IDEAL THEORY ON OPEN RIEMANN SURFACES
0. F. G. SCHILLING

Introduction. The theorems of the classical ideal theory in fields
of algebraic numbers hold in rings of analytic functions on compact
Riemann surfaces. The surfaces admitted in our discussion are closely
related to algebraic surfaces; we deal either with compact surfaces
from which a finite number of points are omitted or, more generally,
with surfaces determined by an algebroid function. The local aspects
of the resulting ideal theory are the same as those found in the theory
of algebraic functions. However, the ideal theory in the large is
quite different. We now cannot count on the simplifications which
are implied by the ascending chain condition for ideals. The recent
theories of functions on topological spaces provide the necessary tools
for a simple theory in the large. We shall show that the topologiza-
tion of rings of entire functions by means of the topology of the
underlying surface furnishes a fruitful method. Thus, the closed
maximal ideals will correspond to the points of the given surfaces.
Finally, to quote another result, all closed ideals are principal.

1. Some basic definitions. Suppose that Z is the complex number
sphere whose points at finite distance p =p, are in 1-1 correspond-
ence with the elements a of the complex number field C. We assume
that each point p of I, the point at infinity included, has conformal
neighborhoods. In general let ¢, be a local uniformizing variable at
p, that is, a function which affords the mapping of a conformal
neighborhood of p in the unit circle |t,,| <1. We associate with each
point » a model Z, of 2 and consider functions f(z) on Z with
values in {Z,}, in other words, f(p) EZ, for pEZ. As usual we say
that a function f(2) is meromorphic on Z if there exists for each
point p &2 a convergent expansion

d i
(1) f(z) = Z Cp.itp ¢ €C,
fomm
where the first nonvanishing coefficient ¢,,» has a finite integral
subscript. Then all meromorphic functions on Z form a field F(Z)
which contains C [2, 17]1
Next we associate to each function f(2) the integer m = V,f(z) and
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define V,0= «. The algebra of power series implies that the “valua-
tion” V, has the following properties

Vo(ty) =1, Vo(f + &) 2 min (Vof, V,g),
Vo(fe) = Vu(f) + Vau(g), Vo =0

for each nonzero complex number [6, 12, 16]. We note that
measures the order of the zero or pole of f at the point p. Further-
more the value V,f does not depend on the special choice of the
variable #,, that is, if ¢, =Z§°_ dith, 4150, d;EC, is analytic in a suffi-
ciently small neighborhood of ¢,=0, and f(2) is expanded with re-
spect to ¢, as ) iom Ch.itd, then m =m’. We mention in this connec-
tion that the function theoretic value f(p) of f(2) at p is:

(i) the coefficient c,,o of (1) if V,f(2) =0,

(ii) the element 0 if V,f(2) >0, and

(iii) the element « of Z, if V,f(2) <0, or if f(p)~1=0.
Then, for the functions fi, fo, with fi1(p), fo(p) # =,

@) A+ = A0 + f(0),  (Af)(8) = f1(8)fa(p)-

Thus the functions f of F(Z) which are holomorphic at p form a ring
R,, the so-called valuation ring of p in F(Z). This ring contains a
single prime ideal M} which consists of all functions which vanish
at p. In particular, the homomorphism R,—R,/My=¢,(R,) is the
arithmetic description of the function theoretic value, f(p) =¢,(f(3)).
We recall next the following consequences of the compactness of

2

2
(4) If f(p)#0, « for all p&= then f is a nonzero complex
number,
(5) If fEC, then f(p) is 0 or « for only a finite set of points of Z,
thatis, a meromorphic function has a finite number of zeros and poles.
After these preparations it is a simple matter to construct the
field F(2). We first note that z—a, a €C, is a meromorphic function
with Vy(z—a) =1 with p=2p,, V,(z2—a)=—1 with p=p,, Vp(z—a)
=0 for all other points p. Suppose that f(z) € F(Z) has its poles and
zeros at the points p,,, + + -, pa., Where repetitions of the points and
the point p., are permitted. Then the function [[}.,(z—a:) =f*(z) has
the same poles and zeros as f(z). Using the second of rules (2) and (4)
we find that f(z) /f*(z) is a nonzero constant ¢ of C. Thus

(6) f(2) = of*(2),
or F(Z) is the field of all rational functions of the complex variable z.

2. The field of meromorphic functions. We omit now from Z the
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point p., and obtain thus the open complex number plane Z’ whose
points are in 1-1 correspondence with the numbers of C. The space
=’ is locally compact and the sum of the compact regions |z| <#,
n— o, We define a meromorphic function f(2) on 2’ by omitting in the
definition of F(Z) the condition of rationality at p.. Then the field
of meromorphic functions F(Z’) contains F(Z) as proper subset.
Statement (5) is now replaced by:

(7) A meromorphic function f(z) has only a finite number of
zeros and poles in a small neighborhood of each point pE2’.

The field F(Z’) contains as a subring O(Z’) the integral domain
of all entire functions f(2) with V,f(2) 20 for all p&2’. Suppose that
f(2) is not a unit, that is, f(2) has zeros a;. Then the set of zeros {a;}
is countable and (7) implies |aj|->oo as j— 0 ; moreover, only a
finite number of a;'s have the same absolute value. The construction
leading to (6) must now be replaced by Weierstrass’ theorem [3].
We pick integers m; such that sum ) _;2,sm/a™*!, a;50, is absolutely
convergent for all 2. Then we define ¢;(2) =2 _7i,(1/k)*(2/a;)* and
set f*(z) =] [;(1—2/a;)e%®. The product f*(z) is absolutely con-
vergent for all 2 and uniformly convergent in any finite region of Z’.
Therefore f*(z) EF(Z'). Suppose V,f(2)=m. Then f(2)/(z"f*(2))
has no zeros and poles on Z’. Hence it is a unit function @ of O(Z’)
and

®) f(2) = ea(z)zmH (1 — 3/a;)esi®®,

Conversely there always exists an entire function (8) with prescribed
zeros. Moreover, an arbitrary function of F(2’) is always a quotient
of entire functions, as follows by constructing entire functions ac-
cording to (8) separately for its zeros and poles. Consequently F(Z’)
is the quotient field of O(Z').

