REPRESENTATIONS FOR REAL NUMBERS

C. J. EVERETT¹

- 1. Introduction. In a recent paper² [1] B. H. Bissinger generalized continued fractions by iteration of more general decreasing functions than the 1/x of the classical case. We extend here the algorithm by which real numbers are represented as decimals of base p, to general continuous increasing functions on (0, p), including the classical x/pas special case. This sets up a correspondence from real numbers to sequences of integers mod p. Weak sufficient conditions are given that the correspondence be one-one. In the one-one case, algebraic examples are noted. The limit involved in the inscribed polygon problem appears here in a natural way. In the many-one case, the algorithm defines a set L of limit numbers which is perfect and nowhere dense. These sets are closely related to the Cantor perfect set. Finally, the relation between the above theory and the topological transformations F_1 of the unit interval into itself is studied. The latter yield sequences $\{F_p\}$ of our functions, $p=2, 3, \cdots$, and their structure is reflected in the limit sets L_2 , L_3 , \cdots .
- 2. **The algorithm.** Let $p \ge 2$ be a fixed integer and f(t) a continuous, strictly increasing function on the interval $0 \le t \le p$, with f(0) = 0 and f(p) = 1 (cf. [4]).

Such a function may be used to associate with every real number $\gamma_0 \ge 0$, a sequence $\{c_\nu\}$ of integers, with $0 \le c_0 < \infty$, $0 \le c_\nu \le p-1$, $\nu = 1, 2, \cdots$, by way of the following algorithm. We write, for $\gamma_0 \ge 0$,

(A)
$$\gamma_0 = c_0 + f(\gamma_1), \qquad c_0 \le \gamma_0 < c_0 + 1, \\ 0 \le c_0 < \infty, 0 \le \gamma_1 < p, \\ \gamma_1 = c_1 + f(\gamma_2), \qquad c_1 \le \gamma_1 < c_1 + 1, \\ 0 \le c_1 \le p - 1, 0 \le \gamma_2 < p,$$

and so on.

Thus, at each step, c_r is the greatest integer in γ_r , and γ_{r+1} is the uniquely defined real number on the interval $0 \le t < p$ such that $f(\gamma_{r+1}) = \gamma_r - c_r$, where $0 \le \gamma_r - c_r < 1$.

Presented to the Society, September 17, 1945; received by the editors July 10, 1945, and, in revised form, April 9, 1946.

¹ The work here reported was supported by the Wisconsin Alumni Research Foundation.

² The numbers in brackets refer to the references cited at the end of the paper.

Since $\gamma_1, \gamma_2, \cdots$ are all on $0 \le t < p$, it follows that c_1, c_2, \cdots are integers satisfying $0 \le c_p \le p-1$. Hence we have a correspondence

$$\gamma_0 \to \{c_\nu\}$$

from all reals $\gamma_0 \ge 0$, to sequences of integers as described.

- 3. **Termination in** p-1. We ask now whether, under the algorithm, sequences may appear terminating in p-1, p-1, \cdots . Such is the case if and only if, for the function f(t):
 - (C) There exists a $\gamma_0 = p 1 + f(\gamma_0)$, $p 1 < \gamma_0 < p$.

Obviously such a $\gamma_0 \rightarrow \{p-1, p-1, \cdots\}$ under (A). On the other hand, if a number δ_0 under (A) yields a sequence terminating in $p-1, p-1, \cdots$, this implies that some δ_r itself yields $p-1, p-1, \cdots$. Suppose then that $\gamma_0 \ (=\delta_r)$ under (A) gives $\gamma_0 = p-1+f(\gamma_1)$, $\gamma_1 = p-1+f(\gamma_2), \cdots, \gamma_r = p-1+f(\gamma_{r+1})$, and so on. If (C) is false, it follows from continuity of f(t) that:

(D)
$$f(t) > t - (p-1)$$
, for all t on $p-1 \le t < p$.

