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Introduction. The theorems of the classical ideal theory in fields 
of algebraic numbers hold in rings of analytic functions on compact 
Riemann surfaces. The surfaces admitted in our discussion are closely 
related to algebraic surfaces; we deal either with compact surfaces 
from which a finite number of points are omitted or, more generally, 
with surfaces determined by an algebroid function. The local aspects 
of the resulting ideal theory are the same as those found in the theory 
of algebraic functions. However, the ideal theory in the large is 
quite different. We now cannot count on the simplifications which 
are implied by the ascending chain condition for ideals. The recent 
theories of functions on topological spaces provide the necessary tools 
for a simple theory in the large. We shall show that the topologiza-
tion of rings of entire functions by means of the topology of the 
underlying surface furnishes a fruitful method. Thus, the closed 
maximal ideals will correspond to the points of the given surfaces. 
Finally, to quote another result, all closed ideals are principal. 

1. Some basic definitions. Suppose that 2 is the complex number 
sphere whose points at finite distance p—pa are in 1-1 correspond­
ence with the elements a of the complex number field C. We assume 
that each point p of 2, the point at infinity included, has conformai 
neighborhoods. In general let tp be a local uniformizing variable at 
p, that is, a function which affords the mapping of a conformai 
neighborhood of p in the unit circle \tp\ < 1 . We associate with each 
point p a model 2 P of S and consider functions f(z) on 2 with 
values in {2P}, in other words, / ( £ ) £ 2 P for £ £ 2 . As usual we say 
that a function f(z) is meromorphic on 2 if there exists for each 
point £ £ 2 a convergent expansion 

00 

(i) ƒ(*) - E «».«£. c,,i e c, 

where the first non vanishing coefficient cp,m has a finite integral 
subscript. Then all meromorphic functions on 2 form a field ^(2) 
which contains C [2, 17].1 

Next we associate to each function ƒ(z) the integer m = VPf(z) and 
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define Vp0 = oo. The algebra of power series implies that the "valua­
tion" Vp has the following properties 

( ) Vp(tp) - 1, VP(f +g)^ min (Vpf, VPg), 

Vp{fg) = VP(f) + Vp(g), VPc = 0 

for each nonzero complex number [6, 12, 16]. We note that Vp 

measures the order of the zero or pole of ƒ a t the point p. Further­
more the value Vpf does not depend on the special choice of the 
variable tp, that is, if tp

f =X)£ieMp» ^ i^O , d*£C, is analytic in a suffi­
ciently small neighborhood of ^ = 0, and f(z) is expanded with re­
spect to tp as ^ÏLm, Cp,itp$ then w = m ' . We mention in this connec­
tion that the function theoretic value ƒ (p) oîf(z) a t p is: 

(i) the coefficient cPto of (1) if Vpf(z) = 0, 
(ii) the element 0 if Vpf(z)>0, and 
(in) the element oo of 2 P if Vpf(z)<0, or if f(p)~i = 0. 

Then, for the functions flt /2, with fi(p), f*{p) 9e <*>, 

(3) (/i + /2)(i>) = fi(p) + /i(#) f ( A / M ) = /i(#)/i(#). 

Thus the functions ƒ of FÇZ) which are holomorphic at p form a ring 
RPf the so-called valuation ring of p in F(2) . This ring contains a 
single prime ideal M* which consists of all functions which vanish 
at p. In particular, the homomorphism RP—>RP/M$ =4>P(Rp) is the 
arithmetic description of the function theoretic value, f{p) =<i>p(f(z)). 

We recall next the following consequences of the compactness of 
2 : 

(4) If f(p)7*0, oo for all pQ^ then ƒ is a nonzero complex 
number, 

(5) If /€£C, then ƒ(p) is 0 or oo for only a finite set of points of 2 , 
that is, a meromorphic function has a finite number of zeros and poles. 

After these preparations it is a simple matter to construct the 
field FÇE). We first note that z — a, a £ C, is a meromorphic function 
with Vp(z — a) = l with p=pa, Vp(z — a)*=—l with £=£«>, Vp(z — a) 
= 0 for all other points p. Suppose that f(z)ÇzFÇZ) has its poles and 
zeros a t the points pav • • • , par where repetitions of the points and 
the point p«> are permitted. Then the functionIJ^xO* — aù —ƒ*(*) n a s 

the same poles and zeros as ƒ (z). Using the second of rules (2) and (4) 
we find that f(z)/f*(z) is a nonzero constant c of C. Thus 

(6) ƒ(*) - */*(«), 

or JP(S) is the field of all rational functions of the complex variable z. 

2. The field of meromorphic functions. We omit now from 2 the 
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point p«> and obtain thus the open complex number plane 2 ' whose 
points are in 1-1 correspondence with the numbers of C. The space 
2 ' is locally compact and the sum of the compact regions \z\ ^nt 

n—> oo. We define a meromorphic function ƒ (z) on 2 ' by omitting in the 
definition of FÇL) the condition of rationality a t p«>. Then the field 
of meromorphic functions FÇZ,') contains -F(2) as proper subset. 
Statement (5) is now replaced by: 

(7) A meromorphic function f(z) has only a finite number of 
zeros and poles in a small neighborhood of each point £ £ 2 ' . 

The field FÇ2') contains as a subring 0 (2 ' ) the integral domain 
of all entire f unctions ƒ (z) with Vpf(z)*>Q for all £ £ 2 ' . Suppose that 
f(z) is not a unit, that is, f(z) has zeros ay. Then the set of zeros {ay} 
is countable and (7) implies |#y| —>°° as j—><»; moreover, only a 
finite number of a/s have the same absolute value. The construction 
leading to (6) must now be replaced by Weietstrass1 theorem [3]. 
We pick integers ray such that sum ]C£i2m,/aJl*+I> öy^O, *s absolutely 
convergent for all z. Then we define qj(z) ~^™Li{l/k)k(z/a,j)h and 
set f*(z) =11/(1— z/aj)eq^zK The product ƒ*(z) is absolutely con­
vergent for all z and uniformly convergent in any finite region of 2 ' . 
Therefore ƒ* (* )£F(2 ' ) . Suppose VpJ(z)=tn. Then f(z)/(z™f*(z)) 
has no zeros and poles on 2 ' . Hence it is a unit function eQ{A of 0 ( 2 ' ) 
and 

(8) ƒ(*) = e^zmJJ (1 - z/oj)eVM. 
J 

Conversely there always exists an entire function (8) with prescribed 
zeros. Moreover, an arbitrary function of F(3J') is always a quotient 
of entire functions, as follows by constructing entire functions ac­
cording to (8) separately for its zeros and poles. Consequently J F ( 2 ' ) 

is the quotient field of 0 ( 2 ' ) . 