3. The ring of entire functions. We note from the theory of
polynomials that the polynomial ring C[z] is equal to the intersec-
tion of the valuation rings R, for all pE2’. The definition of a func-
tion f(3) EF(Z’) implies that each point pEZ’ determines again a
valuation V, of F(2') with a corresponding valuation ring R, in
F(Z"), for only local properties of functions are used. Moreover, the
definition of an entire function shows that

) 0@’) = n Ry D Cls].

Furthermore, each ring R, has a unique prime ideal M, consisting
of all functions vanishing at p such that, for p=p, M, NO(Z')
=M,=0(2’') (2—a). Thus, each point p ©Z’ determines uniquely the
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prime ideal M,CO(Z') which consists of all entire functions vanishing
at p.

We next define an ideal 4 of O(Z’) to be an additive subgroup of
O(2') which admits the elements of O(Z’) for multipliers. It has
been noticed before that the (trivial) ideal theory of C[z] has no direct
analogue in O(Z’) [7]. Theideal theory of C[z] and its finite algebraic
extensions has two characteristic properties. First there are no
properly ascending chains of ideals and secondly there are no other
prime ideals but the ones corresponding to points of the associated
algebraic curve or Riemann surface. The ring O(Z’) presents an
entirely different arithmetic structure. Consider the entire function
sin (w2) with the zeros +# and set fi=sin (wz), fo=sin (73)/3, fs
=gin (72)/2(22—12), « + +, faya sin (73)/2(22—12) . . . (32—n?). Then
fnte has the zeros +(n+1), - - - and fi=far23(s2—12) - - -(z2—n?).
Then O(Z")fiCO(Z")f,C - - - is a properly ascending infinite chain
of divisors, Moreover, admitting only finite sums, the join U;0(2')f:
=(f1,f2 - + +) =Aisnot the unitideal O(Z’),for otherwise1 =2 _»..g: f
with entire functions g;. Such an equation cannot hold since the sum
has infinitely many zeros.

The following remark indicates that a change of the definition of
an ideal may be useful. Recalling the expansion =/sin (7z)=1/2
+2> 2, [(—1)"2]/(s2—n2) we obtain 1 = (1/7) [fi— 25%fa+22%(s2 — 12)fs
+ -+ - ]. Thus 1 is an infinite convergent sum of elements in 4.

There are three obvious devices which may be investigated in
order to develop an ideal theory in O(2’) such that the resulting
theory resembles the ideal theory of fields of algebraic functions or
algebraic numbers. The first method provides a recasting of the
definition of an ideal, the second utilizes the technique of v-ideals and
quast equality, and the third requires a restriction to ideals with a
finite basis. The last approach was used by Helmer [7]. We shall use
in the sequel the first and second methods.

We now introduce a topology in O(Z’) in order to carry out the
first method.

DEFINITION 1. Suppose that {f.} is an infinite sequence of entire
functions. We define fa—f as n—x to mean uniform convergence in
any bounded region of Z’.

DEFINITION 2. An ideal A of F(Z') with respect to O(Z') is called
closed, if:

(i) A is closed under addition and under multiplication by elements
of O(Z"), that is, A is an ideal in the algebraic sense;

(ii) There exists a nonzero integral function f such that fA SO(Z');
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(iii) A s closed in the topology of Definition 1.

We note that (iii) implies that 4 contains all convergent infinite
sums _;1a; for which a;EA4.
Let

(10) VA = {min Vea=Vyd,all p € E'} .
aEA
This vector U4 has at most an enumerable infinitude of com-
ponents V,4 distinct from 0 since an element ¢ &4 has at most a
countable set of zeros in Z’.

LeMMA 1. If A is closed and VA = {0}, then A =0(Z").

Proor. It suffices to show that 4 contains an entire function
without zeros. Let g&A and suppose a1, @z, * * *, Gy, + + + are the
zeros of g. Since U4 = {0} there exists for each a, a function f,E4
with V,f.=0or fa(a,)#0, where V, is the valuation for a,. Applying
(8) we can exhibit a function fE0(Z’) which has simple zeros at
the points a,. Suppose that | (ff)/ (z—-a,,)l <M,on |z| =n. Then the
sum > 2 1(ff.)/[(3—a.)2"M,] =h exists and represents an element of
O(Z"). By construction k(a,)#0. Consequently g and % are entire
functions without common zeros. Hence there exist integral func-
tions % and I such that gk+hl=1 (see [7, pp. 351-352]). Therefore
1€4 or 4 =0(2").

Using a repeated diagonal process we can prove the following
lemma.

LEMMA 2. Let A, B be two closed ideals and define the product
AQ B as the totality of all convergent sums Z,‘f_;a,.b,,, a,EA, b,EB.
Then AQOB is closed.

LemMA 3. Al closed ideals A are principal.

Proor. Weierstrass' theorem (8) together with (10) implies the
existence of an element a €0(Z’) with Vya=V,4 for all pEZ’. Then
the set of all quotients b/a, bE A4, is an ideal B in O(2’). The ideal B
is closed for b,/a—g, b, € B, implies g = k/a with hE0(Z’) ; but b,—ag
and therefore agE€4 since 4 is closed. By construction UB= {0}
and therefore, by Lemma 1, B=0(Z’) or 4 =a0(Z’).

