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Let X be any set, let 5 be a cr-field of subsets of X (that is, S is 
a class of sets containing X and closed under complementation and 
the formation of countable unions), and suppose that ju is a finite, 
non-negative, and countably additive measure defined for the sets 
of 5 . Concerning such measures Kai Rander Buch has recently proved 
the following two statements.1 

THEOREM 1. The set of values of fx is closed. 

THEOREM 2. If n and v are two finite measures defined on the same 
o'-field S of sets} then the set of all points of the form (IJL(E), v(E)), where 
E G S , is a closed subset of the plane. 

Buch's proofs are long and complicated and make use of an intricate 
construction involving the Cantor set in order to map the measure 
space X on an interval.2 I t is the purpose of this note to give direct 
and simple proofs of Theorems 1 and 2. I t is worth remarking that 
(a) Theorem 1 is a trivial corollary of Theorem 2 (set v{E) identically 
zero), (b) there does not seem to be a completely trivial proof of Theo­
rem 2 from Theorem 1 based on elementary properties of product 
spaces, and (c) possibly both theorems can be made to appear as 
special cases of a theorem on measures whose values are suitably 
general entities (such as, say, elements of an ordered abelian group). 

An atom of a measure space X is a measurable set E of positive 
measure such that for every measurable subset FC.E either fx(F) = 0 
or ji(E — F) — 0. If £ is an atom of X we may replace X by the space 
whose points are the points of the complement of E together with a 
single point of measure ju(E). Since the set of values of ju is not altered 
by this replacement we may and do assume that all atoms contain 
exactly one point. Since fi(X) < <*>, X can contain at most countably 
many distinct atoms. Let Y be the union of the atoms of X and write 
Z = X-Y. 

Received by the editors August 9, 1946. 
1 Some investigations of the set of values of measures in abstract space, Matematisk-

Fysiske Meddelelser vol. 21 (1945). 
2 Such constructions were previously employed for the same purpose by John 

von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math, 
vol. 33 (1932) p. 602, and J. L. Doob, Stochastic processes with an integral-valued 
parameter, Trans. Amer. Math. Soc. vol. 44 (1938) p. 91. 
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LEMMA 1. Every measurable set EQ.Z of positive measure contains 
measurable subsets of arbitrarily small positive measure. 

PROOF. Since E is not an atom there exists a measurable subset 
FCE for which 0 <v(F) < M C E ) . Write Ex for that one of the two sets 
F and E — F whose measure is not greater than JJL(E)/2. Similarly we 
may construct a set E2GE1 such that 0 <JU(£ 2 ) ûp(Ei)/2t and proceed 
so on by induction. 

LEMMA 2. The set of values of fx on measurable subsets of Z is the 
closed interval 0 g # gju(Z). 

PROOF. If JJ,(Z) = 0 there is nothing to prove. If 0 <a <p(Z), we may 
apply Lemma 1 to find a measurable set E1C.Z such that 0 </x(£i) g a. 
If the equality holds we are finished; if not we may apply Lemma 1 
to find a measurable set E2C.Z—E\ such that 0</z(E2) ^ a ~ M C ^ I ) -
Proceeding in this way, by transfinite induction if necessary, we ob­
tain a countable sequence of pairwise disjoint measurable sets the 
union of which has measure a.z 

LEMMA 3. The set of values of JJL on measurable subsets of Y is closed. 

PROOF. Let yu y* * • • be the points of F. Let T be the set of all 
sequences 7 = {ei, €2, • • • } where € t = 0 or 1. In the customary to­
pology of Cartesian product spaces T is a compact topological space 
and each of the functions e* = €*(Y) is a continuous function.4 I t fol­
lows from the finiteness of /*(F) and the Weierstrass M-test that the 
function <£(Y) defined by the series 

00 

#(7) = IL w(yi) 

is also a continuous function on T. Since a continuous image of a 
compact space is compact and therefore closed5 and since the image 
<j)(T) is exactly the set of all values of fx on subsets of F, the proof of 
Lemma 3 is complete. 

I t is not difficult to put together Lemmas 2 and 3 in order to prove 
Theorem 1. I t is however a little more convenient not to do that di­
rectly but, with the proof of Theorem 2 in mind, to establish first two 
easy but mildly interesting topological lemmas. 

3 The device used in the proof of Lemma 2 finds frequent application in measure 
theory; it is called the method of exhaustion. 

4 See Solomon Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publi­
cations, vol. 27, New York, 1942, p. 19. 

6 See Lefschetz, op. cit. p. 18. 
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LEMMA 4. Let S be an arbitrary set and let f be a function defined on 
S and taking values in a topological space R. A necessary and sufficient 
condition that there exist in S a topology with respect to which S is com­
pact and f is continuous is that the image f (S) be a compact subset of R. 

PROOF. The necessity of the condition asserts merely that a con­
tinuous image of a compact space is compact. To prove sufficiency 
suppose that f(S) is compact, and consider all those subsets of S which 
are of the form f~~l(U) where V is an open set in R. Defining each 
such set to be open in S makes 5 into a topological space (without 
any separation axioms in general) on which ƒ is continuous. Since any 
open covering of S is obviously induced by an open covering of ƒ(5), 
S is compact with respect to the topology described. 

LEMMA 5. Suppose that S is a set which is a compact space with re­
spect to each of two topologies 7\ and T2. Let T be the weakest topology 
on S (that is, the one with fewest open sets) whose open sets include all 
open sets of both Tx and T2. Then S is compact with respect to T. 

PROOF. The class of all sets of the form UV, where U is open with 
respect to 7\ and V is open with respect to T2, is a base of the open 
sets of T. If S is covered by sets of this form then (because of the com­
pactness hypotheses) it is covered by a finite number of the f/'s that 
occur and also by a finite number of the V's that occur. I t follows 
therefore that S is covered by the finite class of sets obtained by in­
tersecting each one of the finite number of f/'s with each one of the 
finite number of V's. 

LEMMA 6. If vx and v2 are two measures defined on the same <r-field S 
of sets and if the set of values of each of them is a closed and bounded 
set on the line, then the set of all points of the form (vi(E), ?2(E)), where 
EÇiSy is a closed and bounded subset of the plane. 

PROOF. By Lemma 4 we may introduce a topology T» into the space 
S of measurable sets so that S is compact and Vi is continuous, 
i = l, 2. By Lemma 6, S is compact with respect to the weakest to­
pology T which is stronger than both 7\ and T2, and it is clear that 
the introduction of additional open sets does not affect the continuity 
of Vx and v2. I t follows that the point (vi(E)} v%(E)) depends continu­
ously on E (with respect to the compact topology T) and that con­
sequently the set of all such points is compact. This completes the 
proof of Lemma 6. 

We return now to the notation of Lemmas 2 and 3. If for every 
£ £ S w e write vx(E) =v(EY) and *>2(£) =*n(EZ) then Lemmas 2 and 3 
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assert that the conditions of Lemma 6 are satisfied by Vi and i>2. It 
follows that the set of all points of the form (fx(EY), fi(EZ)) is a com­
pact set. Since the function ƒ(s, t) —s+t is continuous, it follows that 
the set of all numbers of the form 

lx(E) = fx(EY) + tx{EZ) 

is also compact, and this proves Theorem 1. Theorem 2 is an immedi­
ate corollary of Theorem 1 and Lemma 6. The method of proof shows, 
incidentally, that the obvious generalization of Theorem 2 from two 
to n dimensions is also true. 
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