3. The ring of entire functions. We note from the theory of 
polynomials that the polynomial ring C[z] is equal to the intersec­
tion of the valuation rings Rp for all £ £ 2 ' . The definition of a func­
tion ƒ(z) £ F ( 2 ' ) implies that each point £ £ 2 ' determines again a 
valuation Vp of F(2') with a corresponding valuation ring Rp' in 
-F(2'), for only local properties of functions are used. Moreover, the 
definition of an entire function shows that 

(9) 0(20 = n * ; D c[*]. 
v 

Furthermore, each ring Rp has a unique prime ideal Mp consisting 
of all functions vanishing a t p such that, for p^pa, Mp P \0 (2 ' ) 
= -Mp = 0 ( 2 ' ) (z—a). Thus, each point £ £ 2 ' determines uniquely the 
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prime ideal Mp(ZOC£f) which consists of all entire functions vanishing 
at p. 

We next define an ideal A of 0(2') to be an additive subgroup of 
0(2') which admits the elements of 0(2') for multipliers. It has 
been noticed before that the (trivial) ideal theory of C[z] has no direct 
analogue in 0(2') [7]. The ideal theory of C[z] and its finite algebraic 
extensions has two characteristic properties. First there are no 
properly ascending chains of ideals and secondly there are no other 
prime ideals but the ones corresponding to points of the associated 
algebraic curve or Riemann surface. The ring 0(2') presents an 
entirely different arithmetic structure. Consider the entire function 
sin (TZ) with the zeros ±n and se t / i = sin (TO), /2 = sin (wz)/z, fz 
= sin (TZ)/Z(Z2-12), • • • , fn+2 sin («)/*(**-12) • • • (z2-n2). Then 

fn+2 has the zeros ±(n+l), • • • and fi=fn+2z(z2— l2) • • -(z2 — n2). 
Then 0(2 ') / iC0(2') /2C • • • is a properly ascending infinite chain 
of divisors. Moreover, admitting only finite sums, the join U*0(2')/< 
— Cfii/*» * ' • ) = -̂  is not the unit ideal 0(2') , f or otherwise l==]£Xi£« ƒ* 
with entire functions go Such an equation cannot hold since the sum 
has infinitely many zeros. 

The following remark indicates that a change of the definition of 
an ideal may be useful. Recalling the expansion 7r/sin (irz) — \/z 
+ 2 Z » l i [ ( - l ) w * ] / ( s ^ 
+ • • • ] . Thus 1 is an infinite convergent sum of elements in A. 

There are three obvious devices which may be investigated in 
order to develop an ideal theory in 0(2') such that the resulting 
theory resembles the ideal theory of fields of algebraic functions or 
algebraic numbers. The first method provides a recasting of the 
definition of an ideal, the second utilizes the technique of v-ideals and 
quasi equality, and the third requires a restriction to ideals with a 
finite basis. The last approach was used by Helmer [7]. We shall use 
in the sequel the first and second methods. 

We now introduce a topology in 0(2') in order to carry out the 
first method. 

DEFINITION 1. Suppose that {fn} is an infinite sequence of entire 
functions. We define fw->f as n—> oo to mean uniform convergence in 
any bounded region of 2 ' . 

DEFINITION 2. An ideal A of FÇ2') with respect to 0(2 ') is called 
closed, if: 

(i) A is closed under addition and under multiplication by elements 
of 0(2 ') , that is, A is an ideal in the algebraic sense*, 

(ii) There exists a nonzero integral function f such that f A g 0(2') ; 
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(iii) A is closed in the topology of Definition 1. 

We note that (iii) implies that A contains all convergent infinite 
sums ]C*"i#* f ° r which a* £ -4 . 

Let 

(10) VA = jmin VPa = VpAt all p G S ' l . 
UEA ) 

This vector VA has a t most an enumerable infinitude of com­
ponents VpA distinct from 0 since an element aÇzA has a t most a 
countable set of zeros in 2 ' . 

LEMMA I. If A is closed and VA = {o}, then A = 0 ( 2 0 . 

PROOF. I t suffices to show that A contains an entire function 
without zeros. Let g(£A and suppose aif 02, • • • , an, • • • are the 
zeros of g. Since VA = {o} there exists for each an a function fnGA 
with Vnfn = 0 or fn(an)7^0^ where Vn is the valuation for an. Applying 
(8) we can exhibit a function / G 0 ( 2 ' ) which has simple zeros a t 
the points an. Suppose tha t | (ffn)/(z—an)\ SMnov\ \z\ ^w.Then the 
sum y^2n^(ffn)/[(z—an)2

nMr] —h exists and represents an element of 
0 ( 2 ' ) . By construction Z?(an)j^0. Consequently g and h are entire 
functions without common zeros. Hence there exist integral func­
tions k and / such that gk+hl — 1 (see [7, pp. 351-352]). Therefore 
lGAorA~0(2'). 

Using a repeated diagonal process we can prove the following 
lemma. 

LEMMA 2. Let A> B be two closed ideals and define the product 
AOB as the totality of all convergent sums XXi#n&n, &nÇzA, bnÇ.B. 
Then A OB is closed. 

LEMMA 3. All closed ideals A are principal. 

PROOF. Weierstrass' theorem (8) together with (10) implies the 
existence of an element # G 0 ( 2 ' ) with Vpa*= VpA for all £ G 2 ' . Then 
the set of all quotients b/a, &G«4, is an ideal B in 0 ( 2 ' ) . The ideal B 
is closed for bja-*g, i n G 5 , implies g = h/a with &G0(2 ' ) ; but bn—>ag 
and therefore agÇiA since A is closed. By construction VB— {o} 
and therefore, by Lemma 1, B « 0 ( 2 ' ) or A = a 0 ( 2 ' ) . 