In order to describe the ideal theory of the closed ideals of F(Z’)
with respect to O(Z’) we introduce the following vector group U in
which addition is defined by addition of the components [10]. We
consider vectors of integers {m,, pE€Z’} where at most a denumer-
able infinitude of components my, do not vanish and where |@n| =
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as n— . The mapping 4 —TUV4 €U maps the group of closed ideals
{A} (with the multiplication of Lemma 2) into U in such fashion
that V(4 0B) =UV(4)+V(B) and V(O(Z’)) = {0}. Since all closed
ideals are principal we have trivially U4A—!= —TUA4 where 4~ is the
closed ideal of all bEF(Z’) with bACO0(Z’). Conversely, Weier-
strass’ theorem (8) implies that each vector {m,, pE2'} of U is the
vector U4 of a closed ideal 4. Observe that 4 =0(Z’) a for a & F(Z’)
with V,ya=m, for all pEZ’. The ideal 4 is unique since U4, =UA4 for
any other ideal 4, with U4, = {m,,, pEZ} and since 4 is the totality
of all functions ¢ with V,c2m, for all pEZ’. We have proved:

THEOREM 1. The closed ideals A of F(Z') with respect to O(Z') form
e multiplicative group which is isomorphic to the vector group V.

We mention in passing that we may consider infinite products of
ideals, provided obvious assumptions are made on the distribution
of the zeros and poles.

The second method which utilizes the theory of quasi equality is
closely related to the first, as the following observations show.

DerFiNiTION 3. Two ideals, A1, As, of F(Z') with respect to O(Z')
are called quasi equal, Ai~A4,, if UA;=TUA, [10].

We now consider the classes of quasi equal ideals [4] and define
[4][B]=[AB]. This definition will be useful if we can show that
quasi equality is an equivalence relation. For the proof we note:

(11) V(4) = {0} if and only if A~ =0(Z").

We have UA~1= {0} and thus A~1=0(Z’) since 4~ is closed. For
the converse we observe that UA = —UA-1= {0}.

(12) (AB)~* = A~ for any ideal B with UB= {0}.

Note that ABCA implies (AB)"'DA-1. For the converse let
c&E(4AB)™, then O(Z')Dc(AB)=(cA)B. Consequently cACB-.
Therefore, by (11), cACO(Z’) or cEA~1. Hence (AB)~1CA-".

(13) A~B if and only if 4—'=B"1, and there exist ideals Ci, C»
with UCi=UC,= {0} such that AC,=BC..

Consider AA-'1B=A(A-1B)=(4A-)B and put A~'B=(,
AA-1=C;. Then by (12), A'=(AC)'=(BCy)~1=B"!, for
UC1=UC,= {0} The converse is obvious.

We can therefore assert that the group of classes of quasi equal
ideals is isomorphic to the vector group U where the isomorphism
is established by the mapping [4]—UA. This statement can be
interpreted further.
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LEMMA 4. Let A be the closure of the ideal A, in the sense of the
Definition 1, then U4 =UVA.

For the proof note that ADA implies V,A<V, A4 for all pEZ’.
For the converse we may assume without loss of generality that
ACO(Z"). Let a=lim,.x0,, a,EA, be an arbitrary element of 4.
Suppose that V,4=m>0, b&C with p=ps. We consider the se-
quence {b, =a.(z—b)"1} with the limit f=a(z—b)™1. We now pick
a positive € so small that lb,. —f ] <¢€/2 in a sufficiently small neigh-
borhood of p in Z’. Since f is analytic we have lf-—f(b)] <e€/2 and
consequently lbn-—f(b)l <e. If f(b) were distinct from zero, then e
can be chosen such that e<||b.| —|f(8)|| <|b.—f()|. Hence, by
contradiction, f(b) =0 and thus V,a= V,4. Consequently V,A=V,4
and therefore UA =TUA4. Consequently:

(14) All ideals in [4] have the same closure 4, and 4 is the
largest ideal in [4].

Thus Theorem 1 states that the group theoretical structure of
the set of all class of quasi equal ideals is the same as the structure of
the group of all closed ideals.

4. The prime ideals of O(Z’). We noticed in §2 that each point
p of 2/ gives rise to a valuation of F(Z’); moreover, p determines
uniquely a maximal prime ideal M, of O(Z’). The results of §3 imply
that the prime ideal M, is closed since it consists of all entire func-
tions which vanish at p. We now show that O(Z’) contains infinitely
many nonclosed prime ideals M. The example of §3, A =(sin (72),
sin (wg)/2, + + - YCO(Z') proves the existence of a nonclosed ideal
with V(4) = {0} Applying Zorn’s lemma we can prove the existence
of a prime ideal MDA, M#0(Z') with UM ={0}. There are infi-
nitely many such prime ideals. Pick two sequences of complex num-
bers @n, b, With |a,|, |ba] = which are distinct. By (8) there exist
functions f., g» with zeros at @, @41, * + + and bn, by, * - -, re-
spectively. Let B=(f1,f2, - - - ) and C=(g1, g3, * * * ), then UB=VC
={0}. We assert that B and C determine distinct maximal prime
ideal divisors. Suppose BCMi, CCM, and My=M, Then fi,
fnE M= M,. Hence there exist entire functions a, b such that
fie+gib=1E M= M,=0(Z’) because f1, g1 have distinct zeros. There-
fore My M.

LEMMA 5. Al prime ideals of O(Z') are maximal.

