A NOTE ON THE MINIMUM MODULUS OF A CLASS OF INTEGRAL FUNCTIONS

S. M. SHAH

A well known theorem due to Littlewood, Wiman, and Valiron¹ states that for any integral function of order less than one-half,

$$\log m(r) >$$
 (a positive constant) $\log M(r)$,

on a sequence of circles of indefinitely increasing radius. I consider in this note a class of integral functions which have this property and prove the following theorem.

THEOREM 1. Hypothesis:

- (1) (R_n) is any sequence of positive numbers such that $R_1>1$, $R_n/R_{n-1} \ge \lambda > 1$.
 - (2) (p_n) is any sequence of positive integers.
- (3) $a_{11}, a_{12}, \dots, a_{1p_1}, a_{21}, \dots, a_{2p_2}, \dots$ are a set of points such that $0 < |a_{11}| \le |a_{12}| \le \dots$ and such that a finite number $a_{n1}, \dots, a_n p_n$ lie inside the ring $(R_n R_n^{\alpha} < |z| < R_n)$ where $0 < \alpha < 1$.
- (4) μ_n is a sequence of positive integers such that $\sum_{1}^{\infty} p_n/\beta^{\mu_n}$ is convergent, β being any constant greater than one.
 - (5) The exponent of convergence of the points

$$a_{nr} \exp (2\pi i \nu/\mu_n),$$

where $r=1, 2, \dots, p_n$; $\nu=0, 1, 2, \dots, \mu_n-1$; $n=1, 2, 3, \dots$, is ρ $(0 \le \rho < \infty)$.

(6)² Lower bound $\{\mu_n\} \geq 1 + \rho$.

Conclusion:

(7) The canonical product

(8)
$$f(z) = \prod_{n=1}^{\infty} \prod_{s=1}^{p_n} \left\{ 1 - \frac{z^{\mu_n}}{a_{ns}^{\mu_n}} \right\}$$

formed with these points as zeros is of order ρ ; and the values of r = |z| for which the inequality

$$m(r, f) > CM(r, f),$$

Received by the editors February 4, 1946, and, in revised form, November 29, 1946.

¹ G. Valiron, Lectures on the general theory of integral functions, pp. 128-130.

² It is possible to choose R_n , p_n , and so on, satisfying the conditions (1) to (6). Example: $R_n = 2^{2n}$; $p_n = n^2 2^n$; $\mu_n = 2^n$. Here $\rho = 1$.

where $C = C(\lambda, \epsilon) > 0$, is satisfied form a set of upper density greater than $1 - 1/\lambda - \epsilon$.

THEOREM 2. If (1), (2), (3), (4), (5), and (6) hold and if $\rho > 0$ and if further²

(9)
$$\sum_{n=1}^{N} \mu_n p_n / R_N^{\rho} \to \infty \qquad \text{with } N \to \infty$$

then

$$\limsup_{r\to\infty}\log m(r,f)/r^{\rho}=\infty,$$

where f is the canonical product (8); and the values of r for which log $m(r, f) > \Delta r^{\rho}$ where Δ is any arbitrarily large constant form a set of upper density greater than $1-1/\lambda - \epsilon$.

THEOREM 3. Hypothesis: Let $\rho > 0$ be nonintegral and (1), (2), (3), (4), and (5) hold.³

Conclusion:

(10) Any integral function of order ρ with exactly these zeros will be of the form

(11)
$$F(z) = e^{g(z)}P(z)\prod_{n=n_1}^{\infty}\prod_{s=1}^{p_n}\left\{1-\frac{z^{\mu_n}}{a_{ns}^{\mu_n}}\right\},\,$$

where g(z) is a polynomial of degree not exceeding ρ , P(z) a polynomial; and the values of r for which

$$\log m(r, F) > (1 - \epsilon) \log M(r, F)$$

holds will form a set of upper density greater than $1-1/\lambda - \epsilon$.

THEOREM 4. If $\rho > 0$ and (1), (2), (3), (4), (5), and (9) hold⁵ then conclusion (10) holds.

THEOREM 5. If (1), (2), (3), (4), (5), and (6) hold and if $m_{\sigma}(r)$ and $M_{\sigma}(r)$ denote the lower and upper bounds of |f(z)|, where f(z) is the canonical product (8), of order ρ (0 $\leq \rho < \infty$) in the annulus $r \leq |z| \leq r + r^{\sigma}$ ($\sigma < 1 - \rho$) then the values of r for which

^{*} For instance $R_n = 2^{2n}$, $p_n = n$; $\mu_n = 2^{7(n-1)}$. Here $\rho = 7/2$.