In order to describe the ideal theory of the closed ideals of FÇ2') 
with respect to 0 ( 2 ' ) we introduce the following vector group V in 
which addition is defined by addition of the components [10]. We 
consider vectors of integers {mp, £ G 2 ' } where at most a denumer-
able infinitude of components mP do not vanish and where \an\ —>*> 
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as n—»oo. The mapping A—>VA ÇzV maps the group of closed ideals 
{-4} (with the multiplication of Lemma 2) into V in such fashion 
that V(AOB)=V(A)+V(B) and TJ(0(2')) - {<>}• Since all closed 
ideals are principal we have trivially VA"1— —VA where A"1 is the 
closed ideal of all bEFÇZ') with L4C0(2 ') . Conversely, Weier-
strass' theorem (8) implies that each vector {mpt £ £ 2 ' } of V is the 
vector VA of a closed ideal A. Observe that A = 0(2') a for a £ ^(2') 
with Fj,a = mp for all £ £ 2 ' . The ideal -4 is unique since VA\ — VA for 
any other ideal Ai with TL4i= \mp, £ £ 2 ' } and since A is the totality 
of all functions c with Vpc*zmp for all £ £ 2 ' . We have proved: 

THEOREM 1. The closed ideals A of F(2') with respect to 0 (2 ' ) / 0m 
a multiplicative group which is isomorphic to the vector group V. 

We mention in passing that we may consider infinite products of 
ideals, provided obvious assumptions are made on the distribution 
of the zeros and poles. 

The second method which utilizes the theory of quasi equality is 
closely related to the first, as the following observations show. 

DEFINITION 3. Two ideals, Ah A2, of F(2') with respect to 0(20 
are called quasi equal, Ai^A^ ifVA\—VA<i [l0]. 

We now consider the classes of quasi equal ideals [-4 ] and define 
[i4][S]=[i4J5]. This definition will be useful if we can show that 
quasi equality is an equivalence relation. For the proof we note: 

(11) V(A) = {0} if and only if A-1**0(2'). 

We have VA*1** {o} and thus A~l = 0ÇLf) since A"1 is closed. For 
the converse we observe that VA = — VA*1— {o}. 

(12) (AB)~l = A-1 for any ideal B with VB= {o}. 

Note that ABQA implies (AB^^A"1. For the converse let 
cE(AB)-\ then 0(2')lDc(AB) = (cA)B. Consequently cAQB~K 
Therefore, by (11), cAÇOÇZ') or cGA'K Hence (AB^QA^K 

(13) A~B if and only if A"1=B~1
t and there exist ideals G, C2 

with VCi = VC2 = {0} such that A & = B C2. 
Consider AA~^B=A{A~lB) = (AA~l)B and put A~lB = Cu 

AA-i-C*. Then by (12), A^^iACO^^iBC^^B"1, for 
VCi — VC2 = {0} The converse is obvious. 

We can therefore assert that the group of classes of quasi equal 
ideals is isomorphic to the vector group V where the isomorphism 
is established by the mapping [A]—>VA. This statement can be 
interpreted further. 
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LEMMA 4. Let "Â be the closure of the ideal A, in the sense of the 
Definition 1, then VA—VA. 

For the proof note that A^>A implies VpH^ Vp A for all £ E 2 ' . 
For the converse we may assume without loss of generality that 
AÇ10ÇZ'). Let a = limWH.oo0w, a«(E-4, be an arbitrary element of X 
Suppose that VpA^mX), & £ C w i t h p=pb. We consider the se­
quence {br = an{z — b)m"1} with the limit ƒ = a(z — b)m~~1. We now pick 
a positive e so small that \bn— f\ <e/2 in a sufficiently small neigh­
borhood of pb in 2 ' . Since ƒ is analytic we have | / - / ( £ ) | < € / 2 a n d 
consequently \bn~f(b)\ <e . If ƒ(&) were distinct from zero, then e 
can be chosen such that e< | \bn\ — |/(ô) | | < | bn—f(b) | . Hence, by 
contradiction, ƒ(6) = 0 and thus Vpa}£ VpA. Consequently VpA*z VPA 
and therefore VA—VA. Consequently: 

(14) All ideals in [A ] have the same closure Z , and A is the 
largest ideal in [ i l ] . 

Thus Theorem 1 states that the group theoretical structure of 
the set of all class of quasi equal ideals is the same as the structure of 
the group of all closed ideals. 

4. The prime ideals of 0 ( 2 ' ) . We noticed in §2 that each point 
p of 2 ' gives rise to a valuation of -F(S'); moreover, p determines 
uniquely a maximal prime ideal Mp of 0 ( 2 ' ) . The results of §3 imply 
that the prime ideal Mp is closed since it consists of all entire func­
tions which vanish at p. We now show that 0 ( 2 ' ) contains infinitely 
many nonclosed prime ideals Af. The example of §3, A = (sin ( « ) , 
sin {TTZ)/Z, • • • ) C 0 ( 2 ' ) proves the existence of a nonclosed ideal 
with V(A) = {0}. Applying Zorn's lemma we can prove the existence 
of a prime ideal MDA, M^OÇL') with VM = {o}. There are infi­
nitely many such prime ideals. Pick two sequences of complex num­
bers an, bn with \an\, |b n \ —*oo which are distinct. By (8) there exist 
functions / n , gn with zeros at an, an+u • • • and bn, bn+i, • • - , re­
spectively. Let J5« ( / i , / 2 , • • • ) and C=(gi , g2, • • • ), then VB=VC 
= {0}. We assert tha t B and C determine distinct maximal prime 
ideal divisors. Suppose BCMi, CC.M2 and Afi = itf2. Then fh 

gi£-Mi = ikf2. Hence there exist entire functions a, b such that 
fxa+gib = 1 GMi = M2 = 0 (2 ' ) because/i, gi have distinct zeros. There­
fore MIT^M*. 

LEMMA 5. All prime ideals of 0 ( 2 ' ) are maximal. 