Proof. If a prime ideal M CO(Z") were not maximal, there would
exist a function fEO(Z’) for which (M, f) CO(Z’). Let g&M and
suppose that {a,.} is the set of common zeros of f and g. By (8)
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there exists a function #E0(Z’) with precisely the zeros { a.}. We
write g=hm. Hence either /&M or m E M. But m does not lie in M
for m and f have no common zeros and thus generate O(Z’) = (m, f),
whence (M, f) =0(2’), contrary to hypothesis. Therefore k& M and
JE M since f is a multiple of k. Thus M is maximal.

This lemma implies that each closed prime ideal M of O(Z’) be-
longs to a point, that is, that there exists a unique p with M= M,.
Note that Lemma 1 implies V,M 50 for some p. Hence MC M, and
thus M = M, by maximality. We note that 0(2’)/M,=C.

The nonclosed prime ideals M can be characterized algebraically
as follows.

LEMMA 6. 4 maximal ideal M of O(Z') is nonclosed if and only if
O(2")/ M is a proper extension of the complex number field C.

ProOOF. For a prime ideal M certainly MNC[z]# C|[z], since M
would otherwise contain a nonzero constant and be equal to O(Z’).
Consequently either MNC[z]#0, C—0&EMNC[z], or MNC[z]=0.
In the first case MNC[z] = (z—a) for some a €C because M is prime.
Consequently O(Z')(z—a) =M, ,CM and M= M,, is closed. Hence
MNC[z]=0 for a nonclosed prime ideal. But then O(Z’)/M con-
tains C[3]/0=C[z] and therefore O(Z’)/MDC. Conversely O(Z’)/ M
O C does not hold for closed prime ideals, hence M is not closed.

We consider next valuations V of F(Z’) whose valuation rings
contain O(Z’). Assume that V does not arise from a point pEZ’.
Then the prime ideal P of the valuation ring of V in F(Z’) neces-
sarily meets O(Z’) in a nonclosed prime ideal M=PNO(Z’). We note
that then UM = {0}, for otherwise there would exist a point p with
VoM 0. Then MC M, or V=V, contrary to assumption. We assert:

LEMMA 7. There exists no valuation V of rank one such that a non-
closed prime ideal M of O(Z’) is equal to PMO(Z') where P is the
prime ideal of V.

Proor. We have U[PNO(Z)]={0}. Let fEPNO(Z’), then f
must have infinitely many zeros; for if f were a unit then PNO(Z’)
=(0(Z’),and if f had a finite number of zeros then ¥V would be some V,,.
Let a1, as, - - -, be the zeros of f, where we admit repetitions. We
next construct by (8) a function % which has zeros at the a, with the
multiplicity #. Now let s,=f- [f/(s—a1)] - + - [f/(z—a1) - - - (2—a.)],
then s,£0(Z’) and k/s.=g.€0(Z’). Since V(z—a,)=0, for other-
wise V=1V,, V, the valuation for a,, we find V(&)= V(s.)+ V(g.)
=nV(f)+ V(g,). This means that V(k) is larger than any positive
real number. Consequently ¥V does not exist.
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Combining the preceding observations, we have [5]:

THEOREM 2. The points of Z' are in 1-1 correspondence with the
closed prime ideals of the ring O(2') of analytic functions on Z’.

The statement of this theorem is closely related to some results
dealing with continuous real or complex valued functions on topo-
logical spaces [5, 15]. Suppose that T isa topological space which can
be represented as the sum U,C, of compact sets, C, C Cn41, such that
each compact subset of T is contained in a suitable C,. We define
in the ring O*(T) of real (or complex) valued continuous functions on
T a compact open topology by agreeing that f,—f in O*(T) if the
sequence f, approaches f uniformly on each compact subset of T.
Then O*(T) is complete. We have the following lemma.

LemwMA 8. Each closed ideal A of O*(T) without zeros on T is equal
to O*(T).

Proor. We require of 4 that there exist for each point p&T a
function f&4 for which f(p) #0. Take any C;; there exists a point
;€ C; with a function f;;€4 such that fi;(p;;) #0. By continuity
there exists a neighborhood U;; of pi; on which f;; does not vanish.
Since C; is compact it can be covered by a finite number #; of
such neighborhoods U;;with associated functions f;;&A4. Then f3>0
(or fi;fii>0) on Uij. Let fi=X",f2(>fi;f:1), then f; does not vanish
on C;. Let M;=max,eq,|f:(p)|. Consider Y12, f:/(Mi25) =f. The sum f
is convergent in each C; and hence on each compact subset of T. Con-
sequently fEO*(T) by the completeness of O*(T). Since 4 is closed
and f;€A, we have fEA. By construction f does not vanish on T
and therefore f~1€0*(T), whence 4 =0*(T).

Let us assume further that T is a completely regular space. We
state the following theorem.

THEOREM 3. The closed maximal ideals M of O*(T) are in 1-1
correspondence with the points of T.

Proor. If p is a point of T then all fEO*(T) with f(p) =0form a
closed maximal ideal M,. Conversely, the functions f of a maximal
closed ideal M must have a common zero, p, for otherwise M =0*(T)
by Lemma 8. Let 4, be the set of all functions vanishing at p. Then
MC A, and consequently M =A4,. The functions of 4, cannot vanish
at another point g since the complete regularity implies the existence
of fEA, with f(p) =0, f(g) 0.

The maximal ideals M* of the ring O*(Z’) of all continuous
complex valued functions on 2’ can be related to the maximal ideals
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M of O(Z’). For each maximal ideal M let the set M*CO0*(Z’) con-
sist of all functions fEO0*(Z’) for which there exists an element m & M
such that f vanishes at all zeros of m. This set M* is an ideal. By the
preceding definition certainly fg& M* for any g€O0*(Z'). If f is
another function of M* with a corresponding function ;& M, then
fi+f2 vanishes at all zeros of a function % in M whose zeros are those
common to m and m,. (This 2 may be constructed by the method of
Lemma 5.) Furthermore M* is maximal. Suppose (M*, g) CO*(2').
We pick any m 0 in M. Then m and g must have zeros in common.
For otherwise k=mim+gg is a function of (M*, g) without zeros, so
that 271€0*(2’) and 1 =k~k & (M*, g), a contradiction. Let # be an
entire function whose zeros are the common zeros of m and g. Then
g vanishes at all zeros of #» and nE M. Hence g & M*.