We should then have $\gamma_1-(p-1)< f(\gamma_1)=\gamma_0-(p-1), \ \gamma_2-(p-1)< f(\gamma_2)=\gamma_1-(p-1), \ \text{and so on, with } p>\gamma_0>\gamma_1>\gamma_2>\cdots>p-1.$ Hence $t_0=\lim \gamma_{\nu}$ exists, with $p-1\leq t_0< p$. But from $\gamma_{\nu}=p-1+f(\gamma_{\nu+1})$, we have $t_0=p-1+f(t_0)$, a contradiction.

Indeed, the condition "not C" is equivalent to (D), and (D) may in turn be rephrased as a slope condition

(D')
$$(f(p) - f(t))/(p - t) < 1 \text{ on } p - 1 \le t < p.$$

Moreover, if a γ_0 satisfying (C) exists, then not only γ_0 but every δ_0 on $\gamma_0 < \delta_0 < p$ will yield $\{p-1, p-1, \cdots\}$ under (A). For $\gamma_0 = p-1 + f(\gamma_0) < \delta_0 < p$ implies $\delta_0 = p-1+f(\delta_1)$, hence $\gamma_0 < \delta_1 < p$, and so on. Since our final object is to obtain a one-one correspondence (B), we assume from this point on the necessary condition (D'). The correspondence (B) then maps all reals $\gamma_0 \ge 0$ onto non-(p-1)-terminating sequences.

4. Upper and lower limits. Let $\{c_r\}$ be an arbitrary sequence of integers with $0 \le c_0 \le \infty$; $0 \le c_r \le p-1$, $\nu=1, 2, \cdots$, not (p-1)-terminating. We define $C_r^{\lambda} = c_{\lambda} + f(c_{\lambda+1} + \cdots + f(c_{\lambda+r}))$ and $\Gamma_r^{\lambda} = c_{\lambda} + f(c_{\lambda+1} + \cdots + f(c_{\lambda+r} + 1))$, where the last parentheses are ν -fold. Then, from monotonicity, one has $c_{\lambda} \le C_r^{\lambda} \le C_{r+1}^{\lambda} < \Gamma_{r+1}^{\lambda} \le \Gamma_r^{\lambda} \le c_{\lambda} + 1$, so that the limits $C^{\lambda} = \lim_{n \to \infty} C_r^{\lambda}$, $\Gamma^{\lambda} = \lim_{n \to \infty} \Gamma_r^{\lambda}$ exist and satisfy

(E)
$$c_{\lambda} \leq C^{\lambda} \leq \Gamma^{\lambda} \leq c_{\lambda} + 1.$$

Since $C_{\nu}^{\lambda} = c_{\lambda} + f(C_{\nu-1}^{\lambda+1})$ we have $C^{\lambda} = c_{\lambda} + f(C^{\lambda+1})$ and similarly

 $\Gamma^{\lambda} = c_{\lambda} + f(\Gamma^{\lambda+1})$. Now since the sequence is not (p-1)-terminating, for every λ there is a $c_{\lambda+\mu} \leq p-2$. Moreover, $\Gamma_{\mu+\nu}{}^{\lambda} = c_{\lambda} + f(c_{\lambda+1} + \cdots + f(\Gamma^{\lambda+\mu}))$, and $\Gamma^{\lambda} = c_{\lambda} + f(c_{\lambda+1} + \cdots + f(\Gamma^{\lambda+\mu}))$. By (E), $\Gamma^{\lambda+\mu} \leq c_{\lambda+\mu} + 1 \leq p-1$, so that we have

$$(E') c_{\lambda} \leq C^{\lambda} \leq \Gamma^{\lambda} < c_{\lambda} + 1,$$

and, as already shown,

(F)
$$C^{\lambda} = c_{\lambda} + f(C^{\lambda+1}), \quad \Gamma^{\lambda} = c_{\lambda} + f(\Gamma^{\lambda+1}).$$

But (E', F) imply that, under (A), the numbers C^0 and Γ^0 yield the original sequence $\{c_r\}$. We call these the lower and upper limit numbers of the sequence.

