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Saks has shown tha t if fix, y) is subharmonic in a domain G and 
if fi(e) is the completely additive, non-negative function of Borel sets 
associated with ƒ(x, y), then 

lim — — - I I f(x + £, y + rj)d£dri - ƒ(*, y) = D,n(x, y), 
P-*O p 2 L fl"P •/ •/ J 

and 

lim — — - I ƒ(* + £, y + ri)ds - fix, y) = Z V O , y) 
P-*O plL2wpJ J 

hold almost everywhere in G [7J.1 Here the first integral is extended 
over all (£, TJ) such tha t £2+?]2<p2 , the second integral is extended 
over all (£, 77) such tha t £2+??2 = p2, and Dsn{x, y) is the symmetric 
derivative of ju(e) at (#, y). 

The main result of this paper is an analogue of Saks* result for con­
tinuous functions having subharmonic logarithms. For such functions 
f{x, y), it is shown that if <r(e) is the completely additive, non-negative 
function of Borel sets associated with log ƒ(#, y), then 

lim — { ( — ƒ ƒ(* + à J + v)ds^j - — ƒ ƒ fix + *, y + 1 7 ) ^ ^ 1 

= /2(#, y)D9<r(x, y) 

holds almost everywhere in G. 
Let G denote a domain (non-null connected open set) in the x, y-

plane, Dix, y; p) the open circular disc with center at (#, y) and 
radius p, and C(#, y; p) the boundary of D(#, y; p). Ifƒ(#, y) is con­
tinuous in G, then ƒ (5c, y) is said to be subharmonic in G if and only if 

fix, y) S Aif; X,y.f>)=—Ç f fin, 
7Tp J J D(x,y;P) 

holds for each Dix, y ; p) in G [4]. I t is well known that (1) can be re­
placed by either [4] 
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f(x, y) ^ £(ƒ; * , y ; p ) s — ƒ(& ri)ds, 

or 
Mf\ *, ^ Î P ) ^ £(ƒ; *, y;p) . 

An important subclass of the class of functions subharmonic in G 
consists of those functions having subharmonic logarithms. These 
functions, studied by Beckenbach and Radó [ l ] , are defined as fol­
lows. A function is said to be of class PL in G if and only if (i) 
f(x, y ) ^ 0 , (ii) ƒ(#, y)f^0, (iii) log fix, y) is subharmonic in G. I t is 
fundamental in the theory of functions of class PL in G that f(x, y) 
is of class PL in G if and only if 

AV*;x,y;p)g [L(f;xiTyP)]2 

holds for each D(x, y; p) in G [ l ] . 
If f(x, y) has continuous partial derivatives of the second order 

in G, then ƒ (x, y) is subharmonic in G if and only if Af(x, y) ^ 0 in G, 
and f(x, y) is of class PL in G if and only if 

(2) f i l o l f , f A / - ( ^ - ( ^ ' i 0 

in G [4]. Here A is the Laplace operator 

a2 d2 

A = + 
dx2 dy2 

If f(%i y) is subharmonic in G, then Riesz [6] has shown that there 
exists a unique, completely additive, non-negative function fx(e) of 
Borel sets e (for which the closure êQG) with the following property. 
If D is a subdomain of G, such that Z>CG, then ƒ (x, y) has the repre­
sentation 

(3) ƒ(*, y) « ƒ(P) - - J- f f log JL <fo(«o) + H(P), * G A 
2TT J J D PQ 

where PQ = ((x — £)2 + (y —rç)2)1/2, H(P) is harmonic in D, and where 
the integral is a Stieltjes-Radon integral [8]. 

Since the density of ju(e) at (x, y) is defined by [8] 

(4) Dsix(%, y) s lim 
p-*0 7Tp2 

(which is known to exist almost everywhere [8]), then Saks' result 
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may be stated as follows. If ƒ(#, y) is subharmonic in G, and if fi(e) 
is the set function used in (3), then 

= lim — [L(J; x, y; p) - ƒ(*, y)] = D8p(xt y) 
P->o p 2 

holds almost everywhere in G. Saks' proof of (5) depends upon the 
representation (3) for ƒ(#, y). 

If f(x, y ) è O is continuous and subharmonic in G, then f2(x, y) is 
continuous and subharmonic in G [é]. Hence by the "representation 
theorem" of Riesz, noted above, there exist unique, completely ad­
ditive, non-negative set functions 11(e) and v(e), for êCG, associated 
with ƒ (x, y) and f2(x, y)9 respectively. Then the following lemmas hold. 

LEMMA 1. 

1 _ . 
lim — [L2(f; x, y\ p) - A(f; x, y; p)\ 

(6) ^ P 

_ f(x, y)D,p,(x, y) D8v(xy y) 
2 8 

holds almost everywhere in G. 