⁴ P(z) is a polynomial having zeros at points $a_{nr} \exp(2\pi i \nu/\mu_n)$, $r=1, 2, \cdots, p_n$; $\nu=0, 1, 2, \cdots, \mu_n-1$ and $n=1, 2, \cdots, n_1-1$ only.

⁵ See footnotes 2 and 3.

⁶ For a number of results on the flat regions of integral functions, see J. M. Whittaker, A property of integral functions of finite order, Quart. J. Math. Oxford Ser. vol. 2 (1931) pp. 252–258; B. J. Maitland, The flat regions of integral functions of finite order, ibid. vol. 15 (1944) pp. 84–96; and the references mentioned in the paper of Maitland.

$$m_{\sigma}(r) > C_1 M_{\sigma}(r),$$

where $C_1 = C_1(\lambda, \epsilon) > 0$, holds form a set of upper density greater than $1 - 1/\lambda - \epsilon$.

PROOF OF THEOREM 1. Let $|z| = R = \lambda^{\gamma} R_k$ (0 < γ < 1), where k is so large that

$$\lambda^{\gamma} R_k < R_{k+1} - R^{\alpha}_{+1},$$

 $f(z) = P_1 P_2$, where

$$\begin{split} P_{1} &= \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \left\{ 1 - \frac{z^{\mu_{n}}}{a_{ns}^{\mu_{n}}} \right\}, \\ P_{2} &= \prod_{n=k+1}^{\infty} \prod_{s=1}^{p_{n}} \left\{ 1 - \frac{z^{\mu_{n}}}{a_{ns}^{\mu_{n}}} \right\}, \\ \mid P_{1} \mid \leq \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \left\{ 1 + \frac{R^{\mu_{n}}}{\mid a_{ns} \mid^{\mu_{n}}} \right\} \\ &= \left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{\mid a_{ns} \mid^{\mu_{n}}} \right) \left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \left\{ 1 + \frac{\mid a_{ns} \mid^{\mu_{n}}}{R^{u_{n}}} \right\} \right) \\ &= P_{11} P_{12}, \end{split}$$

say. Now $|a_{ns}| < R_n$,

$$|P_{12}| \leq \prod_{1}^{k} \left\{ 1 + \left(\frac{R_n}{R}\right)^{\mu_n} \right\}^{p_n},$$

and $R_n/R \le 1/\lambda^{\gamma} < 1$ for $n = 1, 2, \dots, k$, and $\sum p_n/\lambda^{\gamma \mu_n}$ is convergent. Hence

$$|P_{12}| \leq C_2,$$
 $|P_2| \leq \prod_{n=k+1}^{\infty} \prod_{s=1}^{p_n} \left\{ 1 + \frac{R^{\mu_n}}{|a_{ns}|^{\mu_n}} \right\},$

where $|a_{ns}| \ge |a_{k+1,s}| \ge R_{k+1} - R_{k+1}^{\alpha}$,

$$\frac{R}{\mid a_{ns}\mid} \leq \frac{R}{R_{k+1} - R_{k+1}^{\alpha}} \sim \frac{\lambda^{\gamma} R_k}{R_{k+1}} \leq \frac{1}{\lambda^{1-\gamma}},$$

and $\sum p_n/\lambda^{(1-\gamma)\mu_n}$ is convergent. Hence

$$|P_2| \leq C_3$$

⁷ C, C_1 , C_2 , \cdots denote finite positive (nonzero) constants.

and so

$$M(R) \leq C_2 C_3 \prod_{n=1}^k \prod_{s=1}^{p_n} \frac{R^{\mu_n}}{|a_{ns}|^{\mu_n}}.$$