If f(t) satisfies (D'), the correspondence (B) maps all reals $\gamma_0 \ge 0$ onto all non-(p-1)-terminating sequences. Every such sequence is indeed the map of its limit numbers C^0 , Γ^0 .

Now if γ_0 yields $\{c_r\}$ under (A), then

(G)
$$C_{\nu}^{0} \leq \gamma_{0} = c_{0} + f(c_{1} + \cdots + f(c_{\nu} + f(\gamma_{\nu+1})) < \Gamma_{\nu}^{0}$$
, all ν ,

and hence $C^0 \leq \gamma_0 \leq \Gamma^0$.

Also, if γ_0' and γ_0'' yield $\{c_r\}$ under (A), and if $\gamma_0' \leq \gamma_0 \leq \gamma_0''$, then γ_0 yields $\{c_r\}$. For

$$c_0 \le \gamma_0' = c_0 + f(\gamma_1') \le \gamma_0 \le \gamma_0'' = c_0 + f(\gamma_1') < c_0 + 1$$

hence $\gamma_0 = c_0 + f(\gamma_1)$ and $\gamma_1' \leq \gamma_1 \leq \gamma_1''$, and so on.

It follows that γ_0 yields $\{c_r\}$ under (A) if and only if $C^0 \leq \gamma_0 \leq \Gamma^0$. Thus the correspondence (B) is actually a mapping of disjoint closed sets $[C^0, \Gamma^0]$ on all non-(p-1)-terminating sequences. The sequences $\{c_r\}$ fall into two classes according as $C^0 < \Gamma^0$ or $C^0 = \Gamma^0$. The correspondence (B) thus splits into two parts:

(B')
$$[C^0, \Gamma^0] \to \{c_\nu\}, \qquad C^0 < \Gamma^0,$$

$$(B'') C^0 = \Gamma^0 \to \{c_\nu\}.$$

In the case (B'') the C_r^0 and Γ_r^0 converge to $C^0 = \Gamma^0 = \gamma_0$ with errors thus (see G):

(H)
$$0 \leq \gamma_0 - C_{\nu}^0 < \Gamma_{\nu}^0 - C_{\nu}^0; \quad 0 < \Gamma_{\nu}^0 - \gamma_0 \leq \Gamma_{\nu}^0 - C_{\nu}^0.$$

We note here two properties of the sequence $\{p-1, p-1, \cdots\}$ of later use. Although this sequence does not appear under the algorithm, nevertheless the $\lim_{r\to 0} C_r^0$ exists and is p. For $p-1 < C_r^0 < C_{r+1}^0 < p$ and $t_0 = \lim_{r\to 0} C_r^0$ satisfies $p-1 < t_0 \le p$. But $C_r^0 = p-1+f(C_{r-1}^1) = p-1+f(C_{r-1}^0)$. Hence $t_0 = p-1+f(t_0)$, and by (D'), $t_0 = p$.

Also, $p-1+f(p-1+\cdots+f(p-1+f(p-2)\geq C_{\nu-1})^0$ where the first expression contains ν (p-1)'s. Thus the sequence p-1+f(p-2), $p-1+f(p-1+f(p-2),\cdots$ has limit p.

- 5. Terminating sequences. We call a sequence $\{c_{\nu}\}$ with $c_{\nu}=0$, $\nu>N$ for some N, terminating. There exist numbers $\gamma_0>0$ yielding $\{0,0,\cdots\}$ under (A) if and only if f(t) has the property:
 - (I) There exists a $\gamma_0 = f(\gamma_0)$, $0 < \gamma_0 < 1$.

Clearly such a γ_0 yields $\{0, 0, \cdots\}$ under (A). Suppose that $\gamma_0 > 0$ yields $\{0, 0, \cdots\}$ and that (I) is false. By continuity of f(t) we have

(J)
$$f(t) < t$$
 for all t on $0 < t \le 1$,

and $0 < \gamma_0 = f(\gamma_1) < \gamma_1 = f(\gamma_2) < \gamma_2 \cdot \cdots$. Hence $0 < \gamma_0 < \gamma_1 < \gamma_2 < \cdots$ <1, and $t_0 = \lim \gamma_{\nu}$ exists with $0 < t_0 \le 1$. But from $\gamma_{\nu} = f(\gamma_{\nu+1})$ follows $t_0 = f(t_0)$, a contradiction.

