ON FUNCTIONS HAVING SUBHARMONIC LOGARITHMS
MAXWELL O. READE

Saks has shown that if f(x, v) is subharmonic in a domain G and
if u(e) is the completely additive, non-negative function of Borel sets
associated with f(x, v), then

8 1
lim —-——[——f flx 4 & vy 4+ n)dédy — f(x, y)] = Dou(x, ¥),
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hold almost everywhere in G [7].* Here the first integral is extended
over all (£, ) such that £24-9%<p?, the second integral is extended
over all (£, n) such that £+79%=p?, and D,u(x, y) is the symmetric
derivative of u(e) at (x, ).

The main result of this paper is an analogue of Saks’ result for con-
tinuous functions having subharmonic logarithms. For such functions
f(x, ), it is shown that if o(e) is the completely additive, non-negative
function of Borel sets associated with log f(x, ¥), then

1313’ —;{(ﬁ—’;ff(x +&y+ n)dé‘>2— :i;ff e+ &y -l—n)dédn}

= fX(«, y)Dso(x, )
holds almost everywhere in G.

Let G denote a domain (non-null connected open set) in the x, y-
plane, D(x, ¥; p) the open circular disc with center at (x, y) and
radius p, and C(x, y; p) the boundary of D(x, y; p). If f(x, y) is con-
tinuous in G, then f(x, y) is said to be subharmonic in G if and only if

1
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holds for each D(x, y; p) in G [4]. It is well known that (1) can be re-
placed by either [4]
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1
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or
A(f; %, 3 0) = L(f; %, 5 p).

An important subclass of the class of functions subharmonic in G
consists of those functions having subharmonic logarithms. These
functions, studied by Beckenbach and Radé [1], are defined as fol-
lows. A function is said to be of class PL in G if and only if (i)
flx, v) =0, (ii) f(x, )20, (iii) log f(x, ¥) is subharmonic in G. It is
fundamental in the theory of functions of class PL in G that f(x, y)
is of class PL in G if and only if

A(f% %, 95 0) < [L(f; %, 95 0) ]2

holds for each D(x, y; p) in G [1].

If f(x, ¥) has continuous partial derivatives of the second order
in G, then f(x, y) is subharmonic in G if and only if Af(x, ) 20 in G,
and f(x, v) is of class PL in G if and only if

) ratog =g - (2 - (:—Qg 0

in G [4]. Here A is the Laplace operator
92 92

T 92 dy?

If f(x, ¥) is subharmonic in G, then Riesz [6] has shown that there
exists a unique, completely additive, non-negative function u(e) of
Borel sets e (for which the closure é CG) with the following property.
If D is a subdomain of G, such that DCG, then f(x, ¥) has the repre-
sentation

1 1
@) S =fP) = = [f log o duled) + HP),  PED,

where PQ = ((x—£)2+4(y—1)2)V2, H(P) is harmonic in D, and where
the integral is a Stieltjes-Radon integral [8].
Since the density of u(e) at (x, y) is defined by [8]

r[D(x, y; )]

2

4) Depu(x, y) = lim
0 ™

(which is known to exist almost everywhere [8]), then Saks’ result
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may be stated as follows. If f(x, ¥) is subharmonic in G, and if u(e)
is the set function used in (3), then

8
lim - [A(f; , 95 0) — f(x, 9)]
0 p

©) 4
= lim — [L(f; %, 3; p) — f(%, 3)] = Dan(, )

p—0 P
holds almost everywhere in G. Saks’ proof of (5) depends upon the
representation (3) for f(x, y).

If f(x, y) =0 is continuous and subharmonic in G, then f*(x, y) is
continuous and subharmonic in G [4]. Hence by the “representation
theorem” of Riesz, noted above, there exist unique, completely ad-
ditive, non-negative set functions u(e) and »(e), for éCG, associated
with f(x, ¥) and f*(x, ¥), respectively. Then the following lemmas hold.

LeMMA 1.

1
lim — [L2(f; %, y; 0) — A(f% %, 5 0)]
0
(6)
_ (& 9)Dus(x, y)  Dar(x, y)

2 8

holds almost everywhere in G.

Proor. It is well known [4] that L(f; x, y; p)>f(x, ) and

A(f2; %, v; p)>f*(x, y) on éCD, as p—0. The relation (6) now follows
from (5) and the identity

L*(f; %, y; p) — A(f% %, ¥; p)

2

p

L(f; = y; p) — f(=,
= [L(f; %, y; p) + f(=, y)][ (i %y :)2 = y)]
A % i 0) = (%)
p?
LEMMA 2. If e is a Borel set, e CG, then

M w0 =2 [ [ 1t +2 | [(j—jﬁ)+ (g;j)z]dxdy.

