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THEOREM 3. If the conditions of Theorem 2 part A are satisfied and 
if in addition the quantities fa, \p% and ô satisfy the inequality 

2x > ô(csc ^i — esc ^2) 

then the circle of convergence is not a cut for the f unction. 
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The Hubert transform oîf(t), — oo < / < oo, is l / x times the Cauchy 
principal value 

f(x) ~ P Ç -^- dt = lim f 
J _«, t — X ô-*0+ J s 

dt. 
6 t 

If /(OG^P) £>!> then f(x)^Lpy and a considerable literature is de­
voted to studying the relationship of such pairs of "conjugate" func­
tions to the theory of functions analytic in a half-plane. More to the 
point of the present note is a series of papers studying the Hubert 
transform along strictly real variable lines ([2, 3 ] ; further bibliog­
raphy in [2]).1 

Much less is known about f(x) when f(t) £ L i . Plessner found by 
applying complex variable methods to the theory of Fourier series 
that if / ( / ) £ J L I then f(x) exists almost everywhere (see [l, p. 145]). 
Besicovitch [4] proved Plessner's result using only the theory of sets, 
starting from his own previous real variable investigation of the L2 

transform case. S. Pollard [5] showed how Besicovitch's proof could 
be extended to prove the existence a.e. of the principal value of the 
Stieltjes integral 

r°° dF(t) 
f{x)-P\ — l i , 

J _oo t — X 
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where F{t) is continuous and of bounded variation over (—00, 00). 
In general f(x) is not summable, but Kolmogoroff [ó] found, using 
a contradiction argument, tha t there exists a constant A such that 
the set where f(x)>M>0 has measure at most i4||/||/ilf, where 
||ƒ|| ==/-oo \f(t)\dL Titchmarsh [7] was able to refine Besicovitch's ex­
istence proof so that it implied this bound, with a numerical value 
for A. 

The present note contains a new direct real-variable proof of the 
Plessner existence theorem and the Kolmogoroff bound. In fact, this 
bound in a sense is the central tool for the existence proof, a device 
which allows for the first time the Lx results to be obtained without 
recourse to the L2 transform theory. 

LEMMA 1. If d>0 and 

«(*) = Z ' 
i - i % — ai 

then the set of points where g(x) > M (M>0) consists of n intervals whose 
total length is precisely Q^Ci)/M. The set where g(x) <—M has the same 
length. 

Since g(a< — ) = — °°, g(#*+) ^ °° a n d g'(x) < 0 for all x} there are 
precisely n points rm such tha t g(mi)=M, and a t <m t <a t - + i , 
i = l, • • • , n — 1, an<mn. The set where g(x)>M thus consists of 
the intervals (au mï) and has the total length 

n n n 

(1) ]C (mi — ai) ^ X mi — S ai-
t « l *-X «-X 

But the numbers mi are the roots of the equation 

t - i x — ai 

whose cross-multiplied form is 

n d\ n (* - ai) ^ ^ n (* - ̂ )y 
t—X L ifti J i - l 

or 

Mxn - [Mj^ ai + J^ dix»-1 + - • • « 0, 

so that 
n n 1 n 

(2) ]£ ^* s X) *< + TT ]C C*-
<-x »-x M i - i 
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The first part of the lemma follows from (1) and (2); the proof for 
g(x) <—Mis almost identical. 

LEMMA 2. Let F(t) be increasing over ( — oo, oo ) with finite total varia­
tion 7 (F) . If (xj—ôj, #?•+ 5,), j = l, • • • , n, are disjoint intervals such 
that 

ƒ */-*/ r °° dF(t) 
+ I — > M > 0, 

—oo J xj+tj t — %i 
then^2ôj^4:V(F)/M. The same inequality is implied if the integral is 
less than — M,j~l, • • • , n. 

