
REPRESENTATIONS FOR REAL NUMBERS 

C. J. EVERETT1 

1. Introduction. In a recent paper2 [ l ] B. H. Bissinger generalized 
continued fractions by iteration of more general decreasing functions 
than the l/x of the classical case. We extend here the algorithm by 
which real numbers are represented as decimals of base p, to general 
continuous increasing functions on (0, p), including the classical x/p 
as special case. This sets up a correspondence from real numbers to 
sequences of integers mod p. Weak sufficient conditions are given that 
the correspondence be one-one. In the one-one case, algebraic ex­
amples are noted. The limit involved in the inscribed polygon prob­
lem appears here in a natural way. In the many-one case, the 
algorithm defines a set L of limit numbers which is perfect and 
nowhere dense. These sets are closely related to the Cantor perfect 
set. Finally, the relation between the above theory and the topologi­
cal transformations Ft of the unit interval into itself is studied. The 
latter yield sequences {Fp} of our functions, £ = 2, 3, • • -, and their 
structure is reflected in the limit sets L2, Ls> • • • • 

2. The algorithm. Let £ ^ 2 be a fixed integer and ƒ(/) a continuous, 
strictly increasing function on the interval Ot^t^p, with /(O) = 0 and 
/ (£) = l(cf. [4]). 

Such a function may be used to associate with every real number 
Yo^O, a sequence {cv} of integers, with O^Co<°°, 0 ^ c „ ^ £ — 1 , 
v — 1, 2, • • • , by way of the following algorithm. We write, for 70 ^ 0 , 

70 = Co + f(yi), Co g 70 < co + 1, 

0 ^ Co < oo,0 ^ 7 l < p, 
(A) 

71 = ci + 7(72), ci S 71 < ci + 1, 

0 ^ ci è P - 1, 0 ^ 72 < p, 
and so on. 

Thus, a t each step, cv is the greatest integer in yv, and 7„+i is the 
uniquely defined real number on the interval 0^t<p such that 
f(yw+i)—yw-"CP9 where 0^7„ — cv<l. 
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Since 71, 72, • • • are all on 0^t<p, it follows that Ci, c2, • • • are 
integers satisfying 0Zjj*cwH*p — l. Hence we have a correspondence 

(B) 70-> {c,} 

from all reals 70 ̂ 0 , to sequences of integers as described. 

3. Termination inp — 1. We ask now whether, under the algorithm, 
sequences may appear terminating in p — 1, p — 1, • • • . Such is the 
case if and only if, for the function ƒ(/) : 

(C) There exists a 7o = / > - l + / ( 7 o ) , p-Kyo<P-
Obviously such a7o—>{/> — 1 , p— 1, • • • } under (A). On the other 

hand, if a number 5o under (A) yields a sequence terminating in 
p — l,p — l, • • -, this implies that some 8V itself yields £ —1,£ — 1 , • • •. 
Suppose then that 70 ( = 5*) under (A) gives 7o = £ — l+/(7i)> 
7 i = £ — l+/(7a)i ' • ' f 7>=ss£ — 1+ƒ (7*4-1) > a n d s o o n - I f (C) is false, 
it follows from continuity of ƒ(t) that : 

(D) f(t) > t - (p - 1), for all * on £ - 1 g t < p. 

We should then have 71 — {p — 1) <f(yi) =70 — (£ — 1), 72 — (£ —1) 
</(72) := :7i —(^ —1)» and so on, with £ > 7 o > 7 i > 7 2 > • • * >ƒ> — 1 . 
Hence /o = Hm yv exists, with p — l<t0<p.But from yv = £ — 1 + ƒ (7^+1), 
we have to = p — l +ƒ(/<>), a contradiction. 

Indeed, the condition "not C" is equivalent to (D), and (D) may 
in turn be rephrased as a slope condition 

(D') (f(p) -f(t))/(p -t)<lonp-l£t<p. 
Moreover, if a 70 satisfying (C) exists, then not only 70 but every ôo 

on 70<do<p will yield {p — 1, p — 1, • • • } under (A). For yo=p — 1 
+f(yo)<ào<P implies ô0 = £ —l+/(ô i ) , hence yo<ôi<p, and so on. 
Since our final object is to obtain a one-one correspondence (B), we 
assume from this point on the necessary condition (D') . The corre­
spondence (B) then maps all reals 70 ̂ 0 onto non-(p — 1)-terminating 
sequences. 