Obviously "not I" is equivalent to (J), and (J) may be restated in slope form

(J')
$$f(t) - f(0)/t < 1$$
 on $0 < t \le 1$.

If a γ_0 exists satisfying (I) then not only γ_0 but also every δ_0 on $0 \le \delta_0 < \gamma_0$ will yield $\{0, 0, \cdots\}$ under (A). Hence for a one-one correspondence (B), (J') is necessary, and we assume from this point on that f(t) satisfies (D') and (J').

Under these restrictions, the sequence $\{0, 0, \cdots\}$ has $C^0 = \Gamma^0 = 0$, and since in any sequence $\{c_\nu\}$, $C^0 = c_0 + \cdots + f(C^{\lambda})$, $\Gamma^0 = c_0 + \cdots + f(\Gamma^{\lambda})$, it follows that every terminating sequence has $\Gamma^0 = C^0$ and falls under (B'').

We remark here that if $\{d_r\}$ is a terminating sequence $\{d_1, d_2, \cdots, d_r, 0, 0, \cdots\}$, then the associated limit numbers $D^0 = \Delta^0 = d_0 + f(d_1 + \cdots + f(d_r + f(D^{r+1})) = d_0 + f(d_1 + \cdots + f(d_r))$, since $D^{r+1} = 0$.

6. The many-one case. Suppose then that f(t) satisfies (D') and (J') and consider the algorithm (A) only as it applies to numbers γ_0 on the interval $[0, p) = (0 \le t < p)$. The correspondences (B', B'') then map the interval [0, p) onto all non-(p-1)-terminating sequences $\{c_p\}$ with $0 \le c_p \le p-1$.

Let L be the set of all limit numbers C^0 , Γ^0 on [0, p) (equal or not) of all such sequences, and G the complement of L in [0, p). The points of L are then the numbers $C^0 = \Gamma^0$ occurring under (B''), including the limits of all terminating sequences, together with the end points $C^0 < \Gamma^0$ of the closed intervals under (B'). The points of G are those of all the open intervals (C^0, Γ^0) in (B'). Since G is a union of (non-

overlapping, indeed, non-abutting) intervals, G is open, and L is closed.

We write [0, p) = L + G, and L = L' + L'', where L' is the set of end points under (B') and L'' the set of $C^0 = \Gamma^0$ under (B'').

Since the intervals of G are countable, so is the set L'. We now show that L is dense in itself. It then follows that L is perfect, L (hence also L'') has the power of the continuum. Since the limits of terminating sequences are countable, the set of limits of non-terminating sequences for which $C^0 = \Gamma^0$ is of the power of the continuum (cf. [3]).

Indeed, every point λ of L is a limit point of limit numbers $D^0 = \Delta^0$ of terminating sequences $\{d_r\}$. First let $\lambda = C^0 = \Gamma^0$ for $\{c_r\}$. Then $\lambda = \lim_{r \to \infty} C_r^0 = \lim_{r \to \infty} \Gamma_r^0$ and $C_r^0 < \Gamma_r^0$. The numbers C_r^0 are in L, being limit numbers of terminating sequences. Since the sequence $\{c_r\}$ is not (p-1)-terminating, a subsequence of $\{\Gamma_r^0\}$ has $\Gamma_r^0 = c_0 + f(c_1 + \cdots + f(c_r + 1))$ with $c_r + 1 \le p - 1$, and these Γ_r^0 are thus in L, being limit numbers of terminating sequences $\{c_0, c_1, \cdots, c_r + 1, 0, 0, \cdots\}$ in our class. Hence λ is a limit point of points of L.