Conversely each M* determines a prime ideal M*NO(2’) of
O(Z’); this ideal is maximal by Lemma 5. Using the original cor-
respondence M— M* we have M*NO(2') =M.

5. The ideal theory in finite extensions of O(2’). Let K be a
finite algebraic extension of degree # over F(2’). Then each element &
of K is the root of an equation

(15) "+ firi - o= 0

whose coefficients are meromorphic functions. Since the valuations
Vy, of F(Z') are determined by local properties of the functions in
F(Z"), we can employ a procedure of the theory of algebraic functions
to determine all prolongations W® . . . W@ g=g(p), of V, to K.
We recall that the discrete rank one valuations W can be de-
termined as the unique valuations of the direct summands K of the
direct product KX F(Z')y where F(2')y is the completion of F(Z')
with respect to V=17V,. Then 1=g(p) =n. More precisely W@ (&),
kREK, can be considered as W® (kS) with a suitable conjugate k5 of &
and a fixed prolongation W® of V, [12].

Using the triangle inequality we find:

(16) A function 2EK has at most a denumerable set of zeros and
poles, W, in other words valuations W; with W;(k)=0, «. These
valuations W; applied to F(2') contract to valuations V; belonging
to points ai; if {W;} is an infinite set, then |a;|— .2 A function
kEK never has an essential singularity at any W of K.

We can now construct the Riemann surface T of K and prove,
as in the theory of algebraic functions, that the field F(T) of mero-
morphic functions on T is equal to K. Let O(T) be the ring of all

2 Or, {W;} has no infinite subsequence which is compact in T.
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entire functions on T and let Ry be the valuation ring of W in
K =F(T). We shall prove the following generalization of (9),

17 o(T) = N Rw.
w

We first prove [10] the following lemma.

LEMMA 9. If WD, . . . | W® are the prolongations of V="V, to K
then WD (k)20, 1Sj=g, implies V(f:)=0 for the coefficients of the
defining equation (15). In particular V(NE) =0 for the norm Nk if all
W@ (k) are 0.

Proor. We imbed K in its least normal extension L/F(Z’) with
the Galois group {S}. Then W® (k)20 for all prolongations W
of V to L. Therefore [[s(x—#%) has coefficients in the valuation
ring R,. If WW(k)=0, then W® (k) =0 and thus W™ (Nk)=0 or
V(NE)=0.

As a consequence we note:

(18) WO[NBE]Z0 if WO(E) =0 for 1Sj<g

Now (17) follows readily. Let #€ NwRw. Then by Lemma 9, V,(f;) =0
for the coefficients of (15). Consequently f;EN,R,=0(Z’) and hence
NwRwESO(T). The converse inequality is obtained by applying V to
(15).

In order to obtain the analogues to Theorems 1 and 2 we use the
existence of special local uniformizing variables in O(T) for the
prolongations W, . . . | W® of a valuation V,.

LeEmMMA 10. There exist elements t, -+ + , t, tn O(T) such that
WOt =1, W;=0, j##4; 1 54, j<Sg.

PROOF. A result of Ostrowski [12] asserts the existence of elements
ki, -+, B, EK with Wk, =1, W@Pk,;=0, j#i, 154, j<g. Suppose
that W is a pole of k; with the conjugates we, ..., wY. Pick
mp= —miny<,<, W®k;. Construct the integers m, for all poles of k;
and take, by (8), a function b;E€0(Z’) which has zeros of orders m, at
the projections V, of the sets of conjugates W®. Then b;k;=¢; has
the required properties.

Consequently:

(19) For any distinct rank one valuations Wi, We of K there exist
elements a1, a;E0(T) with Wia:>0, Wae; =0 and Wias =0, Waa,>0.

Asin §3, equation (10), we define for an ideal 4 of K with respect
to O(T)

(20) WA = {min Wa = WA, all W} .
aEA
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Then WA 0 for at most a countable infinitude W of valuations,
such that |a;| — = for the projections V, of the Wi, if there are infi-
nitely many. Let @ be the additive group of vectors {m, all w}
with integers mw, such that at most a countable infinitude my, are
distinct from zero, where |a:| — % for the corresponding projections
to O(2).

A direct computation shows that:

(21) W(AB) = W(4) + W(B) for any two ideals 4, B.

Now put all ideals 4, 47, + - - with WA =WA’'= . - -inaclass [4].
Asin §3 the classes [4 ] form a multiplicative semigroup with [0(T)]
for a unit if we define W[4 ]=WA. More precisely:

THEOREM 4. The classes of ideals [A] form a multiplicative group
which is isomorphically mapped in the vector group W by [A]-W[A].

Proor. We may assume without loss of generality that the repre-
sentative 4 of [4] lies in O(T). Then the ideal quotient A~! has
WA-'=—WA=—m for each W. Since AA-1CO(T) it suffices to
exhibit an element cE4~! with W¢= —m. Let t=¢ be a local uni-
formizing variable, according to Lemma 10, such that Wi=W®¥¢=1
and W®t= . .. =W®@¢=0 for the conjugates W®, . . . | W@ of W.
Suppose that { W} are the valuations with W>0 and call V; the
associated projections on F(Z'). Let W;; be the conjugates of Wi.
Now pick an integer m;=max;W;i. By (8) there exists a function
FEO(Z’) which has zeros at the V; with the multiplicities m;. Let
b=tf-1, then W(b)=1, WA@})= ... =W@()=0, W;;(b)<0 for
all 7 and 7, and finally W’(b) =0 for all other valuations W’. Now let
@ be a nonzero element of 4, then Wa=m. Form ab—™, then W(ab—™)
=0, WP (ab—™) =W™az0, W;jlab—™)=Wia—mW;b>0, W' (ab™™)
=W’a=0. Hence ab—"&O(T) and therefore c =b—"&A~1. Therefore
[4] [a-]=[0(T)] by (22).

