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Whereas area in spaces with a smooth Riemann metric has been 
widely studied, very little is known regarding area in spaces with gen­
eral metrics. I t is natural to ask, first, in which general spaces the 
most familiar types of formulas for area hold. 

The present note answers this question in two cases for two-dimen­
sional spaces in which the geodesic connection is locally unique.1 I t 
shows under very weak assumptions regarding the nature of area: 

I. If {and only if) locally an area exists for which triangles with equal 
sides have equal area, then the space is a locally isometric map of either 
the euclidean plane, or a hyperbolic plane, or a sphere. 

Consequently, Hero's and the corresponding non-euclidean formu­
las2 are (up to constant factors) the only possible formulas for area 
in terms of the sides, and each formula is characteristic for its respec­
tive geometry. 

II . If {and only if) locally an area a exists such that the area of the 
triangle pab depends only on p, the local branch of the geodesic Q that 
contains the segment $(a, b), and the distance ab (the euclidean geome­
try is, of course, the special case a = p$-ab/2), then the space is a 
locally isometric map of a Minkowski plane. 

The exact hypotheses regarding the space R are these: (1) R is a 
metric space. (2) R is finitely compact. (3) R is two-dimensional. (4) R 
is convex. If xy denotes the distance of x and y, let {xyz) denote the 
statement that the three points x, y, z are different and that xy+yz 
— xz. (5) Every point p has a neighborhood U{p) such that for any two 
different points x, y in U{p) a point z with {xyz) exists. (6) If {xyzi), 
{xyz2) and yz\ — yz2, then zx=z2.

z 

The following facts are known to hold in R: If S{p, p) denotes the 
set of points x with px<p, then a p{p) > 0 exists such tha t : S{p, Sp{p)) 
is homeomorphic to a circular disk [l, p. 29]. The segment %{a, b) 

Received by the editors October 10, 1946. 
1 The assumptions are formulated further on. They are equivalent to the condi­

tions A, B, C, D in [l, pp. 11, 12]. Numbers in brackets refer to the references cited 
at the end of the paper. 

2 In spherical geometry L'Huilier's formula for the defect can be used; for a proof 
see [4, p. 134]. The analogous hyperbolic formula may be obtained in the same man­
ner. A slightly different form is found in [5, p. 129]. 

3 The requirements (5) and (6) are equivalent to D in [l, p. 12] or [2, p. 215], 
see [2, Theorem (4.1)]. 
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is unique for any two points of S(p, 3p(p)) [2, (4.5) ]. If a, b are differ­
ent points of S(p, p(p))> then S(a, b)CS(p, 2p(p)) [2, (1.15)] and 
S(a, 6) is subsegment of a (unique) segment ï)(a, 6)=$(a ' , 6') with 
pa' =pb' = 3p(p) and xp<3p(p) for (a'xb'). Three points ci, c2, £3 of 
S(p, 2p(p)) will be called collinear when ct-£!}(#, &) f ° r suitable a^b. 

If a, &, c are three noncollinear points of S(p, p(p)), then the union 
of the three segments $(#, 6), g(6, c), §(c, a) is a closed Jordan curve 
in S(p, 2p(p)) and bounds exactly one convex subset T(abc) of 
S(p, 2p(p)). (Convexity of a set E means that a, & £ £ implies $(a, &) 
C-E.) Therefore a segment connecting two points of T(abc) is again 
inS(p,2p(p)): 

A symmetric function ap(aia2as) defined for any triple ah a2, #3 in 
S(p, p{p)) is called an area if: 

A: 0Sap(aia2az) <°° , and av(a\a2az) = 0 if and only if a\> a2, as are 
collinear. 

B: If (a2baz) then ap(aia2b)+ap(aibaz) =ap(aia2az). 
Statement I will be proved by showing : 
(1) If in S(p, 25(p)), 0<ö(p) Sp(p)/2, an area a(a±a2az) exists such 

that aiah — aial implies a(aia2az) = a(a{aiaz)> then S(p, à(p)) is iso­
metric to the interior of a circle of the euclidean plane, a hyperbolic 
plane or a sphere. 

Consider two different points a, b in S(p, à(p)) and two points ci, c2 

(not on $(a, b)) in S(p, d(p)) with da = Cib such that $(a, 6) and 
$(ci, 2̂) intersect at a point g. Such c» exist, compare [l, Theorem III , 
2.5']. Then 

(2) a(c\C2a) = a(cxC2b). 

If am = mb==ab/2y then 

(3) a(ciam) = afabm), i = 1, 2, 

These relations and properties A, B of ce imply that g coincides with m. 
For if this were not the case it may be assumed that (amq), because 
the triangle inequality implies that q cannot coincide with a or b. 
Then a(cimq) > 0, but ]£,• [aidant) +a(dmq) ] =^t-a(c»-ag) =a(cic2a) 
~oi(cic2b) =^2ia(ciqb) =J3* [ct(citnb) —a(ciniq) ], which contradicts (3). 
Hence the points Ci, c2j m are collinear. 