Further

$$\begin{aligned} |P_{1}| &= \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \left| 1 - \frac{z^{\mu_{n}}}{a_{ns}^{\mu_{n}}} \right| \\ &\geq \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \left\{ \frac{R^{\mu_{n}}}{|a_{ns}|^{\mu_{n}}} - 1 \right\} \\ &\geq \left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{|a_{ns}|^{\mu_{n}}} \right) \left(\prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \left\{ 1 - \frac{|a_{ns}|^{\mu_{n}}}{R^{\mu_{n}}} \right\} \right) \\ &= P_{11} P_{14} \end{aligned}$$

say. Since $\sum p_n/\lambda^{\gamma\mu_n}$ is convergent and

$$|P_{2}| \geq \prod_{n=k+1}^{\infty} \prod_{s=1}^{p_{n}} \left\{ 1 - \frac{R^{\mu_{n}}}{|a_{ns}|^{\mu_{n}}} \right\} \geq C_{5},$$

$$(12) \qquad m(R) \geq C_{4}C_{5} \prod_{n=1}^{k} \prod_{s=1}^{p_{n}} \frac{R^{\mu_{n}}}{|a_{ns}|^{\mu_{n}}} \cdots ,$$

which gives that $m(R) \ge C_6 M(R)$ where $C_6 = C_6(\lambda, \gamma)$. Now given $\epsilon > 0$ let $\epsilon_1 = \epsilon \lambda^2/(\lambda + 1 + \epsilon \lambda)$. Writing $\lambda^{\gamma} = \theta$ and $R = \theta R_k$, where $1 + \epsilon_1 \le \theta \le \lambda - \epsilon_1$ and $k \ge K$, K being so large that $R_K(\lambda - \epsilon_1) < R_{K+1} - R_{K+1}^{\alpha}$, we get $m(R) \ge C(\lambda, \epsilon) M(R)$. This inequality holds good over a set of upper density greater than

$$\frac{(\lambda - \epsilon_1) - (1 + \epsilon_1)}{\lambda - \epsilon_1} = 1 - \frac{1}{\lambda} - \epsilon.$$

PROOF OF THEOREM 2. We know from (12) that $m(R, f) \ge C_4 C_5 X$, where

$$X = \prod_{n=1}^{k} \prod_{s=1}^{p_n} \frac{R^{\mu_n}}{|a_{ns}|^{\mu_n}} \ge \lambda^{(\gamma \sum_{1}^{k} \mu_n p_n)}$$

$$\log m(R, f) \ge \log (C_4 C_5) + \log X \ge \log (C_4 C_5) + \gamma \log \lambda \left(\sum_{1}^{k} \mu_n p_n \right)$$

$$> \Delta R^{\rho}$$
 for all large R .

Hence $\limsup_{r\to\infty} \log m(r,f)/r^{\rho} = \infty$. Further, the values of r for which $\log m(r,f) > \Delta r^{\rho}$ form a set of upper density greater than $1-1/\lambda - \epsilon$.

PROOF OF THEOREM 3. Given $\epsilon > 0$, let $\epsilon_2 = \epsilon/(2 - \epsilon)$. Since

$$\sum \mu_n p_n / (R_n - R_n^{\alpha})^{\rho - \epsilon_8}$$

is divergent we have

$$\mu_n \phi_n \ge R_n^{\rho - \epsilon_4} \qquad \text{or } n = k_1, k_2.$$

Let $|z| = R = \lambda^{\gamma} R_k$ $(0 < \gamma < 1 \text{ and } 1 + \epsilon_1 \le \lambda^{\gamma} \le \lambda - \epsilon_1)$, where k takes the values k_1, k_2, \cdots . If $X = \prod_{n=n_1}^k \prod_{s=1}^{p_n} R^{\mu_n} / |a_{ns}|^{\mu_n}$ then $X \ge \exp\{\gamma \log \lambda \sum_{n_1}^k \mu_n p_n\}$ and so $\log X \ge C_6 \sum_{n_1}^k \mu_n p_n \ge C_6 R_k^{\rho - \epsilon_4} = C_7 R^{\rho - \epsilon_4}$. Choosing k and hence R sufficiently large we have, as in Theorem 1,

$$m(R, F) > C_8 \exp \{ \log X - C_9 R^{[\rho]} \},$$

 $\log m(R, F) > \log C_8 + \log X - C_9 R^{[\rho]}$
 $> (1 - \epsilon_2) \log X.$

Similarly log $M(R, F) < (1 + \epsilon_2) \log X$ which gives

$$\frac{\log m(R,F)}{\log M(R,F)} > \frac{1-\epsilon_2}{1+\epsilon_2} = 1-\epsilon.$$

As in Theorem 1, this result holds for values of R forming a set of upper density greater than $1-1/\lambda-\epsilon$.

Theorem 4 can be similarly proved.