PROOF. I t is well known [4] that £(ƒ; x, y\ p)->/(#, y) and 
A (p\ x, y; p)-*-f2(x, y) on ëQD, as p—»0. The relation (6) now follows 
from (5) and the identity 

L2(f; xf y\ p) - A(f; x, y; p) 

~L(f\x,y\p) - f(x,y)l 
P2 

= [L(f; x, y; p) + f(x, y)][-

Mp\ x,y;p) - f(x, y) 
P2 

P' 

LEMMA 2. If eis a Borel set, ëQG, then 

(7) K«> - 2 /^AIWPC) + 2 ƒƒ [(£)'+ ( | ) ] « * 
PROOF. Let D be a subdomain of G, such tha t 25CG. I t follows 

from the proofs of the representation (3) for subharmonic functions, 
given by Evans [2] and Riesz [6], that/x(e) and v(e) may be obtained 
as follows. If iterated averages of ƒ(#, y) are defined as 
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A*<J\ x, y; p) ss A(A; x, y; p), ^ 3 ( / î x, y; p) s 4C42; x, y; p), 

then there exists a sequence {pn} \ 0, as w—> » , such that the set func­
tions 

(8) /*»(«) s I I A^3(/; *, y\ pn)dxdyy ë C D, 

(9) *»(«) E ƒ ƒ A[At(J; x, y; pn)]*dxdyt I C D, 

converge to M(^) and p(e), respectively; that is, 

lim ixn{e) = /x(e), 
n—*oo 

if e is open and /^-regular (that is, ix(ê — e) = 0) and 

lim pn(e) == v(e), 
n—>oo 

if £ is open and ^-regular (that is, v(e — e) = 0). 
Now if R is an oriented rectangle in D, and if JR is both p- and ^-regu­

lar, and if the substitution 

A%{f\ x, y\ pn) s 8t»(*, y) 

is made, then it follows from (8) and (9) that 

(10) 
V(R) = lim 2 ƒ ƒ 3t„(P)dM»(ep) 

holds. However, Frostman has shown [3 ] that if R is ju-regular, then 

lim f f *nCP)*in(«p) = f f AP)dn(ep), 

and Evans has shown [2] that 

so that (10) may be written 

au *n - 2 ƒƒ/(«««) + 2 ƒƒ„[(£)'+ (£)]**• 
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Now each open oriented rectangle R in D is the point set limit of 
a monotone increasing sequence {Rn} of open [x- and ^-regular rect­
angles, such that [S] 

(12) Km fi(Rn) - M(tf), 
n-*oo 

(13) lim y(Rn) - p(tf). 

Hence it follows from (11), (12) and (13) that (11) must hold for all 
open oriented rectangles R in D. By a familiar argument used in the 
theory of set functions [5, 7] , it follows tha t (7) holds for all Borel 
sets in D. 

Since D was an arbitrary subdomain of G, the lemma now follows. 

COROLLARY. 

(14) D.K*, ,) - 2[ƒ(*, y)D,Kxi y) + ( 0 + ^ J ] 

almost everywhere in G. 

PROOF. The relation (14) follows from (4), (7) and the classic theo­
rem due to Lebesgue on the derivation of integrals [8]. 

THEOREM 1. 

lim — [L\f; x, y; p) - A(f; x, y; p)] 
P-O p 2 

(IS) 

- «*»*«*>»-(s)'-(=) \dy/ 

almost everywhere in G. 

PROOF. (15) follows from (6) and (14). 
In the following, it is assumed that f(x, y) is also of class PL in G. 

Hence f(x, y ) = e x p u(x, y), where u(x, y) is continuous and subhar-
monic in G, with associated set function called cr(e). 

LEMMA 3. If e is a Borel set, IQ.G, then 

fx(e) = I I exp ix{P)d<j{eP) 

ƒ ƒ 10+Q2]exp u{x'y)dxdy-
(16) 

+ 
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PROOF. I t is inherent in the proof of (3) given by Evans [2] and 
Riesz [ó], tha t fi(e) and a(e) may be found as follows. If the definition 

Az{u\ x, y; pn) s an(x, y) 

is made, then there exists a sequence { p « j \ 0 , as n—»<*>, such that 

(17) M*(e) = I I Ajexp On(«, y)]da% 

and 

(18) <rn(e) = 1 1 A#w(#, y)dxdy 

converge to jji(e) and cr(e), respectively; that is 

(19) lim ix%) = v(e) 

for each open /x-regular set e, and 

(20) lim <7n(e) = <r(e) 

for each open cr-regular set e. 
Now an argument similar to that used in the proof of Lemma 2 

shows tha t (16) follows from (17)-(20). 

COROLLARY. 

D8ti%y y) = exp tix* y)'D8<r(x> y) 

(21) K du\2 /du\2l 
+ 

*<dyt 

almost everywhere in G. 

PROOF. The corollary follows at once from (4), (16) and the theo­
rem of Lebesgue on the derivation of integrals. 

THEOREM 2. 

4 r (22) lim — [£2(/; x, y; p) - A(f; xy y; p)] = j\xy y)D8a(x, y) 
p->0 p2 

almost everywhere in G. 

PROOF. The theorem, which is an analogue of Saks' result (5), fol­
lows at once from (15) and (21). 
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The relations (5), (6), (IS) and (22) are examples of "generalized 
Laplacians" [7, 9 ] . For example, if fix, y) is sufficiently smooth in G, 
then (22) yields 

4 
hm — [L*(J; x, y; p) - A(f; x, y; p)\ = f(x, y)A log f(x, y), 
P->O p 2 

which bears an important relation to the defining inequality (2) for 
smooth functions of class PL. 
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