It remains to exhibit for given {my } an ideal 4 with WA = {mw}.
Let Py be the prime ideal of the valuation W in K. We shall exhibit
in A=NwPF" an element a with Wa=myp and Wa=mw for all
other W’. By Lemma 10 we can form the product [[4.,/f=d€0(T),
m;=mw,, which has the prescribed orders at W= W® and its conju-
gates W®, Next we determine in O(2’) an element g such thatVg=0
for the projection of W and V’g is sufficiently large for the projec-
tions of the other W’ with mw 0. Then a=dgEA4 and therefore
‘Z(’JA = {mw} .

Asin (13) any two ideals 4;, A; of [4] are related by an equation
A1By=A4,B, where By, B,&[0(T)]. Let 4 be the join of all ideals in
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[4]. Then WA =W[A4] and 4=NwPp¥ if W[A]= {mw}. Suppose
now that we topologize the ring O(T) by using the intrinsic topology
of the Riemann surface. Then:

(22) 4 is a closed ideal

and more precisely the only closed ideal in [4 ]. Using the generaliza-
tion of Lemma 2 we find that all closed ideals of K with respect to
O(T) form a multiplicative group which is isomorphic to the vector
group W.

We now turn to the discussion of the prime ideals of O(T) and note
first that all prime ideals are maximal as a consequence of Lemma 5.
Suppose now that WA = {0} for an ideal 4 of O(T). We assert:

(23) v[lanoE)] = {o}.

For the proof note that for given V with the prolongations W, . . .|
W@ there exist elements a1, * * *, @, in 4 with

W(l)al = 0, W(z)al g 0’ cee, W(V)al g 0’

-------------------

WWa, =0, W, 20,---, Wog, = 0.
We apply Lemma 10 and consider the sum, which lies in 4,

(24) a=a1(t2-°-t,,)+----I—ag(h'--t,,_l).

Then by construction and the triangle inequality W®g= -
=W®g=0. Consequently, by Lemma 9, V(Na)=0 and V’'(Na)=0
for all remaining V’. Thus Na€O(Z'). Applying (18) we have
(Na)a=*€0(T). Consequently a[(Na)a~!]=NaEA, whence
V(ANO(Z')) =0. Therefore V(ANO(Z')) = {0} since V was chosen
arbitrarily.

We notice next that there exist maximal ideals M in O(T) with
WM ={0}. Pickany BCO(Z') with UB = {0}. Then BO(T)CO(T).
Hence there exists, by Zorn’s Lemma, at least one MDBO(T) with
the desired properties. These maximal ideals are not closed for other-
wise MNO(Z') would be closed and hence equal to O(Z’) by
Lemma 1. Because O(T)/M20(Z")/MNO(Z'), Lemma 6 implies
that O(T)/MDC characterizes the nonclosed maximal ideals.

We remark that (23) implies in particular that the intersections
PyMO(T) are the only closed maximal ideals of O(T). On the other
hand the points of the Riemann surface T of K determine the valua-
tions W of K and vice versa. Consequently we have the generaliza-
tion of Theorem 2:
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The points of T arein 1-1 correspondence with the closed maximal
ideals of the ring O(T) of all analytic functions on T.

REMARK. In conclusion we point out that the methods of this
section apply also to the ideal theory of rings of quasi meromorphic
Sfunctions [9]. Such functions are meromorphic functions on = which
admit essential singularities at a finite number of points ps, #1, * * * ,
pr; in other words, quasi meromorphic functions have locally the
character of rational functions on 2 with the possible exception of the
points pe, p1, * * *, px. To obtain a reduction to the case of the ordi-
nary entire functions suppose that .S is an arbitrary (compact) alge-
braic Riemann surface with the valuations { W,g}. Pick any & valua-
tions Wg,, * + +, Wg,a By the Riemann-Roch theorem there exists a
function # in the field F(S) of meromorphic functions on .S with poles
at Wga, + + +, Was We consider F(S) as an algebraic extension of
C(u). The Riemann surface of C(u) is the complex u-sphere and the
field of quasi meromorphic functionson S— { Wea, + + +, Wea} con-
tains F(S) and is an algebraic extension of degree [F(S):C(x)] over
the field of meromorphic functions on the u-sphere from which the
common projection of the Wy,, is removed. To obtain the ideal theory
of the ring of quasi analytic functions on 2 — {pw, P, pk} we
apply the preceding arguments to F(2)= C(z).3 Finally, the principal
ideal theorem (Lemma 3) for the closed ideals holds in this case.
Similarly Theorem 2 can be extended.

It may be interesting to see which results of the theory of pro-
longations can be extended to relations between the ideals in the
various rings of continuous functions on completely regular spaces
and their finitely sheeted covering spaces. It appears that such prob-
lems have not been discussed to any extent.

6. The principsl ideal theorem. We assume for the moment that
S is a compact Riemann surface. Suppose that , is the ring of all
functions in F(S) which are integral over a polynomial ring C[v],
F(S)DC[v]. Then all ideals of F(S) with respect to Q, are principal
if and only if S has genus 0; this follows immediately from Abel's
theorem and Jacobi’s inversion theorem [2, 17].

