ = $cR_{g(x,y,\cdots)}$ where the non-associative polynomial $g(x, y, \cdots)$ = $1f(R_x, L_x, R_y, \cdots) = 1T$. But if T is in \mathfrak{N}_T , then 1T = 0 so that $g(x, y, \cdots) = 0$ and cT = 0, $c\mathfrak{N}_T = 0$.

An algebra \mathfrak{A} , which is not the zero algebra of order 1, is called *simple* (right simple, left simple) in case the only ideals (right ideals, left ideals) of \mathfrak{A} are 0 and \mathfrak{A} .

THEOREM 9. A non-associative algebra $\mathfrak A$ with unity quantity is right simple if and only if $\mathfrak N_R$ is a maximal proper right ideal of $E(R(\mathfrak A))$.

If \mathfrak{N}_R is a maximal proper right ideal of $E(R(\mathfrak{A}))$, then the only

right ideal of $E(R(\mathfrak{A}))$ containing \mathfrak{N}_R properly is $E(R(\mathfrak{A}))$ itself. We assume that \mathfrak{A} is not right simple, so that \mathfrak{A} has a right ideal $\mathfrak{D}\neq 0$, \mathfrak{A} . Let \mathfrak{B} be the linear set $\mathfrak{B}=R(\mathfrak{D},\,\mathfrak{A})+\mathfrak{N}_R$. Then P in \mathfrak{B} has the form $P=R_q+N$, q in \mathfrak{D} , N in \mathfrak{N}_R , and any element T of $E(R(\mathfrak{A}))$ may be written as $T=R_t+N_1$, t in \mathfrak{A} , N_1 in \mathfrak{N}_R , so that $PT=(R_q+N)(R_t+N_1)=R_qR_t+R_qN_1+NT=R_{qt}+(R_qR_t-R_{qt})+R_qN_1+NT$. Now $R_qN_1=R_a+N_2$ for a in \mathfrak{A} , N_2 in \mathfrak{N}_R , and $1R_qN_1=1R_a+1N_2$ or $a=qN_1$. Since $N_1=f(R_x,\,R_y,\,\cdots)$ while \mathfrak{D} is a right ideal of \mathfrak{A} , it follows that $a=qN_1=qf(R_x,\,R_y,\,\cdots)$ is in \mathfrak{D} . Hence $PT=R_{qt+qN_1}+(R_qR_t-R_{qt}+N_2+NT)$ is in \mathfrak{P} since $qt+qN_1$ is in \mathfrak{D} while $R_qR_t-R_{qt}+N_2+NT$ is in \mathfrak{N}_R . Hence \mathfrak{P} is a right ideal of $E(R(\mathfrak{A}))$ containing \mathfrak{N}_R . Since $\mathfrak{D}\neq 0$, \mathfrak{A} , it follows that $R(\mathfrak{D},\,\mathfrak{A})$, being of the same dimension over \mathfrak{F} as \mathfrak{D} , is neither 0 nor $R(\mathfrak{A})$, and then $\mathfrak{P}\neq\mathfrak{N}_R$, $E(R(\mathfrak{A}))$, a contradiction. Hence \mathfrak{A} is right simple.

Conversely, let \mathfrak{P} be any proper right ideal of $E(R(\mathfrak{A}))$ which contains \mathfrak{N}_R . Consider the set \mathfrak{Q} of residue classes [P] modulo \mathfrak{N}_R for P in \mathfrak{P} . Then \mathfrak{Q} is a linear subset of $E(R(\mathfrak{A})) - \mathfrak{N}_R \cong \mathfrak{A}$. Moreover, if [P] is any element of \mathfrak{Q} , we write $P = R_p + N$ for p in \mathfrak{A} , N in \mathfrak{N}_R . Let $[R_t]$ be any element of $E(R(\mathfrak{A})) - \mathfrak{N}_R$. Then $PR_t = R_pR_t + NR_t = P_1$ in \mathfrak{P} since \mathfrak{P} is a right ideal of $E(R(\mathfrak{A}))$. Then

(33)
$$[P][R_t] = [R_p][R_t] = [R_pR_t] = [P_1]$$

in $\mathfrak Q$ by (19), and $\mathfrak Q$ is a right ideal of $E(R(\mathfrak A)) - \mathfrak R_R \cong \mathfrak A$. If $\mathfrak A$ is right simple, then either $\mathfrak Q = [0]$ or $\mathfrak Q = E(R(\mathfrak A)) - \mathfrak R_R$. In the latter case, $\mathfrak Q$ contains [I], $\mathfrak P$ contains $I + N_1$ for some N_1 in $\mathfrak R_R$. Since $\mathfrak P$ also contains N_1 , it follows that I is in $\mathfrak P$, whence $\mathfrak P = E(R(\mathfrak A))$, a contradiction. Hence $\mathfrak Q = [0]$, $\mathfrak P = \mathfrak R_R$, and $\mathfrak R_R$ is a maximal proper right ideal of $E(R(\mathfrak A))$.