Proof. If a prime idea] MQ0ÇZ') were not maximal, there would 
exist a function / G 0 ( 2 ' ) for which (M, / ) C 0 ( 2 ' ) . Let gGAf and 
suppose that {an} is the set of common zeros of ƒ and g. By (8) 
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there exists a function A £ 0 ( 2 ' ) with precisely the zeros {an}. We 
write g — hm. Hence either hÇzM or w£Af. But m does not lie in M 
for m and ƒ have no common zeros and thus generate 0(2') == (m, ƒ), 
whence (M,f) =0(2 ' ) , contrary to hypothesis. Therefore hÇzM and 
ƒ G M since ƒ is a multiple of h. Thus M is maximal. 

This lemma implies that each closed prime ideal M of 0(2') be­
longs to a point, that is, that there exists a unique p with M—Mp. 
Note that Lemma 1 implies VPM9e 0 for some p. Hence MÇ1MP and 
thus M~MP by maximality. We note that 0 ( 2 ' ) / A f ^ C . 

The nonclosed prime ideals M can be characterized algebraically 
as follows. 

LEMMA 6. A maximal ideal M of 0(2') is nonclosed if and only if 
0(2')/M is a proper extension of the complex number field C. 

PROOF. For a prime ideal M certainly Mr\C[z]?*C[z], since M 
would otherwise contain a nonzero constant and be equal to 0(2') . 
Consequently either Mr\C[z]?*0, C-0$MnC[z], or Mr\C[z]=*0. 
In the first case -Mncjjs] = (z — a) for some a(£C because M is prime. 
Consequently 0(2')(s—0) = MPaQM and M=MPa is closed. Hence 
Mr\C[z]=*0 for a nonclosed prime ideal. But then 0(2')/M con­
tains C[z]/0££C[z] and therefore 0(2')/MDC. Conversely 0(2')/M 
DC does not hold for closed prime ideals, hence M is not closed. 

We consider next valuations V of F(2') whose valuation rings 
contain 0(2 ') . Assume that V does not arise from a point p E 2 ' . 
Then the prime ideal P of the valuation ring of V in F(2') neces­
sarily meets 0(2') in a nonclosed prime ideal M—PC\0(2'). We note 
that then VM~ {o}, for otherwise there would exist a point p with 
VpM^O. Then MQMP or V= Vp contrary to assumption. We assert: 

LEMMA 7. There exists no valuation V of rank one such that a non-
closed prime ideal M of 0(2') is equal to PC\0(2') where P is the 
prime ideal of V. 

PROOF. We have <U[PnO(2')] = {o}. Le t /EPH0(2 ' ) , then ƒ 
must have infinitely many zeros; for if ƒ were a unit then PC\0(2') 
= 0(2 ' ) , and if/had a finite number of zeros then F would be some VP. 
Let ai, as, • • • , be the zeros of ƒ, where we admit repetitions. We 
next construct by (8) a function h which has zeros at the an with the 
multiplicity w. Nowletsn=/- \f/(z-ai)] • • • | / /(s~0i) • • • (z~an)], 
then snG0(2') and h/sn=*gn&0(2'). Since F(s-0 n)=O, for other­
wise V=* Vny Vn the valuation for ant we find V(h) = F(sw) + f(gn) 
= wF(/)+F(i:n). This means that V(h) is larger than any positive 
real number. Consequently V does not exist. 
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Combining the preceding observations, we have [5]: 

THEOREM 2. The points of 2 ' are in 1-1 correspondence with the 
closed prime ideals of the ring 0(2') of analytic f unctions on 2 ' . 

The statement of this theorem is closely related to some results 
dealing with continuous real or complex valued functions on topo­
logical spaces [5, 15]. Suppose that T is a topological space which can 
be represented as the sum UnCn of compact sets, dCCn+i, such that 
each compact subset of T is contained in a suitable Cn. We define 
in the ring 0*(T) of real (or complex) valued continuous functions on 
T a compact open topology by agreeing that /n—>ƒ in 0*(T) if the 
sequence fn approaches ƒ uniformly on each compact subset of T. 
Then 0*(T) is complete. We have the following lemma. 

LEMMA 8. Each closed ideal A of 0*(T) without zeros on T is equal 
toO*(T). 

PROOF. We require of A that there exist for each point ££7" a 
function ƒ£-4 for which f(p)9*Q. Take any C»; there exists a point 
pijÇzCi with a function fijEiA such that fijipij^O. By continuity 
there exists a neighborhood Ua of pij on which ƒ -̂ does not vanish. 
Since C% is compact it can be covered by a finite number ni of 
such neighborhoods Uij with associated functions fij(£A. Then/y>0 
(or fija>0) on Uij. Let fi^lL"LJ%(T,fiJii), then ƒ{ does not vanish 
on d. Let M» ^ m a x ^ c j fi{p) | . Consider T,Zifi/(Mi2 ') =ƒ. The sum ƒ 
is convergent in each d and hence on each compact subset of T. Con­
sequently ƒ GO* (T) by the completeness of 0*(T). Since A is closed 
and fiÇîA, we have /G-4. By construction ƒ does not vanish on T 
and therefore/"1G0*(r), whence A =0* ( r ) . 

Let us assume further that T is a completely regular space. We 
state the following theorem. 

THEOREM 3. The closed maximal ideals M of 0*(T) are in 1-1 
correspondence with the points of T. 

PROOF. If p is a point of T then all fG0*(T) with f(p) =0 form a 
closed maximal ideal Mp. Conversely, the functions f oî a maximal 
closed ideal M must have a common zero, p, for otherwise M = 0*(T) 
by Lemma 8. Let Av be the set of all functions vanishing at p. Then 
MQAP and consequently M=AP. The functions of Ap cannot vanish 
at another point q since the complete regularity implies the existence 
offEAp with ƒ(ƒ>)= 0, f(q)^0. 