Let ti, i = l, • • • , N be a finite subdivision including the points 
Xj—ôj, Xj, Xj+ôj for j = l, • • • , n, and such that the approximating 
Riemann sums for (3), with the integrand evaluated at the left-hand 
end points, remain greater than M. Thus, if Ai = F(ti+i) — F(ti)t 

(4) E -^—>M 
i&j ti- y 

for y — Xj, where the set /,- of omitted indices is defined by 

U (tit ti+i) = (XJ - Ôj, Xj + Ôj). 
iEij 

Since the left member of (4) is an increasing function of y for 
Xj—ôj<y<Xj+dj, the inequality (4) holds for Xj^y<Xj+5j. For 
every such y one of the following inequalities is therefore satisfied: 

t î A< M _ Ai M 

i~x U— y 2 iEij U- y 2 

Applying Lemma l and summing over 7, we have 

^ J£J 2Ai * - ^ 2Ai 4 *™ 4 

E^E—+£ E — S-EA^-7(TO. 
»«I M ,-1 iEij M M »„i M 

To prove the second part of the lemma we only need to observe that 
the integral in (3) is less than — M if and only if after replacing F(t) 
by —F( — t) and Xj by — Xj it is greater than M. 

COROLLARY. If F(t) is of bounded variation in Lemma 2 then 
Y,5j^SV(F)/M. 

This follows at once upon applying the lemma to the increasing and 
decreasing parts, Fx and F2, of F, using 7(70 = V(F1) + V(F2). 

Preliminary to the theorem we remark that if ƒ(/) has the value 1 in 
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(a, b) and 0 elsewhere, then its Hubert transform exists except at the 
two points a and b, and has the value log | (x — b)/(x — a)\. In par­
ticular the Hubert transform of any step function exists except at 
a finite number of points. 

THEOREM. Let F(t) be of bounded variation over (— <x>, » ) . Then its 
Hilbert-Stieltjes transform 

dF(t) 
f(x) = ? — i 

X 

exists almost everywhere, and, for every positive M, the set where f(x) > M 
has measure at most 16V(F)/M, as does the set where ]{x) <M. 

We first prove the existence of ƒ(#). I t is sufficient to show that, 
given e, for every x except in a set of measure less than e 

(5) II +1 ^ | S . 
x+t' t 

ƒ» x—i' /» x+$ 

for all sufficiently small 5 and ô'. Now the absolutely continuous part 
of F can be approximated to within e' by the integral JFI of a step 
function h, Fi(t) = fL*h(t)dt, and the singular part of F can be approxi­
mated to within e' by a singular function F2 whose variation is con­
fined to a closed set of measure 0, that is, which is constant on the 
intervals of an open set M whose complement has measure zero. Thus, 
taking €' = €2/192, we have ^ = ^ 1 + ^2+^3 , where V(F3)<e2/96. Let 
E€ be the set of x for which the inequality 

I J x-S J x+h' t — X 

fails to hold for arbitrarily small S and h' (ô' <ô) . Then for every x 
i n £ e 

I /» x—A /• 

J + i *> —00 • / s s+A t — X 

€ 
> — 

6 

for arbitrarily small A. By Vitali's theorem a disjoint sequence of 
intervals (#*—A»-, #,-+At-) satisfying (7) can be chosen so as to cover 
E( except for a set of measure 0. Then by Lemma 2, corollary, 
w(E.) S 2 j > f :g 2 • 8 V(FZ) • 6/e < e. 

Since Fi(t) is the integral of a step function, its Hilbert-Stieltjes 
transform (the Hilbert transform of h{t)) exists except at a finite 
number of points, which we add to E€. Since F%{t) is constant on the 
intervals of M% its Hilbert-Stieltjes transform obviously exists except 
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on the complement of Af, which we add to £«. Thus if x is not in the 
enlarged £« there is a A such that, for all 8 and ô' less than A, (6) holds 
for Flt 7*2 and F%, and hence (5) holds, as was to be proved. 

The second part of the theorem follows immediately from Lemma 2, 
corollary, where the intervals (#,— ô/, Xj+ôj) are chosen by Vitali's 
theorem to cover almost entirely the set where f(x) > M ( < — M) 
so that the measure of this set is not greater than 2 ^ 8 / g 16 V(F)/M% 

COROLLARY. If0<p<l and p+q>l, then \J(x)\»/(l + \x\)*ELi. 

This follows immediately from the fact that the decreasing function 
on (0, oo) which is equimeasurable with \f(x)\ is dominated by K/x. 

In case F(t) is singular and increasing, it can be shown with little 
difficulty that the constant 16 can be replaced by 1, and this is best 
possible since l/x itself is the Hilbert-Stieltjes transform of the func­
tion F(t) which is 1 when t<0 and 0 when t*zO. This is probably the 
correct value of the constant in the general case. 
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