Second, let $\lambda = C^0 < \Gamma^0$ for $\{c_{\nu}\}$. Then the sequence $\{c_{\nu}\}$ is not terminating, and a subsequence of $\{C_{\nu}^0\}$ is properly increasing to C^0 as a limit point.

Finally, let $C^0 < \Gamma^0 = \lambda$ for $\{c_\nu\}$. Since $\{c_\nu\}$ is not (p-1)-terminating, a proper subsequence of $\{\Gamma_\nu^0\}$ with $c_\nu + 1 \le p - 1$ is properly decreasing to Γ^0 as a limit point. Hence L is dense in itself.

If f(t) admits a sequence $\{d_r\}$ with $D^0 < \Delta^0$, that is, if the correspondence (B) is not one-one, then the set L is nondense on [0, p). If (a, b) is a subinterval: $0 \le a < b < p$, we show that (a, b) contains a subinterval containing no point of L. If (a, b) itself contains no point of L, (a, b) will serve. However if a point λ of L is in (a, b) and if $\lambda = C^0 < \Gamma^0$ or $C^0 < \Gamma^0 = \lambda$ for some $\{c_r\}$ then the interval (a, b) intersects (C^0, Γ^0) in an interval containing only points of G. The only case remaining is $\lambda = C^0 = \Gamma^0$ in (a, b), $\lambda = \lim_{r \to 0} C_r^0 = \lim_{r \to 0} \Gamma_r^0$. But $C_r^0 < c_0 + f(c_1 + \cdots + f(c_r + f(D^0) < c_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(c_r + f(D^0) < C_0 + f(c_1 + \cdots + f(C_r + f(D^0) < C_0 + f(c_1 + \cdots + f(C_r + f(D^0) < C_0 + f(c_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(C_r + f(D^0) < C_0 + f(C_1 + \cdots + f(D^0) < C_0 + f(C_1 + \cdots + f(D^0) < C_0 + f(D^0) < C_$

7. An example. Consider for p=3 the function f(t) defined by f(0)=0, f(4/3)=1/3, f(5/3)=2/3, f(3)=1, and elsewhere by the broken line connecting these points. It is clear that 4/3 and 5/3 yield $\{1, 1, \cdots\}$ under the algorithm. Moreover, for this sequence, $C^0=4/3$ and $\Gamma^0=5/3$ as is seen graphically from the sequences 1+f(1), $1+f(1+f(1), \cdots$ and 1+f(2), $1+f(1+f(2), \cdots$. Imagine that we blacken the intervals $(i+f(C^0), i+f(\Gamma^0)), i=0, 1, 2$. The first of these defines three intervals $(j+f(0+f(C^0), j+f(0+f(\Gamma^0)), j=0, 1, 2, 1)$, and the last similarly, all of which we blacken. (Graphically, the

process amounts to projecting the function values above each black interval onto the three 45° lines and thence down to the *t*-axis.) Repetition of this process yields a set of open intervals of total length $1/3+2/3+3(2/3)(1/4)+\cdots=1/3+2/3(1+3/4+(3/4)^2+\cdots)=3$. It follows that the set of black intervals exhausts the set G, and the complement L is of measure zero, perfect, and nondense on [0, 3). While this is not quite the Cantor "middle-third" set it has precisely the same structure.

8. Sufficient conditions for one-one correspondence. Let $c_0 < \gamma_0 < \delta_0 < c_0 + 1$ and $\gamma_0, \gamma_1, \dots, \gamma_n$; $\delta_0, \delta_1, \dots, \delta_n$, be the numbers resulting from the first n steps of the algorithm. We say that the slopes $f(\delta_i) - f(\gamma_i)/\delta_i - \gamma_i, i = 1, \dots, n$, are connected.

In order that the correspondence (B) be one-one it is sufficient that:

(K) There exists an integer n such that the product of every n connected slopes is less than one.