We now show that, in contrast to the preceding compact case,
the principal ideal theorem holds for the closed ideals on certain
open Riemann surfaces. The existence of integral functions with pre-
scribed zeros depends on a combination of the proof for (8) with the
methods leading to Abel’s theorem.

® Quasi analytic functionson Z—{4,, #1, - * +, £} are quasi meromorphic func-
tions without poles.



1946] IDEAL THEORY ON OPEN RIEMANN SURFACES 959

We shall assume in the sequel that K is a field of algebroid func-
tions as defined in §5. Thus, K is the set of all meromorphic functions
on a finitely many sheeted covering surface T of 2’. We agree that
the elements of F(2’) are given as functions of the variable 2.

Let O(T) be the ring of integral functions over O(Z’) as described
in the preceding section. Weierstrass’ formula (8) uses the existence
of a uniformizing variable ¢, in O(Z’) for each point pE2Z’ such that
t»(¢) #0 for all other points g&2’. In the general case we first define
a differential kidk for k, ByEK as follows [6]:

(25) k1dk is the totality of all local derivatives kidk/dtw

for all local uniformizing variables tw of W and all valuations W be-
longing to the points of T.

If we use the completions Ky of K with respect to W it follows
that W(dz/dtw) =W(dz) =e—1 where e is the degree of ramification
of W relative to its projection V on F(2’). In other words, dz is at
W the local different of Kw/F(Z'),. As in the theory of algebraic
functions we say that a differential ydz, y €K, has a zero of order m at
W if W(ydz) =m; a pole of order m is present if W(ydz) = —m, m>0.
Moreover, the zeros and poles W; of a differential ydz of K have pro-
jections V,, with |a;|— o if there are infinitely many.

We now construct a d¢fferential dww of K which has a logarithmic
singularity with the residue +1 at a given valuation W. Later dww shall
be used to construct the analogue of the prime functions z—a, a&EC.
Suppose that a1, - - -, @, are »n linearly independent elements of
O(T) over F(Z'); we may take a;=ki~!where kE€0(T) is a primitive
element of K/F(Z’). Let a}"’, 1=k =wn, be the n conjugates of a;.
Then the system of linear equations

Z. ) (b

(26) Z b; a§~ = &}, d:; the Kronecker symbols,
h=1

has # conjugate sets of solutions 5%, - - -, b®, for the independence

of the a;'s implies det [a,(")[ #0. Let b =b;, 1 £:<n. We may assume
without loss of generality that z=c¢#0 (mod W) for the given valua-
tion W of K. Since W corresponds to a point of T we agree to denote
the value of a function fEK at W by f(W).4 Consider the differ-
ential do¥ =2 " b;[ai(W)]ds/(z—c). Then W(dwy)=—1 is a con-
sequence of the construction of the b;’s and the remarks on dz; we
apply the homomorphism determined by W.5 The differential dw}

4 In other words, the function-theoretic value f(W) is essentially the residue class
of f modulo W.

5 NoteY_b:(W)ay(W) =1 and W(dz) =0,
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may of course have other singularities. We first remove the potential
poles at the conjugates W® of W® =W. Suppose W™ (dwly) = —ma,
my2 0. By Lemma 10, the differential dwl] [ st = de has W™ (dwi)
=0 for %1 and W(dw})=—1. The possible poles W; of dw} form
an at most denumerable set with |a;|— =, if the V,, are the projec-
tions of the W;. We next pick an integral function g&0(Z’) which does
not vanish at W and its conjugates, thatis, V(g) =0 for the contrac-
tion of W to F(2'). Moreover, g is to have zeros of sufficiently high
orders at the V,,. This can be done according to Weierstrass’ theorem.
Then W(gdw®)=—1 and W’(gdw}®)=0 for all other valuations.
Finally, we multiply gdw} by a suitable constant and obtain a differ-
ential dww with the desired properties.

Now let I(W) be the indefinite integral fdww. Then the ex-
ponential e!™ is a multiplicative function on T which has locally
the properties of a meromorphic function on 7'.% In particular W (eI™)
=—1 and W’/ (e!™)=0 for all other valuations W’. However, in
general, e!™ will not be a function of K. We show next that /™
can be normalized so as to lie in K provided a certain hypothesis is
valid for the vector space of everywhere finite integrals of K.

Let H(K) = {dv, W(dv/dtw) 20 for all W} be the vector space of
everywhere finite differentials with complex coefficients. Suppose that
H(K)={S, - - - } is the Betti group of T. Then the integrals [sdv
= (S, dv) define for fixed dv a homomorphism of Hy(K) into C and
dually for fixed .S a homomorphism of H'(K) into C since homologous
closed curves determine the same definite integral. Let ¢ be a homo-
morphism of H;(K) into C. Then it is a well known fact that ¢ cannot
always be realized as (S, dv) for a suitable dv if integrals on an alge-
braic compact Riemann surface are considered [2].

We assume the following hypothesis:

(H) Given a homorphism ¢ of Hy(K) into C, then ¢=(S, dv),
SEH(K) for a suitable differential dvE H(K).

Later we shall see that our hypothesis can be proved for certain
open Riemann surfaces.

Let {1rs}, SEH,(K), be the periods of the normalized integral
Jdww which was constructed at the beginning of this section. Then
there exists by (H) an everywhere finite differential dv with (S, dv)=mg
for all S. Hence [(dww—dv) =7w has no periods on T and

(27) eV = iy

is a uniformizing variable for W with W’(tw) =0 for all other valua-
tions W’. It is now easy to show that each closed ideal 4 of K with

¢ A multiplicative function f on T reproduces itself but for a constant factor
ug if it is continued analytically along a closed path Son T,
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respect to O(T) is principal, provided 4 has only a finite number of
zeros and poles W; with the multiplicities m;. We form the func-
tion a=]]¢#. Then Wa=WA and therefore 4 =a0(T). If 4 has
infinitely many zeros and poles then 4 can still be shown to be prin-
cipal, but this time the functions ¢, have to be modified so that their
rate of growth is suitably bounded as z— ; this can be achieved by
a combination of the methods in [11] and [13].
We now formulate the following theorem.