4. Upper and lower limits. Let {c,} be an arbitrary sequence of in­
tegers with 0 ^ £ o ^ ° ° î 0ï&c,£p — l9 J> = 1, 2, • • • , not (^ — ^-termi­
nating. We define C / = Cx+/(cx+i+ • • • +f(c\+v) and I V = cx 
+/(cx+i+ • • * +/(£x+„+l) , where the last parentheses are p-fold. 
Then, from monotonicity, one has C\ g C„x ̂  G+ix < Ty+ix ^ I \ x ^ C\+1, 
so that the limits Cx = lim C, \ Tx = lim I \ x exist and satisfy 

(E) ex â Cx ^ Tx ^ cx + 1. 

Since C,x = Cx+/(C,_ix+1) we have Cx = cx+/(CX+1) and similarly 
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Tx = Cx+/(rx + 1) . Now since the sequence is not (p — 1)-terminating, for 
every X there is a £X+M=£"~2. Moreover, TlÂ+,K~c\+f(c\+i+ • • • 
+/(r ,*+"), and T^cx+f(cx+i+ • • • +/(r*+") . By (E), T*+*gc^ 
+ 1 ^p — 1, so that we have 

(E') ex ^ Cx ^ I* < ex + 1, 

and, as already shown, 

(F) c* = ex + /(C^1), r* = *x + /(i**). 

But (E' , F) imply that, under (A), the numbers C° and T° yield 
the original sequence {cv}. We call these the lower and upper limit 
numbers of the sequence. 

If fit) satisfies (D') , the correspondence (B) maps all reals 70 èO onto 
all non-(p — 1)-terminating sequences. Every such sequence is indeed the 
map of its limit numbers C°, T°. 

Now if Yo yields {cv} under (A), then 

(G) CÜ ^ 70 = co + f(ci + • • • + f(cv + f(yv+1) < r,°, all v% 

and hence C 0 ^ 70 g r o . 
Also, if 70 and 70" yield {cv} under (A), and if 70 ^ 7 o ^ 7 o " , then 

70 yields {cv}. For 

Co ^ 70 = Co + f(y{) S 70 S y I' = c0 + /(7i' ) < c0 + 1, 

hence 70 = £o+/(7i) and 7 / ^71 ^ 7 / ' , and so on. 
I t follows that 70 yields {cv} under (A) if and only if C ° ^ 7 o ^ r ° . 

Thus the correspondence (B) is actually a mapping of disjoint closed 
sets [C°, r ° ] on all non-(£ —1)-terminating sequences. The sequences 
\cv] fall into two classes according as C ° < r ° or C° = r° . The corre­
spondence (B) thus splits into two parts: 

(BO [C°,r°]->{*,}, C°<r<>, 

(B") c° = r°-> {c,}. 

In the case (B") the C„° and IV converge to C° = P =y0 with errors 
thus (see G) : 
, v 0 0 0 0 0 0 

(H) 0 ^ 70 - Cv < Yv - C„; 0 < r„ - 70 ^ Tv - Cv. 

We note here two properties of the sequence {p — l,p — 1, • • • } 
of later use. Although this sequence does not appear under the algo­
rithm, nevertheless the lim C„° exists and is p. For p — l<Cv°<Cv+i0 

<p and /a = Hm CJ> satisfies p-l<t0£p. But C,°=*p-l+f(C»-il) 
=P~l+f(M). Hence t0=p-l+f(to), and by (D') , h=p. 
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A l s o , £ - l + / ( £ - l + • • • + / ( ^ - ~ l + / ( ^ - 2 ) à C , - 1
0 w h e r e t h e f i r s t 

expression contains v (£ —l)'s. Thus the sequence p — l+f(p--2), 
>̂ — 1 + / ( ^ ~ l + / ( ^ - 2 ) , • • • has l imi t£ . 