Suppose that (B) is not one-one, and let X' be the class of all intervals (C^0, Γ^0) under (B'). Then there must be in X' an interval of maximal length. For this interval, write $\Gamma^0 - C^0 = (f(\Gamma^1) - f(C^1)/\Gamma^1 - C^1) \cdot \cdot \cdot (f(\Gamma^n) - f(C^n)/\Gamma^n - C^n)(\Gamma^n - C^n)$. The interval (C^n, Γ^n) is in X', hence these n connected slopes have product not less than 1, contradicting (K).

Stronger sufficient conditions are:

$$(K') f(t_2) - f(t_1)/t_2 - t_1 < 1, 0 \le t_1 < t_2 \le p.$$

(K'') There exists a β such that $0 < \beta < 1$, $f(t_2) - f(t_1)/t_2 - t_1 \le \beta$ on $0 \le t_1 < t_2 \le p$.

In case (K'') obtains, we note that $\Gamma_{\nu}^{0} - C_{\nu}^{0} = (f(\Gamma_{\nu-1}^{1}) - f(C_{\nu-1}^{1}))/\Gamma_{\nu-1}^{1} - C_{\nu-1}^{1}) \cdot \cdot \cdot (f(\Gamma_{1}^{\nu-1}) - f(C_{1}^{\nu-1})/\Gamma_{1}^{\nu-1} - C_{1}^{\nu-1}) \quad (f(c_{\nu}+1) - f(c_{\nu})/(c_{\nu}+1 - c_{\nu}) \leq \beta^{\nu}$, so that from (H) the error in the Γ_{ν}^{0} and C_{ν}^{0} approximations to $\gamma_{0} = C^{0} = \Gamma^{0}$ is not greater than β^{ν} .

Although the slope condition (K') is sufficient for one-one (B), it is far from necessary. We shall construct functions of arbitrarily great slope for which (B) is one-one.

Consider the set of all ratios (note: not slopes) f(b+f(a+1)-f(b+f(a))/f(b+1)-f(b) where a, b are arbitrary integers on 0, 1, \cdots , p-1. Of these there are only a finite number, each less than one, since the numerator is the difference of function values on a proper subinterval of (b, b+1). Let M be the maximum of these ratios, M < 1.

Now consider the intervals (b+f(a), b+f(a+1)) and suppose that the ratio of inner to outer slope of f(t) on each of these intervals is bounded above from 1/M, that is:

(L) There exists a k < 1/M such that

$$(f(t_2) - f(t_1)/t_2 - t_1)/(f(b+f(a+1) - f(b+f(a)/f(a+1) - f(a))) \le k$$

for all t_1 , t_2 on

$$b + f(a) \le t_1 < t_2 \le b + f(a + 1),$$

or equivalently:

(L') There exists a k < 1/M such that whenever

$$b+f(a) \le t_1 < t_2 \le b+f(a+1)$$
 and $t_2-t_1 \le \tau \cdot (b+f(a+1)-(b+f(a)))$,

we must have $f(t_2) - f(t_1) \le k\tau (f(b+f(a+1)) - f(b+f(a)))$.

The condition (L') is sufficient for one-one (B).

For, by definition of $M, f(b+f(a+1)-f(b+f(a) \le M(f(b+1)-f(b)))$ and $c+f(b+f(a+1)-(c+f(b+f(a)) \le M((c+f(b+1)-(c+f(b))))$. Now use (L') on the interval (c+f(b), c+f(b+1)) and we have

$$\begin{split} f(c+f(b+f(a+1)-f(c+f(b+f(a) \leq kM(f(c+f(b+1)-f(c+f(b)) \\ \leq kM^2(f(c+1)-f(c)). \end{split}$$

By iteration of this process, one obtains

$$f(c_1 + \cdots + f(c_{\nu} + 1) - f(c_1 + \cdots + f(c_{\nu}))$$

$$\leq k^{\nu-2} M^{\nu-1} (f(c_1 + 1) - f(c_1)) \leq (kM)^{\nu-2} M,$$

which approaches zero since k < 1/M.