THEOREM 5. Let T be the open Riemann surface which is obtained
from a compact Riemann surface by omitting a point. Then all closed
ideals of meromorphic functions on T with respect to the ring of analytic
Sfunctions on T are principal. Each closed ideal is uniquely determined
by its zeros and poles and their respective multiplicities. The set of zeros
and poles of an ideal is at most countable and contains no infinite sub-
sequence which is compact in T.

REMARK. The statement of Theorem 5 can be extended to open
Riemann surfaces which arise from algebraic Riemann surfaces by
omitting more than one point. We note that an analogue to Weier-
strass’ theorem (8) holds.

We now return to hypothesis (H) and indicate briefly how it can
be proved for surfaces T which arise from a compact algebraic Rie-
mann surface T by omitting a point W, T=T,— {W} [12]. Let K,
be the field of algebraic functions of Ty and assume that g is the genus.
Suppose that Sy, -+ +, S, Ty, - - -, T, is a set of canonical retrosec-
tions of T. We may assume, after a suitable deformation of the cuts
that W does not lie on any of them. The everywhere finite differ-
entials du; can now be selected such that, for det | 7| =0,

(28) (S,', du.-) = 7r(— 1)1/2, -(Sj, du.-) = 0, (Tk, du.') = Tki.

Using the gap theorem of Weierstrass [2], we remark that pre-
cisely g integers cannot occur as multiplicities of poles of functions
(on K,) at W. Since there exist, however, differentials which are
poles of any order exclusively at W, we can pick precisely g dif-

ferentials du,41, - * + , dug, of Ko whose multiplicities at W are the g
missing orders for the functions. Using (28) we can subtract from
dtgi1, * ¢+ ¢+, dug, suitable linear combinations of the differentials
duy, « - -, du, and obtain differentials duy,,, - - -, duy, such that
6)) the multiplicities at W are preserved,
(29) () (Shy Qtgrs) = O for1=hj=sg
ii

(T, Qtgis) = Ty



962 O. F. G. SCHILLING [November

The g differentials du,,, are independent over C, for otherwise there
would exist a nontrivial linear combination [ ¢.,du,.,c;=f, ¢;EC,
without periods. Hence f would be a function of K, with a forbidden
multiplicity at W. Hence det | 74| #0. We can therefore replace du}.,,,

1 =j=g, by suitable linear combinations dv,41, * - -, dvs, such that
Shy dvgyj) =0 fort = h j=yg

(30) (Sh o+i) J=8
(Try Avgys) = Sjm(— 1)V2

Finally we add appropriate linear combinations of dvy41, - -+, dvy,

to the differentials du,, - - -, du, and obtain 2g independent dif-

ferentials dv, - - -, dv,, dvy4, - + -, dvy, With

31 (Shy dv) = dpim(— 1)Y2, (T, dvs) = 0, 1=hi, k=g,

(Shr dv0+i) =0, (Tk1 dva-i-i) = 6’01'7"(_ 1)1/2: 1= 4 ]) k= 8-

These 2g differentials are now considered on T'=T,— W. Since we
do not count W, it turns out that our differentials are everywhere
finite on 7. We observe that the cuts S;, T; can be placed in a region
of T whose projection on =’ is given by |z| <p. Therefore each
SEH(K)=H\(T) is an integral combination of the .S;, T;. Suppose
then that the homomorphism ¢ is given. Then it suffices to know
$(S), ¢(Ty) for then ¢(S8)=2np(S)+2om!¢(Ts) if S~Dn:S:
+>_n! T;. Hence ¢(S) = (S, dv) for a suitable dv as a consequence of
(31) and hypothesis (H) is shown to hold.

A further instance of the validity of (H) was recently exhibited
by Myrberg [11], who considered K = F(Z’)(f(z)!/2) where f(z) is an
entire function with infinitely many zeros. We remark that Myrberg’s
device of approximating K by hyperelliptic fields can be generalized.

We note in conclusion that the methods used to prove Abel’s
theorem can be extended to prove a generalized Abel’s theorem for
meromorphic functions of finite order. The last restriction gives rise to
congruences describing the necessary and sufficient conditions for a
given set of zeros and poles to belong to a function of finite order [13].

7. Unramified extensions. The function theoretic methods of the
preceding section can be further expanded to discuss the unramified
finite algebraic extensions L/K in which each valuation W of K has
[L:K] distinct prolongations. It can be shown that the unramified
abelian extensions are generated by radicals like (k)!/» where & has
zeros and poles on T'.

More generally, fields of quasi meromorphic functions X arising
from To—{W, Wi, - - -, W,} can be treated with our method.

Furthermore, the methods of the theory of algebraic functions
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can be applied directly to prove that a finite group G can be realized
as the Galois group of a normal unramified extension L/K if and
onlyif G is a homomorphic image of the Poincaré group P(K) = { S,
Sy Ty, T Uy ey, Ua§Hf-1SeT¢SF‘TF1H§-_1_Uf=1}.
We note that the roots (¢;)Y/" are unramified functions over K, where
the ¢; are suitable uniformizing variables for the W ;.

Finally, the analogue of the theory of algebraic correspondences
can be established in a variety of cases. It may be worthwhile to
compare the results of H. Cartan [4] with the interpretation of
meromorphic correspondences by infinite matrices arising in the
fields considered by P. J. Myrberg [11].
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