The maximal ideals M* of the ring 0*(2') of all continuous 
complex valued functions on 2 ' can be related to the maximal ideals 
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M of 0 ( 2 ' ) . For each maximal ideal M let the set Af*C0*(2') con­
sist of all functions ƒ G0*(2 ' ) for which there exists an element mÇzM 
such that ƒ vanishes at all zeros of m. This set M* is an ideal. By the 
preceding definition certainly fgÇzM* for any g GO*(2') . If / i is 
another function of M* with a corresponding function mi G-Mi, then 
/ i + / 2 vanishes a t all zeros of a function hin M whose zeros are those 
common to m and mi. (This A may be constructed by the method of 
Lemma 5.) Furthermore M* is maximal. Suppose (M*, g)C0*(2'). 
We pick any m ^ O in M. Then m and g must have zeros in common. 
For otherwise k=mfn+gg is a function of (If*, g) without zeros, so 
that ^~1GO*(S /) and 1 =*krlkÇz(M*> g), a contradiction. Let n be an 
entire function whose zeros are the common zeros of m and g. Then 
g vanishes at all zeros of n and nÇzM. Hence g(E.M*. 

Conversely each M* determines a prime ideal M*C\OÇL') of 
0(2') ; this ideal is maximal by Lemma 5. Using the original cor­
respondence M—+M* we have ikf*P\0(2') =M. 

5. The ideal theory in finite extensions of 0(2'). Let K be a 
finite algebraic extension of degree n over FÇL'). Then each element k 
of if is the root of an equation 

(15) »»+/1*"-1+ .- • +/n = 0 

whose coefficients are meromorphic functions. Since the valuations 
Vp of F(2') are determined by local properties of the functions in 
F(2'), we can employ a procedure of the theory of algebraic functions 
to determine all prolongations W(1) • • • W(o\ g=g(^ ) , of Vp to K. 
We recall tha t the discrete rank one valuations Wu) can be de­
termined as the unique valuations of the direct summands Ku) of the 
direct product KXF(2')V where F(2')v is the completion of F(2') 
with respect to V=VP. Then l^g(p)^n. More precisely Wu)(k), 
kÇzK, can be considered as Wa)(k8) with a suitable conjugate ks of k 
and a fixed prolongation PF(1) of Vp [12]. 

Using the triangle inequality we find : 
(16) A function k£zK has at most a denumerable set of zeros and 

poles, Wi, in other words valuations Wi with Wi(k)=Oy oo. These 
valuations TF̂  applied to JF(S ; ) contract to valuations Vi belonging 
to points ai) if {Wi} is an infinite set, then |#*|—»<x>.2 A function 
kÇzK never has an essential singularity at any W of K. 

We can now construct the Riemann surface T of K and prove, 
as in the theory of algebraic functions, that the field F(T) of mero­
morphic functions on T is equal to K. Let 0(T) be the ring of all 

2 Or, { W%} has no infinite subsequence which is compact in T. 
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entire functions on T and let Rw be the valuation ring of W in 
K = F(T). We shall prove the following generalization of (9), 

(17) 0(T) = fi Rw. 
w 

We first prove [lO] the following lemma. 

LEMMA 9. If W(l\ • • • , W(g) are the prolongations of V=Vpto K 
then W™(k)^0, lSj^g, implies V(f4)^0 for the coefficients of the 
defining equation (15). In particular V(Nk)=0for the norm Nk if all 
WW(k)areO. 

PROOF. We imbed K in its least normal extension L/F(E') with 
the Galois group {S}. Then F(">(jfe)^0 for all prolongations W<v) 

of V to L. Therefore JJs(x — k8) has coefficients in the valuation 
r i n g i ^ . If WM(k)=0, then W^(k)=0 and thus F<">(iVJfe) = 0 or 
V(Nk)=0. 

As a consequence we note : 

(18) WU>[(Nk)trl] à 0 if W™(k) à 0 for l g j g g . 

Now (17) follows readily. Let k G (]wRw> Then by Lemma 9, V9(fi) è 0 
for the coefficients of (15). Consequently ƒ» G OP-R* —0(2') and hence 
OwRwQO(T). The converse inequality is obtained by applying F to 
(15). 

In order to obtain the analogues to Theorems 1 and 2 we use the 
existence of special local uniformizing variables in 0(T) for the 
prolongations Wa), • • • , W(o) of a valuation Vp. 

LEMMA 10. There exist elements h, - - • , t0 in O(T) such that 

PROOF. A result of Ostrowski [12 ] asserts the existence of elements 
*i, • • • . kg£K with W«>ki*=l, W<»ki = 0,j?*i, lgijgg. Suppose 
tha t W® is a pole of kt with the conjugates W%\ • • • , W$. Pick 
mp}£ —minispgaW^ki. Construct the integers mp for all poles of ki 
and take, by (8), a function 6 » £ 0 ( 2 ' ) which has zeros of orders mv a t 
the projections Vp of the sets of conjugates W%. Then biki — U has 
the required properties. 

Consequently: 
(19) For any distinct rank one valuations Wi, W2 of K there exist 

elements au a2GO(T) with Widi>0, W2ai = 0 and Wxa2 = 0, W2a2>0. 
As in §3, equation (10), we define for an ideal A of K with respect 

to 0(T) 

(20) WA - 4 min Wa « WOi, all w l . 
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Then WA-^0 for at most a countable infinitude W of valuations, 
such that \di\ -+CO for the projections Vp of the Wi, if there are infi­
nitely many. Let W be the additive group of vectors {mw, all W) 
with integers mw, such that at most a countable infinitude mw4 are 
distinct from zero, where |a»| -*<x> for the corresponding projections 
to 0(2 ' ) . 

A direct computation shows that : 

(21) JD{AB) = W(A) + W(B) for any two ideals A, B. 

Now put all ideals A, A\ • • • vtithWA ^WA1 ^ • • -in a class [A]. 
As in §3 the classes [A ] form a multiplicative semigroup with [0(2")] 
for a unit if we define W[A]~WA. More precisely: 

THEOREM 4. The classes of ideals [A ] form a multiplicative group 
which is isomorphically mapped in the vector group W by [A ]—>W[A ]. 