While this discussion is cumbersome, it nevertheless shows that a function f(t) defined arbitrarily (consistent with monotonicity) at $t=0, 1, 2, \dots, p-1, p$, and then at all t=b+f(a), a, b on $0, \dots, p-1$, and elsewhere by the broken line connecting these points, must satisfy (L) with k=1, since the ratio of inner to outer slope on the straight segments is unity.

Thus the broken line function connecting f(0) = 0, f(1) = e > 0, (e arbitrarily small constant), f(1+e) = 1-e, f(2) = 1 (for p=2) yields a one-one (B). The slope on (1, 1+e) however is (1-2e)/e, which may be arbitrarily large.

9. Algebraic examples of the one-one case. Example 1. Let $f(t) = t^n/p^n$ for an integer $p \ge 2$ and an integer n on $1 \le n < p$. One verifies the properties of §2, and condition (K'') with $\beta = n/p$. For n = 1, our theory reduces to the classical decimals with base p. In the general case let q be an integer not greater than p - 2, and let C^0 be the limit for sequence $\{q, q, \cdots\}$. Then $C^0 = q + f(C^0)$, and the number $\alpha = C^0/p$ satisfies $p\alpha = q + \alpha^n$ or $\alpha^n - p\alpha + q = 0$, where $0 \le q/p \le \alpha < (q + 1)/p \le p - 1/p$. Thus the equation $x^n - px + q = 0$, $1 \le n < p$, $0 \le q$

 $\leq p-2$, has exactly one real root on [0, 1), namely $\alpha = (1/p) \cdot (q+f(q+f(q+\cdots))$

In particular, for n=2, p=3, q=1, $x^2-3x+1=0$, $\alpha=(3-5^{1/2})/2$ is approximately

$$(1/3)C_8^0 = (1/3)\left(1 + \frac{1}{9}\left(1 + \frac{1}{9}\left(1 + \frac{1}{9}\right)^2\right)^2\right),$$

with error not greater than $\beta^3 = (2/3)^3$.

Example 2. For $f(t) = (1+t)^{1/n}-1$, $p=2^n-1$, n>1, one has slope on (0, p) not greater than 1/n. We consider $\gamma=1+f(q+f(q+\cdots))$ where $0 < q \le 2^n-2$. We have $\gamma=1+f(q+\gamma-1)=1+(q+\gamma)^{1/n}-1$ or $\gamma^n-\gamma-q=0$. Thus, the equation $x^n-x-q=0$, n>1, $0 < q \le 2^n-2$, has only one real root γ on (1, 2], namely the number γ above.

For instance, n=2, p=3, q=1, $x^2-x-1=0$, $\gamma=1+f(1+f(1+\cdots)$. The successive C_r^0 are $1+f(1)=2^{1/2}=(1+1^{1/2})^{1/2}$ (from here on radicals are "nested"), $1+f(1+f(1)=(1+(1+1^{1/2})^{1/2})^{1/2}$, and so on. Hence $(1+5^{1/2})/2=(1+(1+(1+\cdots)^{1/2})^{1/2})$.

Recalling the remark at the end of §4, and using n=2, p=3, q=2, $x^2-x-2=0$, $\gamma=2=1+f(2+f(2+\cdots))$, the successive approximations being $1+f(2)=3^{1/2}$, $1+f(2+f(2)=(2+3^{1/2})^{1/2})$, $1+f2+f2+f2=(2+(2+3^{1/2})^{1/2})^{1/2}$, and so on. But using the sequence $p-1+f(p-1+\cdots+f(p-2))$, we have $3=2+f2+f2+\cdots$ with approximations $2+f(1)=1+2^{1/2}$, $2+f2+f1=1+(2+2^{1/2})^{1/2}$, whence $2=(2+(2+(2+\cdots))^{1/2})$ which is the classical limit occurring in the inscribed polygon theory [2].