An exactly symmetrical argument, involving left multiplications instead of right multiplications, suffices to prove

THEOREM 10. A non-associative algebra $\mathfrak A$ with unity quantity is left simple if and only if $\mathfrak N_L$ is a maximal proper right ideal of $E(L(\mathfrak A))$.

Only obvious variations on the proof above are required in the proof of

THEOREM 11. A non-associative algebra $\mathfrak A$ with unity quantity is simple if and only if $\mathfrak N_T$ is a maximal proper right ideal of $T(\mathfrak A)$.

For example, to prove the converse part of the theorem, we let \mathfrak{P} be any proper right ideal of $T(\mathfrak{A})$ which contains \mathfrak{N}_T , and let \mathfrak{D} be the linear space of residue classes [P] modulo \mathfrak{N}_T for P in \mathfrak{P} . We may write $P = R_p + N = L_p + N_0$ for N, N_0 in \mathfrak{N}_T , and let $[R_t] = [L_t]$ be

any element of $T(\mathfrak{A}) - \mathfrak{N}_T$. Then we have (33) as before, where now the quantities involved are residue classes of $T(\mathfrak{A})$ modulo \mathfrak{N}_T , but also we have $PL_t = L_pL_t + N_0L_t = P_2$ in \mathfrak{P} so that $[L_t][P] = [L_t][L_p] = [L_pL_t] = [P_2]$ in \mathfrak{Q} by (20), and \mathfrak{Q} is an ideal of $T(\mathfrak{A}) - \mathfrak{N}_T \cong \mathfrak{A}$. The remainder of the proof is as before.

We conclude with an analysis of the structure of the right ideal \mathfrak{N}_T of $T(\mathfrak{A})$ in case \mathfrak{A} of order n over \mathfrak{F} (with unity quantity) is simple. In this case $T(\mathfrak{A}) = (\mathfrak{Z})_s$ where the center \mathfrak{Z} of \mathfrak{A} is a field of degree t over \mathfrak{F} , and n = st (see $[1, \S\S8, 19]$).

THEOREM 12. Let \mathfrak{A} be a simple non-associative algebra of order n=st over \mathfrak{F} with unity quantity and with center \mathfrak{B} of degree t over \mathfrak{F} . Then $\mathfrak{M}_T=\mathfrak{R}+(\mathfrak{B})_{s-1}$, where the radical \mathfrak{R} of \mathfrak{N}_T has order (s-1) over \mathfrak{B} and the semi-simple component of \mathfrak{N}_T is the total matric algebra $(\mathfrak{B})_{s-1}$ of degree (s-1) over \mathfrak{B} .

For $\mathfrak A$ is central simple over $\mathfrak Z$. Let $(1, u_2, \dots, u_s)$ be a fixed basis of $\mathfrak A$ over $\mathfrak Z$. Then, since $T(\mathfrak A) = (\mathfrak Z)_s$, it follows from Theorem 8 that $\mathfrak N_T$ (over $\mathfrak Z$) consists of all s-by-s matrices with first row zero. But the structure of this algebra of matrices, with principal idempotent

$$E = \begin{pmatrix} 0 & 0 \\ 0 & I_{s-1} \end{pmatrix},$$

is easily determined. Its radical \Re consists of all matrices (with elements in \Re) of the form

$$\begin{pmatrix} 0 & 0 \\ U & 0 \end{pmatrix}$$

where U is any (s-1)-by-1 matrix. Its semi-simple component consists of all matrices (with elements in 3) of the form

$$\begin{pmatrix} 0 & 0 \\ 0 & V \end{pmatrix}$$

where V is any (s-1)-rowed square matrix. This is a total matric algebra $(3)_{s-1}$.

REFERENCES

- 1. A. Albert, Non-associative algebras. I. Fundamental concepts and isotopy, Ann. of Math. (2) vol. 43 (1942) pp. 685-708.
 - 2. ——, Quasigroups. II. Trans. Amer. Math. Soc. vol. 55 (1944) pp. 401-419.
- 3. N. Jacobson, A note on non-associative algebras, Duke Math. J. vol. 3 (1937) pp. 544-548.

THE INSTITUTE FOR ADVANCED STUDY