PROOF. We may assume without loss of generality that the repre­
sentative A of [-4] lies in 0(T). Then the ideal quotient A"1 has 
WA-^-WA^-m for each W. Since AA~lQ0(T) it suffices to 
exhibit an element cCzA"1 with Wc= — m. Let t — h be a local uni-
formizing variable, according to Lemma 10, such that Wt*= Wa)t = 1 
and TF<2)/ = . • • = WW/«0 for the conjugates W*\ • • • , W™ of W. 
Suppose that {Wi} are the valuations with Wit>0 and call F* the 
associated projections on FÇZ'). Let Wij be the conjugates of Wi. 
Now pick an integer w.Jâmax/PF^. By (8) there exists a function 
/ £ 0 ( 2 ' ) which has zeros at the F* with the multiplicities m^ Let 
b = tf~\ then W(J ) -1 , IF<2>(&)= • • • = TF<*>(&)=0, PT<y(6)<0 for 
all i and j , and finally W'(b) = 0 for all other valuations W . Now let 
a be a nonzero element of A, then Wa*zm. Form a6~m, then W(a&~m) 
èO, W^(ab-m) = W^a^0t W^alr") ^Wija-mWijb>Oi W'(ab~m) 
= W'a^O. Hence ab~mÇiO(T) and therefore c = &-mG^~x. Therefore 
[il] M-1] = [0(r)]by(22).^ 

It remains to exhibit for given {mw} an ideal A with WA = {mw}. 
Let Ppp be the prime ideal of the valuation W in 2Ü. We shall exhibit 
in A=^0wPww an element a with Wa — mw and W'a^mw for all 
other W'. By Lemma 10 we can form the product Jlf-iC*'^G0(2T), 
mi = mwv which has the prescribed orders at W~ Wa) and its conju­
gates W(i). Next we determine in 0(2') an element g such thatFg = 0 
for the projection of W and Vg is sufficiently large for the projec­
tions of the other W' with ntw^O. Then a — dgÇz.A and therefore 
WA = {mw}. 

As in (13) any two ideals A i, ^42 of [A] are related by an equation 
AxBi~A2B2 where ft, ft G [O(T)]. Let Z be the join of all ideals in 
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[ i l ] . Then W2~W[A] and A~()wPww if W[A]= {mw}. Suppose 
now that we topologize the ring 0(T) by using the intrinsic topology 
of the Riemann surface. Then: 

(22) Z is a closed ideal 

and more precisely the only closed ideal in [A], Using the generaliza­
tion of Lemma 2 we find that all closed ideals of K with respect to 
0(T) form a multiplicative group which is isomorphic to the vector 
group W. 

We now turn to the discussion of the prime ideals of 0(T) and note 
first that all prime ideals are maximal as a consequence of Lemma 5. 
Suppose now that WA = {O} f or an ideal A of 0(T). We assert: 

(23) V[AnO(2')] = {0}. 

For the proof note that for given F with the prolongations Wa), • • • , 
W(o) there exist elements ai, • • • , ag in A with 

W^oi = 0, W^ai ^ 0, • • • , W^ai £ 0, 

W^Gg £ 0, W™Gg ^ 0, • • • , W^Gg = 0. 

We apply Lemma 10 and consider the sum, which lies in A, 

(24) a = ax(h • • • * , ) + • • • + *o(h • • ' **-i). 

Then by construction and the triangle inequality W ( 1 ) a= • • • 
= t ^ ( ^ = 0. Consequently, by Lemma 9, V(Na)=0 and V'(Na)^0 
for all remaining V'. Thus NaÇîOÇS'). Applying (18) we have 
(Na)a-1E.O(T). Consequently a[(Na)a,-l]=Na&A, whence 
F G 4 n O ( 2 0 ) = 0. Therefore V(Ar\0(2')) = {o} since F was chosen 
arbitrarily. 

We notice next tha t there exist maximal ideals M in 0(T) with 
WM~ {o}. Pick any BC0(2') with VB= {o}. Then BO(r)CO(3T)-
Hence there exists, by Zorn's Lemma, a t least one M"Z>BO{T) with 
the desired properties. These maximal ide'als are not closed for other­
wise ¥ 0 0 ( 2 ' ) would be closed and hence equal to 0 ( 2 ' ) by 
Lemma 1. Because 0 ( r ) / M 3 0 ( 2 / ) / M n O ( 2 / ) , Lemma 6 implies 
that 0(T)/MZ)C characterizes the nonclosed maximal ideals. 

We remark that (23) implies in particular that the intersections 
Pw^O(T) are the only closed maximal ideals of 0(T). On the other 
hand the points of the Riemann surface T of K determine the valua­
tions W of K and vice versa. Consequently we have the generaliza­
tion of Theorem 2 : 
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The points of T are in IA correspondence with the closed maximal 
ideals of the ring 0(T) of all analytic functions on T. 

REMARK. In conclusion we point out that the methods of this 
section apply also to the ideal theory of rings of quasi meromorphic 
functions [9]. Such functions are meromorphic functions on 2 which 
admit essential singularities at a finite number of points p*, pu • • • , 
pk; in other words, quasi meromorphic functions have locally the 
character of rational functions on 2 with the possible exception of the 
points £oo, pu • • ' i pk- To obtain a reduction to the case of the ordi­
nary entire functions suppose that S is an arbitrary (compact) alge­
braic Riemann surface with the valuations { Ws} • Pick any h valua­
tions Ws,u • • • i Ws,h* By the Riemann-Roch theorem there exists a 
function u in the field F(S) of meromorphic functions on S with poles 
at Ws,it • • • , Ws,h- We consider F(S) as an algebraic extension of 
C(u). The Riemann surface of C(u) is the complex w-sphere and the 
field of quasi meromorphic functions on 5— { Ws,u • * • » Ws,h} con­
tains F(S) and is an algebraic extension of degree [F(S): C(u)] over 
the field of meromorphic functions on the w-sphere from which the 
common projection of the Ws,v is removed. To obtain the ideal theory 
of the ring of quasi analytic functions on 2— {p00} pu • • • , pk} we 
apply the preceding arguments to F(2) = C(z).z Finally, the principal 
ideal theorem (Lemma 3) for the closed ideals holds in this case. 
Similarly Theorem 2 can be extended. 

It may be interesting to see which results of the theory of pro­
longations can be extended to relations between the ideals in the 
various rings of continuous functions on completely regular spaces 
and their finitely sheeted covering spaces. It appears that such prob­
lems have not been discussed to any extent. 