5. Terminating sequences. We call a sequence {cv} with c„ = 0, 
v>N for some N, terminating. There exist numbers 70>0 yielding 
{0, 0, • • • } under (A) if and only ifƒ(/) has the property: 

(I) There exists a 70 =/(7o), 0 < 7 o < 1. 
Clearly such a 70 yields {0, 0, • • • } under (A). Suppose that 

7o>0 yields {0, 0, • • • } and that (I) is false. By continuity of ƒ(*) 
we have 

(J) ƒ(*) <t for all * on 0 < tS 1, 

and 0<7o=/ (7 i )<7 i = = / (72)<72 • • • . Hence 0 < 7 0 < 7 i < 7 2 < • • • 
< 1 , and /0 = lim yv exists with 0 < / 0 ^ l . But from 7 V = / ( 7 H - I ) follows 
to = f (to), a contradiction. 

Obviously "not I" is equivalent to (J), and (J) may be restated in 
slope form 

(JO ƒ(*) - f(0)/t < 1 on 0 < t £ 1. 

If a 70 exists satisfying (I) then not only 70 but also every 80 on 
0^3o<7o will yield {0, 0, • • • } under (A). Hence for a one-one cor­
respondence (B), (JO is necessary, and we assume from this point on 
that fit) satisfies (DO and (JO-

Under these restrictions, the sequence {0, 0, • • • } has C° = r ° = 0, 
and since in any sequence {cv}, C0 = c 0 + • • • +/(CX), T° = CQ+ • • • 
+ / ( r x ) , it follows that every terminating sequence has r ° = C° and 
falls under (B") . 

We remark here that if {dv\ is a terminating sequence {di, d2, • • • , 
dP} 0, 0, • • • }, then the associated limit numbers D°=A° = do 
+f(dx+ • • • +f(dv+f(D>+i)=d0+f(di+ • • • + ƒ ( * ) . since Z>H-I„O. 

6. The many-one case. Suppose then that ƒ(/) satisfies (DO a n d 
(JO and consider the algorithm (A) only as it applies to numbers 70 
on the interval [0, p) = (0 ^t <p). The correspondences (B' , B'O then 
map the interval [0, p) onto all non-(p — l)-terminating sequences 
{cv} w i t h 0 ^ c r ^ / > — 1 . 

Let L be the set of all limit numbers C°, T° on [0, p) (equal or not) 
of all such sequences, and G the complement of L in [0, p). The points 
of L are then the numbers C° = r ° occurring under (B'O» including 
the limits of all terminating sequences, together with the end points 
C ° < r ° of the closed intervals under (B0« The points of G are those 
of all the open intervals (C°, T°) in (BO- Since G is a union of (non-
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overlapping, indeed, non-abutting) intervals, G is open, and L is 
closed. 

We write [0, p) =L+G, and L = L'+L", where L' is the set of end 
points under (B') and L" the set of C0 = T° under (B") . 

Since the intervals of G are countable, so is the set L ' . We now show 
that L is dense in itself. I t then follows that L is perfect, L {hence 
also L") has the power of the continuum. Since the limits of terminating 
sequences are countable, the set of limits of non-terminating sequences for 
which C° = T° is of the power of the continuum (cf. [3]). 

Indeed, every point X of L is a limit point of limit numbers Z>°=A° 
of terminating sequences {dv}. First let X = C° = r ° for {cv}. Then 
X = lim Cy

0 = lim Tv° and CV°<TV°. The numbers Cv° are in L, being 
limit numbers of terminating sequences. Since the sequence {cy} is 
not (p — 1)-terminating, a subsequence of {r„0} has r„° = c0 +f(ci+ • • • 
+f(cv+l) with cv+l Sp — l, and these IV are thus in L, being limit 
numbers of terminating sequences {c0, ch - • • , cv+l, 0, 0, • • - } m 

our class. Hence X is a limit point of points of L. 
Second, let X = C° < T° for {cv}. Then the sequence {cv} is not termi­

nating, and a subsequence of {Cv°} is properly increasing to C° as a 
limit point. 

Finally, let C° < T0 = X f or {cv}. Since {cv} is not (p — 1) -terminating, 
a proper subsequence of {rv

0} with c„+l ^p — 1 is properly decreas­
ing to r ° as a limit point. Hence L is dense in itself. 

