A NOTE ON THE MINIMUM MODULUS OF A CLASS
OF INTEGRAL FUNCTIONS

S. M. SHAH

A well known theorem due to Littlewood, Wiman, and Valiron?
states that for any integral function of order less than one-half,

log m(r) > (a positive constant) log M(r),

on a sequence of circles of indefinitely increasing radius. I consider
in this note a class of integral functions which have this property and
prove the following theorem.

THEOREM 1. Hypothesis:

(1) (Ra) is any sequence of positive numbers such that Ri>1,
R./RuazA>1.

(2) (pn) is any sequence of positive integers.

3) au, @i, + ¢+, Gipy, Qary c v+, Qap,, ¢ ¢ ¢+ Gre a seb of points such
that 0 < l anl = l alzl =< .+ - and such that a finite number @ny, « ¢+, GnPn
lie inside the ring (R, — R; < | z[ <R,) where 0<a<1.

(4) pn is a sequence of positive integers such that Y v pa/B*» is conver-
gent, B being any constant greater than one.

(5) The exponent of convergence of the points

Gnr €Xp (2759/ptn),
where r=1,2, -+« , Py v=0,1,2, -+, u,—1;8=1,2,3,-+-,1isp
(0=p< ).
(6) Lower bound {u,} =1+p.
Conclusion:
(7) The canonical product

formed with these points as zeros is of order p; and the values of r=|z|
for which the inequality

m(r, ) > CM(r, f),
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1 G. Valiron, Lectures on the general theory of integral functions, pp. 128-130.

% It is possible to choose Ry, pn, and so on, satisfying the conditions (1) to (6).
Example: R,=22%; p,=n22"; u,=2n" Here p=1.
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where C=C(\, € >0, is satisfied form a set of upper density greater
than 1 —1/N—e.

TaeoreM 2. If (1), (2), (3), (4), (5), and (6) hold and if p>0 and
if further®

N
9) > linpn/ Ry — @ with N = »
Nanl

then
lim sup log m(r, f)/r* = =,

where f is the canonical product (8); and the values of r for which
log m(r, f) >Ar® where A is any arbitrarily large constant form a set of
upper density greater than 1 —1/N—e.

THEOREM 3. Hypothesis: Let p>0 be nonintegral and (1), (2), (3),
(4), and (5) hold.?
Conclusion:

(10) Any integral function of order p with exactly these zeros will be
of the form

(11) F(z) = o P() [T IIl{l - 2}

where g(z) is a polynomial of degree not exceeding p, P(z) a polynomial}
and the values of r for which

log m(r, F) > (1 — €) log M(r, F)
holds will form a set of upper density greater than 1 —1/\—e.

TraEOREM 4. If p>0and (1), (2), (3), (4), (5), and (9) hold® then con-
clusion (10) holds.

TuEOREM 5. If (1), (2), (3), (4), (5), and (6) hold and if m.(r) and
M,(r) denote the lower and upper bounds of | f(2)|, where f(z) is the
canonical product (8), of order p (0=p< ) in the annulus rglzl
Sr+r° (6 <1 —p) then the values of r for which®

3 For instance R,=2%% p,=n; p,=27(""D), Here p=7/2.

4 P(2) is a polynomial having zeros at points @, exp2wiv/ps), r=1,2, « + +, pu;
v=0,1,2, .-+, up—landn=1,2, ..+, m—1only.

§ See footnotes 2 and 3.

¢ For a number of results on the flat regions of integral functions, see J. M. Whit-
taker, A property of integral functions of finite order, Quart. J. Math. Oxford Ser.
vol. 2 (1931) pp. 252-258; B. J. Maitland, The flat regions of integral functions of

finite order, ibid. vol. 15 (1944) pp. 84-96; and the references mentioned in the paper
of Maitland.
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m,(r) > C1M,(f),

where’ Cy=Ci(\, € >0, holds form a set of upper density greater than
1—1/A—e

ProOF oF THEOREM 1. Let |z| =R=\"R, (0<vy<1), where k is so
large that

f(z) = P,P,, where

7\ka < Ryy1 — Ra+1,
{2,
=1 gml a':;

-1 H{l— =

ne=ktl s=l ns

|p,|snn{1+| i

Nm2l gl

i ) (i )

= P11P12,

say. Now laml <R,

k R, \#n) ?»
|P12|§H{1+( } y
1 R

and R,/RS1/\<1forn=1,2, - - -, k, and _p,/N7#is convergent.
Hence
| Pi2| < Co,
© Ren
FEAER 18I {1 + } ,
n=k+1 s=1 | ansl

where | @n,| Z | @ri1,0| ZRut1— Ry,
R R ARy, 1
=  ~ = ,
| Gns|  Rit1— Repy  Ren N7
and Y_p./NA-"nis convergent. Hence
| P2| £ Cs