6. The principal ideal theorem. We assume for the moment that 
S is a compact Riemann surface. Suppose that ör is the ring of all 
functions in F(S) which are integral over a polynomial ring C[v], 
F(S)Z)C[v]. Then all ideals of F(S) with respect to O, are principal 
if and only if S has genus 0; this follows immediately from Abel's 
theorem and Jacobfs inversion theorem [2, 17]. 

We now show that, in contrast to the preceding compact case, 
the principal ideal theorem holds for the closed ideals on certain 
open Riemann surfaces. The existence of integral functions with pre­
scribed zeros depends on a combination of the proof for (8) with the 
methods leading to Abel's theorem. 

8 Quasi analytic functions on S — {p„, pi, • • • ,ƒ>*} are quasi meromorphic func­
tions without poles. 
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We shall assume in the sequel that K is a field of algebroid func­
tions as defined in §5. Thus, K is the set of all meromorphic functions 
on a finitely many sheeted covering surface T of 2 ' . We agree that 
the elements of FÇL ') are given as functions of the variable z. 

Let 0(T) be the ring of integral functions over 0 ( 2 ' ) as described 
in the preceding section. Weierstrass' formula (8) uses the existence 
of a uniformizing variable tp in 0 ( 2 ' ) for each point £ £ 2 ' such that 
tp(q)9é0 for all other points g £ 2 ' . In the general case we first define 
a differential k\dk for k, ki€E.K as follows [6] : 

(25) kidk is the totality of all local derivatives kidk/dtw 

for all local uniformizing variables tw of W and all valuations W be­
longing to the points of T. 

If we use the completions Kw of K with respect to W it follows 
that W(dz/dtw) = W(dz) = e — 1 where e is the degree of ramification 
of W relative to its projection V on ^ ( 2 ' ) . In other words, dz is a t 
W the local different of Kw/F(2')v. As in the theory of algebraic 
functions we say that a differential ydzt yÇî.K} has a zero of order m a t 
Wii W(ydz) = m ; a pole of order m is present if W(ydz) = —m, m>0. 
Moreover, the zeros and poles Wi of a differential ydz of K have pro­
jections Va. with |a»-|—»oo if there are infinitely many. 

We now construct a differential do>w of K which has a logarithmic 
singularity with the residue + 1 at a given valuation W. Later dcow shall 
be used to construct the analogue of the prime functions z — a, aÇiC. 
Suppose that 01, • • • , an are n linearly independent elements of 
0(T) over J F ( 2 ' ) ; we may take # , = k3'"1 where kÇzO(T) is a primitive 
element of K/FÇ2'). Let af*, l^h^n, be the n conjugates of a3\ 
Then the system of linear equations 

(26) ]C °* ai ~ àih an the Kronecker symbols, 

has n conjugate sets of solutions bf\ • • • , b%\ for the independence 
of the a/s implies det | af* \ 5*0. Let &*x) = bif l^i^n- We may assume 
without loss of generality that z^c^O (mod W) for the given valua­
tion W of K. Since W corresponds to a point of T we agree to denote 
the value of a function fÇzK a t W by f(W).A Consider the differ­
ential dœ%r = Y,tMai(W)]dz/(z-c). Then W(do>0

w) = -l is a con­
sequence of the construction of the biS and the remarks on dz\ we 
apply the homomorphism determined by W* The differential do)% 

4 In other words, the function-theoretic value f(W) is essentially the residue class 
off modulo W. 

* N o t e 2 > ( W > * W - 1 and W(dz) =0, 
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may of course have other singularities. We first remove the potential 
poles a t the conjugates W(h) of W(1) » W. Suppose W<h)(du>w) = — m^ 
mh^ 0. By Lemma 10, the differential dd^M%k=dd% has W^h)(do)f) 
= 0 for h?*l and W(dd%) = - 1 . The possible poles W{ of daf% form 
an at most denumerable set with | a» | —> oo, if the Vai are the projec­
tions of the Wi. We next pick an integral function g £ 0 ( 2 ' ) which does 
not vanish a t W and its conjugates, tha t is, V(g) = 0 for the contrac­
tion of W to F(2'). Moreover, g is to have zeros of sufficiently high 
orders at the Vav This can be done according to Weierstrass' theorem. 
Then W(gdœ0£) = -1 and W'(gdcJ%)^0 for all other valuations. 
Finally, we multiply gdoP$ by a suitable constant and obtain a differ­
ential do)w with the desired properties. 

Now let I(W) be the indefinite integral fdœw. Then the ex­
ponential e^W) is a multiplicative function on T which has locally 
the properties of a meromorphic function on T.6 In particular W(eI(W)) 
= —1 and W'(eI(>W))=:0 for all other valuations W'. However, in 
general, eI(W) will not be a function of K. We show next that eI(W) 

can be normalized so as to lie in K provided a certain hypothesis is 
valid for the vector space of everywhere finite integrals of K. 

Let Hl(K) = {dv, W(dv/dtw)^0 for all W} be the vector space of 
everywhere finite differentials with complex coefficients. Suppose that 
Hi(K) = {5, • • • } is the Betti group of T. Then the integrals fsdv 
= (5, dv) define for fixed dv SL homomorphism of H\(K) into C and 
dually for fixed S a homomorphism of Hl{K) into C since homologous 
closed curves determine the same definite integral. Let </> be a homo­
morphism of Hi(K) into C. Then it is a well known fact that $ cannot 
always be realized as (5, dv) for a suitable dv if integrals on an alge­
braic compact Riemann surface are considered [2]. 

We assume the following hypothesis: 
(H) Given a homorphism $ of H\(K) into C, then ^ = (5, dv), 

S£Hi(K) for a suitable differential dvÇzHl(K). 
Later we shall see that our hypothesis can be proved for certain 

open Riemann surfaces. 
Let {TS}, S(E.HI(K), be the periods of the normalized integral 

fdœw which was constructed at the beginning of this section. Then 
there exists by (H) an everywhere finite differential dv with (5, dv)=irs 
for all S. Hence f(do)w—dv) =TW has no periods on T and 

(27) e™ - tw 

is a uniformizing variable for W with W'(tw) = 0 for all other valua­
tions W'. I t is now easy to show that each closed ideal A of K with 

6 A multiplicative function ƒ on T reproduces itself but for a constant factor 
PS if it is continued analytically along a closed path S on 7\ 
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respect to 0(T) is principal, provided A has only a finite number of 
zeros and poles Wi with the multiplicities m»\ We form the func­
tion a**J\pjj\. Then Wa^WA and therefore A~aO(T). If A has 
infinitely many zeros and poles then A can still be shown to be prin­
cipal, but this time the functions twf have to be modified so that their 
rate of growth is suitably bounded as 2—>oo ; this can be achieved by 
a combination of the methods in [ l l ] and [13]. 