Proor. Let D be a subdomain of G, such that DCG. It follows
from the proofs of the representation (3) for subharmonic functions,
given by Evans [2] and Riesz [6], that u(e) and v(¢) may be obtained
as follows. If iterated averages of f(x, ¥) are defined as
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As(f; %, y;0) = A(4; %, 3 0), As(f; %, ; 0) = A(4s; 2, ¥; p),
then there exists a sequence { p,,} N\ 0, as #— =, such that the set func-
tions

€] pn(e) EffAAs f %, ¥; pn)dxdy, ¢ C D,

© (@) = [ [ Al4s 5, 53 po) Pz, :CD,
converge to u(e) and v(e), respectively; that is,

lim pa(e) = u(e),

Nn—
if e is open and u-regular (that is, u(é—e) =0) and

lim »,(e) = »(e),

n—®

if e is open and v-regular (thatis, v(é¢—e) =0).
Now if R is an oriented rectangle in D, and if R is both u- and v-regu-
lar, and if the substitution

As(f; %, 5 pn) = Un(x, ¥)
is made, then it follows from (8) and (9) that

WR) = lim 2 [ f L, (P) diun(er)

s () (2 e

(10)

+im2 [ 13

holds. However, Frostman has shown [3] that if R is u-regular, then

tim [ fR%n(P)du,.(ep) - fRf(P)dn(ep),

and Evans has shown [2]that

i TR+ (o= LI+ (]

so that (10) may be written

ay  ww =2 [ goaen 2 [ [ [(Z)+ (aQ]dxdy
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Now each open oriented rectangle R in D is the point set limit of
a monotone increasing sequence {R.} of open y- and »-regular rect-
angles, such that [5]

(12) i_l{i w(Ra) = u(R),
(13) lim »(R,) = »(R).

Hence it follows from (11), (12) and (13) that (11) must hold for all
open oriented rectangles R in D. By a familiar argument used in the
theory of set functions [5, 7], it follows that (7) holds for all Borel
sets in D.

Since D was an arbitrary subdomain of G, the lemma now follows.
COROLLARY.
9 f 2 9 2
(19 Date, 3) = 2| f5 9Dt ) + () + () |
ox ay
almost everywhere in G.

ProorF. The relation (14) follows from (4), (7) and the classic theo-
rem due to Lebesgue on the derivation of integrals [8].

THEOREM 1.

4
lim — [LX(f; %, 3; p) — A(f% %, 33 p)]

p—0
If\? arf\?
= ) Da ] =\ ) "\
f(2, ¥)Dop(%, ¥) (aD (61)
almost everywhere in G.

Proor. (15) follows from (6) and (14).

In the following, it is assumed that f(x, ¥) is also of class PL in G.
Hence f(x, ¥) =exp u(x, ¥), where u(x, y) is continuous and subhar-
monic in G, with associated set function called a(e).

(15)

LeMMA 3. If e is a Borel set, eCG, then

o = [ [ exp u(P)do(er)

+ ffe [(%)2+ (%)2] exp #(%, y)dxdy.

(16)
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Proor. It is inherent in the proof of (3) given by Evans [2] and
Riesz [6], that u(e) and o(¢) may be found as follows. If the definition

As(u; %, ¥; pn) = aa(%, ¥)

is made, then there exists a sequence {pa}\0, as #— », such that

(17) w@ = [ [ alexp (s, )laady
and
(18) an(e) Eff Aa,(x, y)dxdy

converge to u(e) and o(e), respectively; that is
(19) lim yn(e) = u(e)
n—r

for each open u-regular set ¢, and

(20) lim o,.(e) = a(e)

n—rc0

for each open o-regular set e.
Now an argument similar to that used in the proof of Lemma 2
shows that (16) follows from (17)—(20).

COROLLARY.

Dop(, y) = €xp u(x, y)-Dyo(x, y)

(21) + I:(z_:)z.l_ (gg)z] exp (%, y)

almost everywhere in G.

ProoF. The corollary follows at once from (4), (16) and the theo-
rem of Lebesgue on the derivation of integrals.

THEOREM 2.

4
(22) li_lg = [L2(f; =, 93 0) — A(f% %, 93 0)] = (%, ¥)Deo(x, ¥)

almost everywhere in G.

Proor. The theorem, which is an analogue of Saks’ result (5), fol-
lows at once from (15) and (21).
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The relations (5), (6), (15) and (22) are examples of “generalized
Laplacians” [7, 9]. For example, if f(x, ) is sufficiently smooth in G,
then (22) yields

4
lim — [L2(f; %, 35 p) — A(f% %, y; )] = f3(x, 3)A log f(=, y),

0 P

which bears an important relation to the defining inequality (2) for
smooth functions of class PL.
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