PROOF OF THEOREM 5. We know that for $|z| = R = \lambda^{\gamma} R_k$ $(0 < \gamma < 1, 1 + \epsilon_1 \le \lambda^{\gamma} \le \lambda - \epsilon_1)$

$$m(R, f) \ge C_4 C_5 \prod_{n=1}^k \prod_{s=1}^{p_n} \frac{R^{\mu_n}}{|a_{ns}|^{\mu_n}}.$$

We can choose k so large that $R' = R + R^{\sigma} < \lambda^{\gamma + \epsilon_5} R_k$, where $\gamma + \epsilon_5 < 1$,

$$R' < R_{k+1} - R_{k+1}^{\alpha}.$$

Now

$$M(R',f) < C_{10} \prod_{n=1}^{k} \prod_{s=1}^{p_n} \frac{R'^{\mu_n}}{|a_{ns}|^{\mu_n}}$$

and therefore

$$\frac{m(R, f)}{M(R', f)} > \frac{C_4 C_5}{C_{10}} \left(\frac{R}{R'}\right)^{\sum_{n=1}^{k} \mu_n p_n}.$$

Now $Y = (R'/R)^{-\sum_{1}^{k} \mu_n p_n} = (1 + R^{\sigma-1})^{-\sum_{1}^{k} \mu_n p_n}$. Further $\sum_{1}^{k} \mu_n p_n < (C_{11} \log R) R^{\rho+\epsilon \epsilon} < R^{\rho+\epsilon \tau}$ for all large R. Hence $Y > \exp\{-R^{\rho+\epsilon \tau}\}$

log $(1+R^{\sigma-1})$ and $R^{\rho+\epsilon_7}\log(1+R^{\sigma-1})\sim R^{\rho+\epsilon_7+\sigma-1}\to 0$ as $R\to\infty$, since $\sigma<1-\rho$ and ϵ_7 can be chosen so small that $\sigma<1-\rho-\epsilon_7$. Hence Y>1/2 for all large R and so

$$\frac{m(R,f)}{M(R',f)} > \frac{C_4C_5}{2C_{10}} \cdot$$

Further

$$\frac{m(R',f)}{M(R',f)} > C_{11}.$$

Hence

$$\frac{m_{\sigma}(R)}{M_{\sigma}(R)} = \min \left\{ \frac{m(R)}{M(R')}, \frac{m(R')}{M(R')} \right\} \ge \min \left\{ \frac{C_4 C_5}{2C_{10}}, C_{11} \right\} \ge C_1.$$

The values of R for which this result holds form a set of upper density greater than $1-1/\lambda-\epsilon$.

Added in proof. The positive numbers ϵ and ϵ_4 are chosen so small that

$$1/\lambda + \epsilon < 1;$$
 $[\rho] + \epsilon_4 < \rho.$

In the proof of Theorem 1 we showed that

$$M(R) \leq C_2 C_3 P_{11}; \qquad m(R) \geq C_4 C_5 P_{11},$$

both relations holding for all R such that

$$(1 + \epsilon_1)R_k \le R \le (\lambda - \epsilon_1)R_k \qquad (k > K).$$

Here

$$C_{2} = \prod_{n=1}^{\infty} \left\{ 1 + \left(\frac{1}{1+\epsilon_{1}} \right)^{\mu_{n}} \right\}^{p_{n}}, C_{4} = \prod_{n=1}^{\infty} \left\{ 1 - \left(\frac{1}{1+\epsilon_{1}} \right)^{\mu_{n}} \right\}^{p_{n}},$$

$$C_{8} = \prod_{n=1}^{\infty} \left\{ 1 + \left(1 - \frac{\epsilon_{1}}{2\lambda} \right)^{\mu_{n}} \right\}^{p_{n}}, C_{5} = \prod_{n=1}^{\infty} \left\{ 1 - \left(1 - \frac{\epsilon_{1}}{2\lambda} \right)^{\mu_{n}} \right\}^{p_{n}}.$$

If $C = C_4C_5/C_2C_8$ we have

$$m(R) \geq CM(R)$$
,

the inequality holding over a set of upper density greater than $1-1/\lambda-\epsilon$. If we further suppose that $\lambda=R_n/R_{n-1}$ $(n=2, 3, \cdots)$, then this inequality holds good over a set of upper density greater than $1-\lambda\epsilon(1+\epsilon)/(\lambda-1)$.

MUSLIM UNIVERSITY