We now formulate the following theorem. 

THEOREM 5. Let T be the open Riemann surface which is obtained 
from a compact Riemann surface by omitting a point. Then all closed 
ideals of meromorphic f unctions on T with respect to the ring of analytic 
functions on T are principal. Each closed ideal is uniquely determined 
by its zeros arid poles and their respective multiplicities. The set of zeros 
and poles of an ideal is at most countable and contains no infinite sub­
sequence which is compact in T. 

REMARK. The statement of Theorem 5 can be extended to open 
Riemann surfaces which arise from algebraic Riemann surfaces by 
omitting more than one point. We note that an analogue to Weier-
strass' theorem (8) holds. 

We now return to hypothesis (H) and indicate briefly how it can 
be proved for surfaces T which arise from a compact algebraic Rie­
mann surface T0 by omitting a point Wy T=T0-{w} [12]. Let K0 

be the field of algebraic functions of To and assume that g is the genus. 
Suppose that Si, • • • , S0, Ti, • • • , T0 is a set of canonical retrosec-
tionsof TV We may assume, after a suitable deformation of the cuts 
tha t W does not lie on any of them. The everywhere finite differ­
entials dui can now be selected such that, for det |r&*| 5^0, 

(28) (Sh dUi) - TT( - l )1 '2 , .(5/, dui) - 0, (Tk, dm) - rki. 

Using the gap theorem of Weierstrass [2 ] , we remark that pre­
cisely g integers cannot occur as multiplicities of poles of functions 
(on Ko) a t W. Since there exist, however, differentials which are 
poles of any order exclusively a t W, we can pick precisely g dif­
ferentials dug+i, • • • , du2g of K0 whose multiplicities a t W are the g 
missing orders for the functions. Using (28) we can subtract from 
dug+i, • • • , du20 suitable linear combinations of the differentials 
dui, • • • , dug and obtain differentials dUg+1, • • • , du'2g such that 

the multiplicities at W are preserved, 

(Sht dug+,) = 0 for 1 g A, j g g, 

(Tk, du'g+i) - Thi. 

(29) 

(i) 

(ü) 
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The g differentials dUç+b are independent over C, for otherwise there 
would exist a nontrivial linear combination fES-idUg+jCj^f, cyEC, 
without periods. Hence ƒ would be a function of K0 with a forbidden 
multiplicity at W. Hence det | r'kj\ 5^0. We can therefore replace du'g+J, 
l^jSg, by suitable linear combinations dv0+i, • • • , dv2o such that 

(5A, dvg+j) = 0 for 1 ^ A, ; ^ g, 

(Tkldvg+j) « « * , * ( - 1)1/2-

Finally we add appropriate linear combinations of dfy+i, • • • , <fô  
to the differentials dui, • • • , dttff and obtain 2g independent dif­
ferentials d»i, • • • , dvgt dVg+i, • • • , d»2a with 

(5A, **) - 8A<T(- I)1 '2 , (Tk, dvi) « 0, 1 g *, *\ * ^ g, 

(5A, * * . / ) - 0, (TV * , + , ) = * * , * ( - l)1 '2 , l ^ h , j y k ^ g . 

These 2g differentials are now considered on T=T0— W. Since we 
do not count W, it turns out that our differentials are everywhere 
finite on T. We observe that the cuts 5», T\- can be placed in a region 
of T whose projection on 2 ' is given by \z\ :§p. Therefore each 
5Çff i (X) ~H\(T) is an integral combination of the 5t-, TV Suppose 
then that the homomorphism <f> is given. Then it suffices to know 
<t>(Si), 4>(Ti) for then 0 ( S ) - E » < 0 ( S O + I > / * ( r < ) if S~2><S< 
+ ] C W / T{. Hence 0(5) = (5, dv) for a suitable dtf as a consequence of 
(31) and hypothesis (H) is shown to hold. 

A further instance of the validity of (H) was recently exhibited 
by Myrberg [ l l ] , who considered K = F(2')(f(zy/2) where/(s) is an 
entire function with infinitely many zeros. We remark that Myrberg's 
device of approximating K by hyperelliptic fields can be generalized. 

We note in conclusion tha t the methods used to prove Abel's 
theorem can be extended to prove a generalized Abel's theorem for 
meromorphic functions of finite order. The last restriction gives rise to 
congruences describing the necessary and sufficient conditions for a 
given set of zeros and poles to belong to a function of finite order [13 ]. 

7. Unramified extensions. The function theoretic methods of the 
preceding section can be further expanded to discuss the unramified 
finite algebraic extensions L/K in which each valuation W of K has 
[Z,:i£] distinct prolongations. I t can be shown that the unramified 
abelian extensions are generated by radicals like (fe)1/w where k has 
zeros and poles on T. 

More generally, fields of quasi meromorphic functions "K arising 
from To-[W,Wi, • • • , W9} can be treated with our method. 

Furthermore, the methods of the theory of algebraic functions 
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can be applied directly to prove that a finite group G can be realized 
as the Galois group of a normal unramified extension L/K if and 
only if G is a homomorphic image of the Poincaré group P(K) = {Si, 
• • • , S„ T u - - - 9 T g , U w - , U9;UimlSiTiSr^Tr^m^^l}. 
We note that the roots (^)1 /n are unramified functions over K, where 
the tj are suitable uniformizing variables for the Wj. 

Finally, the analogue of the theory of algebraic correspondences 
can be established in a variety of cases. I t may be worthwhile to 
compare the results of H. Cartan [4] with the interpretation of 
meromorphic correspondences by infinite matrices arising in the 
fields considered by P. J. Myrberg [ l l ] . 
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