Let c be any other point in S(p, 8(p)) which is on the bisector 
5 (a, b) of a and ô, that is the locus xa = xb. Then either $(ci, c) or 
$(c2, c) intersects S (a, b), compare [l, Theorem II I , 2.5'] . Therefore 
c is collinear either with C\ and m or with c2 and w. Hence cGfyfci» £2) 
so that B(a, b) is linear. (1) follows then from [2, (15.2)]. 

Theorem I would become meaningless if the passage: "an area 
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exists" were replaced by "every area that satisfies A and B." For in­
stance, if 4>(%, rj) is any nonconstant positive continuous function in 
the euclidean plane, then a(abc) = /r(«&c)0(£, rj)d^drj will satisfy A 
and B but not the relation a{a( ai ai ) =a(aiö2a3) for any two triangles 
with equal (euclidean) sides. This remark applies also to Theorem II . 

This theorem will be proved in the following form: 
(4) If every point p of R has a neighborhood S(p, 2ö(p)), 0<&(p) 

^p(p)/2, such that inS(p, 2ô(p)) an areaap(^a&) exists which depends 
only on x, ï)(a, 6),4 and ab, then the universal covering space of R is a 
Minkowski plane. 

The proof for (4) is not as easy as for (1). If {abc), then ï)(a, b) 
= ^(6, c). Property B of area and standard arguments5 show that for 
any point x not on §(a, b) 

(5) a(xab):a(xbc) = ablbc, 

where a stands for ap. 
Consider now three noncollinear points a, 6i, b2 in S(p, ô(p)). Let m 

be the center of $(&i, J2), (mqa) and put Ci = $(&2, q)^$(bi, a), 
C2 = Kbi, q)^$(b2, a), n = &(a, m)r\$(ci, c2). Then (anq). 

The relation (5) yields a(abitn) ~a{abïm) and a(qbitn) =a(g&2w), 
hence 

(6) ot(qb\a) = <x(qfaa) 

4 §(a, b) is the exact form of the term "local branch of the geodesic that contains 
8(a, b)n employed in II. It is necessary to use that branch instead of the geodesic itself 
because the example of a torus with a euclidean metric shows that a geodesic may 
cross an arbitrary neighborhood of a given point infinitely often. 

6 See for instance [6, pp. 1, 2]. 
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so that by (5) 

a(qbiCx) hci a(b2biCi) a(qhb2) + a(qbiCi) ^ a(qbib2) 

a(qcia) c±a a(b2C\a) a(qb2a) + a{qc\a) a{qb2a) 

and in the same way 

a(qb2c2) b2c2 oi(qbib2) 

ot(qc2a) c2a a{qbia) 

Therefore it follows from (6) that 

(7) biC\\c\a = b2c2lc2a, 

(8) a(qbiCi) = a(qb2c2), and a(qcià) = a(qc2a). 

Now (5) yields 

a(acifi) an a(ac2n) 

a(qcin) qn a(qc2n) 

hence, by (8), a(acin) =a(ac2n) and then by (5) 

(9) cin = c2n. 

Applying (9) and (5) 

a(acib2) 2a(anc2) + 2a(b2nc2) 

a(arib2) a(anc2) + a(b2nc2) 

so tha t 

an 2a(anb2) a(ac\b2) ac\ 

am 2a(amb2) a{ab\b2) ab\ 

Successive dyadic subdivisions of $(&i, 62) and applications of (9) and 
(10) yield: 

(11) If (bixb2) and $(a, x)r\&(ch c2)=y then ay.ax — aci'.abi and 
c\y : c2y = bix : b2x. 

This leads to : 
(12) If 0i, z2 are points of f)(a, b)r\S(p, ö(p)) then a(ziz2y) is con­

stant for fixed %i and yGK^i> c2)r\S(p, 2d(p)). 
For 

a(abib2) ab\ ax a(abix) a(abj)2) 

<x(cibib2) cibi yx a(ybix) a(ybib2) 

so tha t a(bj)2y) is constant. The general statement follows easily 
from (5). 
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We call ï)2 = ï)(£i, c2) parallel to ï)i = ï)(&i, b2). (8) and (9) show 
a(ciC2bi) = a(cic2b2) so that also f)i is parallel to f)2- The relation (5) 
yields : 

(13) Let §3 be a parallel to f)i and between ï)i and ïfe, and Si, /»£ï)i, 
(*itó), (siS3S2)y then Sis2 : SsS\ = t\t2 ' kh. Hence ï)3 is also parallel to %2. 

Every point x of S(p, 8(p)), in particular p itself, is an interior 
point of a parallelogram with vertices in S(p, Sip)), where parallelo­
gram is defined as a quadrangle in which opposite sides lie on parallels 
in the present sense. For, if $(a, c) and 8(&, d) are noncollinear seg­
ments with the same center, then (13) shows that abed is a parallelo­
gram. 