Finally, for n=3, $p=2^n-1=7$, q=6, $x^3-x-6=0$, $\gamma=2=1+f(6+f(6+\cdots))$, the approximations being $1+f6=7^{1/3}$, $1+f6+f6=[6+7^{1/3}]^{1/3}$, or again using the (p-2)-terminating approximations, $2=\{6+[6+(6+\cdots)]^{1/3}\}^{1/3}\}$.

10. "Spectra" of the topological maps of the unit interval. Let $T = \{F_1(t)\}$ be the class of all continuous increasing functions on $0 \le t \le 1$ with $F_1(0) = 0$, $F_1(1) = 1$. These are the topological mappings of the unit interval onto itself [5]. If p is any integer not less than 2 and f(t) is of the type in §2:

(M) f(t) continuous increasing on $0 \le t \le p$; f(0) = 0, f(p) = 1, then F(t) = f(pt) is in the class T. Thus all our functions may be regarded as magnifications of the functions of T by a factor p in the t-direction. Conversely, if $F_1(t)$ is in T and $p \ge 2$, then $F_p(t) = F_1(t/p)$ is a function of type (M). Hence for every $F_1(t)$ in T we regard the sequence of functions $\{F_1(t), F_2(t), F_3(t), \cdots\}$ where $F_p(t) = F_1(t/p)$ for $p \ge 2$. The associated sequence of perfect sets L_p of limit numbers of $F_p(t)$ is a curious sort of "spectrum" for F_1 .

For a fixed $F_1(t)$ in T, the correspondence $(t, F_1(t)) \leftrightarrow (nt, F_1(t))$, $0 \le t \le 1$, is a one-one correspondence of the points on the curves $y = F_1(t)$ and $y = F_n(t)$. This induces a one-one correspondence between the points of the curves F_n and F_{n+1} , namely, $(nt, F_1(t)) \leftrightarrow ((n+1)t, F_1(t))$, $0 \le t \le 1$. The latter may be used to show that the slopes s_n , s_{n+1} of the chords at corresponding points of F_n and F_{n+1} satisfy $s_n > s_{n+1}$. Hence if some F_n satisfies (K') so do all succeeding F_n , and thus $L_p = [0, p)$, $p \ge n$. If F_1 is of bounded slope, there will exist an F_n of slope everywhere less than one. Moreover, one can show that if F_n satisfies (D') and (J'), so does F_{n+1} . This leads to the question whether $L_p = [0, p)$ implies $L_{p+1} = [0, p+1)$. This is in fact not the case.

Example. The broken line function F_1 defined by $F_1(0) = 0$, $F_1(4/9) = 1/3$, $F_1(5/9) = 2/3$, $F_1(1) = 1$ has $L_2 = [0, 2)$, since the product of every two connected slopes of F_2 is less than one (condition (K) with n=2; note that the test (L) fails). But $F_3(t)$ is the function of §7 with L_3 of measure zero. However $L_p = [0, p)$, $p \ge 4$, since the maximum slope of F_3 is one and all successors therefore have slope less than one.

11. Unsolved problems. (1) State simple necessary and sufficient conditions on f(t) such that (B) be one-one. (2) Do there exist functions f(t) which give $C^0 < \Gamma^0$ for non-terminally-periodic sequences $\{c_r\}$? (3) Do functions exist with sets L of every measure between 0 and p? (4) The limits of periodic sequences of period k are algebraic numbers of degree n^k at most for the function of Example 1, §9. Characterize algebraically all such limits.

References

- 1. B. H. Bissinger, A generalization of continued fractions, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 868-876.
- 2. R. Courant and H. Robbins, What is mathematics? Oxford University Press, New York, 1941, p. 125.
- 3. E. W. Hobson, *Theory of functions of a real variable*, vol. 1, 3d ed., Cambridge University Press, 1927, p. 117 ff.
 - 4. O. Perron, Irrationalzahlen, Berlin, 1921, p. 90 ff.
- 5. J. Schreier and S. Ulam, Eine Bemerkung über die Gruppe der topologischen Abbildungen der Kreislinie auf sich selbst, Studia Mathematica vol. 5 (1935) pp. 156-159.

University of Wisconsin