7C, Cy, Cy, - - + denote finite positive (nonzero) constants.
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and so
k  pn Run
M(R) = CzCsH H
n=1 g=1 | Ons I“"
Further

lP1|=ﬁﬁ 1-

n=1 g=1

ns

1T {
> =1}
n=1 g=1 l 12 IF"

= (I 2 (- 2

= PuPis

say. Since D_p./A7#n is convergent and

Ren
|P2| H H 1— .Z_CB)
Ianalﬂn

n=k+1 s=1

k. pn Ryn
(12) m(R) 2 CCs [ I ———

)
n=1 s=1 | Ons I"”
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which gives that m(R) = CeM(R) where Cs= Cs(\,v¥). Now given >0
let e=eN2/(A+1+4+e\). Writing A¥=0 and R=0R;, where 1+¢ =<0
=N—eaand k=K, K being so large that Rgk(A —e1) <Rgi1—Rg1, we
get m(R)=C(\, € M(R). This inequality holds good over a set of

upper density greater than

()\—el)—(1+e1)=1 1

)\—61

ProoF oF THEOREM 2. We know from (12) that m(R, f)= CiCsX,

where

k_ pn Ren

x =11

n=1g=1 | Ons I"”

z A (y E'fﬂul’n)

k
log m(R, f) = log (C«Cs) + log X = log (C.Cs) + v log )\( Z u,.p,.)
1

> ARe for all large R.

Hence lim sup,..,, log m(r, f) /r* = «. Further, the values of  for which
log m(r, f) >Are form a set of upper density greater than 1 —1/\—e.
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Proor or THEOREM 3. Given €¢>0, let e2=¢/(2—¢). Since

2 tnpn/(Ra — Rn)""

is divergent we have

p—ey

MnDn = R, orn = k1, ko.
Let |2| =R=MR; (0<y<1 and 14+&=<A\"SA—e), where k takes
the wvalues ki, kg . If X = :=n1 ,_IR“"/I an.] ks then

X zexp{ylog )\Z,,lp,,pn} and s0 log X 2 Ce) s tnpa CeRE ™= CyRF—s,
Choosing & and hence R sufficiently large we have, as in Theorem 1,

m(R, F) > Cgexp {log X — CoRW1},
log m(R, F) > log Cs + log X — CyRII
> (1 — e) log X.
Similarly log M(R, F) <(1+e€) log X which gives
log m(R, F) 1—e
log M(R, F) 14 e

As in Theorem 1, this result holds for values of R forming a set of
upper density greater than 1—1/A—e.
Theorem 4 can be similarly proved.

=1-—e

PROOF oF THEOREM 5. We know that for |3| =R=\"R; (0<y<1,
1+ 6N EN— 61)

k  pn Ren

m(R, f) 2 CCI[ [] ——

n=1 g=1 Qns I“"

We can choose k so large that R'=R-+R? <\N"+R,, where v+e<1,

R < Rpy1 — RZ+1-
Now

k  pn R'#n

MR, <Co]ll Il ——

n=l gml l aml

and therefore

m(Rv f) C4C5 (R >E:-1I-‘npn
M(R, f) Cw \FR ’

Now Y=(R'/R)~Ztmwn = (1 4 Re-1)-Zlunrn, Further D suapn
<(Cu log R)Re+s<Reter for all large R. Hence Y >exp{—Rete
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log (14+R*-1)} and Re+r log(14Ro-1)~Re+erto-150 as R— , since
o<1—p and €7 can be chosen so small that ¢<1—p—e;. Hence
Y >1/2 for all large R and so

m(R, f) CCs
MER,f)~ 2Cu
Further
’
Hence

mo(R) . { m(R)  m(R') } . {C4Cs
= min ) £ min

M.(R) M(R) MR) 2C1o
The values of R for which this result holds form a set of upper density
greater than 1 —1/A—e.

Added in proof. The positive numbers € and € are chosen so small
that

’ Cn} = C1

IN+e<t;  [o]l+ e <o
In the proof of Theorem 1 we showed that
M(R) = CyC3Pu; m(R) 2 CsCsPu,
both relations holding for all R such that

(1 + 61)Rk é R § ()\ - 61)Rk (k > K)
© 1 Bn, Pn . 1 B Pn
G=1I 1+<1+e1) } ’C‘=,.I.Il{1"(1+e1)»} ’
© ¢ kn, Pn . € 2 Pn
1 1
a={i+(-5) ) a-Ti-(-5)}
If C=CyCs/C2C;s we have
m(R) = CM(R),

the inequality holding over a set of upper density greater than
1—1/\—e. If we further suppose that A\=R,/R,.1 (=2, 3, - -),
then this inequality holds good over a set of upper density greater
than 1 —Ne(1+¢€)/(A—1).
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