Call P the closed convex set in S(p, 28(p)) bounded by the paral­
lelogram ouwvf where the vertices are in S(p, 8(p)) and w is opposite 
to o. Coordinates £, rj can be introduced in P as follows : The parallels 
to {)((?, v) and ï)(o, u) through a given point qÇzP may intersect s(o, u) 
and s(o, v) in q\ and q2 respectively. Then 0(?i = £ and oq2 = rj are the 
coordinates of q. A line L = l)(a, b)C\P 9^0 intersects the boundary 
of P. Let, for instance, &(o, u)C\L=a = (^} 0). Choose any two differ­
ent points #o = (£o, ?7o) and q = (£, 77) on L which are different from a. 
If £o=j8, then £=j3 is the equation of L. If £0 7̂ /3 let the parallel to 
ï)(tf, z;) through a intersect the parallels to fy(o, u) through qo and q\ 
at &o and &i respectively. Then by (11) and (13) 

£0 — JÖ aqo abo rj0 

so that £ and 77 satisfy a linear equation. 
Besides the given distance qiq2 introduce in P a euclidean metric 

e(qi, £2) = [ ( & - & ) 2 + (i7i-i?i)2]1/2 where ff<= (£,, rç,). Then the lines L 
coincide with the euclidean straight line pieces in P ; moreover be­
cause of (13), the distances e(qi, q2) and qiq2 are proportional when 
gi, q2 vary on a fixed line L. 

This and (13) imply tha t the universal covering space R of R is the 
whole euclidean plane with the euclidean straight lines as geodesies, 
and that on each straight line the distance q\q2 in R is proportional 
to the euclidean distance e(qi, q2). Therefore (13) holds for R, the 
parallels now meaning ordinary euclidean lines. I t also follows that 
the circles px = p about a fixed point p are homothetic. To see that 
the metric in "R is Minkowskian it must be shown that circles with 
different centers pi, p2 are also homothetic. 

Consider two parallel lines L\ and L2 and a point p between them. 
Let Ji be a foot of p on Zi and let the line through p and / i intersect 
L2 a t / 2 . Let another line through p intersect Li at a,-. Then by (13) 
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l^pfi/pâi^pfi/pâî, hence / 2 is a foot of p on L2. If {pqji), then ƒ2 
is the only foot of p on L2 (see [2, (7.9)]), and by the preceding argu­
ment / i is a foot of q on L\, hence / i is the only foot of p on L\. This 
means that the circles in R are convex [1, Theorems IV, 3.1, 3] . If 
the lines through pi and / i and through p2 and /2 are parallel, and 
Zi is a supporting line to the circle pix = pifi a t / i , then the parallel to L\ 
through f2 is a supporting line of p2x = p2f2 [l, Theorem IV, 7.1]. 
Therefore the two circles are homothetic and the metric of R is Min-
kowskian. 

The "only if" part in II follows from the fact that in a Minkowskian 
plane the ordinary area of a euclidean plane with the same geodesies 
will satisfy A and B. 

The plane, cylinder, torus, Moebius strip, and the one-sided torus are 
the only two-dimensional manifolds that can carry locally euclidean 
metrics (compare [3, Chapter I I I , §VIl]). The arguments used to 
prove this fact show also that these are the only manifolds that can 
carry locally Minkowskian metrics. If a Minkowski metric is given, 
then cylinders and tori exist which have locally this metric. But a 
Moebius strip and a one-sided torus with this metric exist, if and only 
if the Minkowski metric admits a reflection in some straight line, see 
[3, pp. 81-85]. 

The preceding discussion suggests the question : in which geometries 
is the locus of the vertex x of a triangle xab with the fixed base $(a, b), 
a^b, a fixed area, and on a given side of ï)(a, b) a straight line? How­
ever, as long as area only satisfies A and B, this question is not reason­
able, as the following example shows: Represent the hyperbolic plane 
by a euclidean model, in which the straight line pieces in the interior 
K of the euclidean unit circle are the hyperbolic geodesies. For three 
points a, b, c in K define a(abc) as the content of the triangle in the 
sense of the imbedding euclidean metric. Then a satisfies A and B 
and the above condition. 

R E F E R E N C E S 

1. H. Busemann, Metric methods in Finsler spaces and in the foundations of geometry, 
Annals of Mathematics Studies, no. 8, Princeton, 1942. 

2. , Local metric geometry, Trans. Amer. Math. Soc. vol. 56 (1944) pp. 200-
274. 

3. E. Cartan, Leçons sur la geometrie des espaces de Riemann, Paris, 1928. 
4. G. Hessenberg, Ebene und sphârische Trigonometrie, Berlin, 1934. 
5. H. Liebmann, Nichteuklidische Geometrie, 1st éd., Leipzig, 1905. 
6. E. Picard, Leçons sur quelques équations fonctionnelles, Paris, 1928. 

SMITH COLLEGE 