If ƒ(/) admits a sequence {dv} with Z>°<A°, that is, if the correspond­
ence (B) is not one-one, then the set L is nondense on [0, p). If {a, b) 
is a subinterval: 0^a<b<p, we show that (a, b) contains a subin-
terval containing no point of L. If {a, b) itself contains no point of L, 
(a, b) will serve. However if a point X of L is in (a, b) and if X = C° <T° 
or C°<r °=X for some {cv) then the interval (a, b) intersects (C°, T°) 
in an interval containing only points of G. The only case remaining 
is X = C0 = r ° in (a, b), X = lim G° = lim I\,°. But Cv

0<c0+f(cl+ • • • 
+f(cv+f(D»)<c0+f(ci+ * * ' +f(cv+f(A«)<Tvo. The inner numbers 
define an interval of G, interior to (a, b) for sufficiently large v. 

7. An example. Consider for p = 3 the function f(t) defined by 
/ ( 0 ) = 0 , jf(4/3) = l / 3 , / ( 5 / 3 ) = 2 / 3 , jf(3) = l, and elsewhere by the 
broken line connecting these points. I t is clear that 4/3 and 5/3 
yield {l, 1, • • • } under the algorithm. Moreover, for this sequence, 
C° = 4/3 and r ° = 5/3 as is seen graphically from the sequences 
1+/ (1) , 1 + / ( 1 + / ( 1 ) , • • • and l + / ( 2 ) , l + / ( l + / ( 2 ) , . . . . Imagine 
that we blacken the intervals (i+f(C°), i+f(T°)), i = 0, 1, 2. The first 
of these defines three intervals (j+f(0+f(C°), j + / ( 0 + / ( r ° ) ) , j==0, 1, 
2, and the last similarly, all of which we blacken. (Graphically, the 
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process amounts to projecting the function values above each black 
interval onto the three 45° lines and thence down to the /-axis.) Repeti­
tion of this process yields a set of open intervals of total length 
l /3+2/3+3(2/3)(l /4)+ • • • = 1/3+2/3(1 +3/4 + (3/4)2+ • • 0 = 3 . 
It follows that the set of black intervals exhausts the set Gy and the 
complement L is of measure zero, perfect, and nondense on [0, 3). 
While this is not quite the Cantor "middle-third" set it has precisely 
the same structure. 

8. Sufficient conditions for one-one correspondence. Let CQ <TO < So 
<Co+l and 70, 71, • • • , yn; S0, Si, • • • , Sn, be the numbers resulting 
from the first n steps of the algorithm. We say that the slopes 
/(St)— fiyù/Si—y h i = l , • • • , n, are connected. 

In order that the correspondence (B) be one-one it is sufficient that: 
(K) There exists an integer n such that the product of every n connected 

slopes is less than one. 
Suppose that (B) is not one-one, and let X' be the class of all in­

tervals (C°, r°) under (B'). Then there must be in X' an interval of 
maximal length. For this interval, write r°-C° = (/(r i)-/(C1)/r i-C1) 
• • • (f(T»)-f(Cn)/T"-Cn)(Tn-Cn).The interval (O, r») is in X', 

hence these n connected slopes have product not less than 1, contra­
dicting (K). 

Stronger sufficient conditions are: 

(KO f(h) - f(h)/h - h < 1, 0 £ h < h S p. 

(K") There exists a /S such that 0<j3<l, f(t2)-f(h)/h-hSP on 

In case(K") obtains, we note that Tf-Cf = (f(T^)-f(C^))/T,-£ 

-eu1) • • • (/(ri^-ACi^/r^-Ci-1) (f(c,+i)-f(c,)/(c,+i 
— cp) gj3", so that from (H) the error in the r„° and CP° approxima­
tions to Yo = C° = r° is not greater than P". 

Although the slope condition (K') is sufficient for one-one (B), it 
is far from necessary. We shall construct functions of arbitrarily 
great slope for which (B) is one-one. 

Consider the set of all ratios (note: not slopes) f(b+f(a+l) 
—f(P+f(a))/f(b + l)—f(b) where a, b are arbitrary integers on 
0, 1, • • • , £ — 1. Of these there are only a finite number, each less 
than one, since the numerator is the difference of function values on 
a proper subinterval of (6, 6+1). Let M be the maximum of these 
ratios, M<1. 

Now consider the intervals (b+f(a), b+f(a+l)) and suppose that 
the ratio of inner to outer slope of ƒ(/) on each of these intervals is 
bounded above from 1/M, that is: 
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(L) There exists a k<l/M such that 

(ƒ(« ~f(h)/h - h)/(f(b+f(a+1) -f(b+f(a)/f(a+1) -ƒ(<>)) £ k 

for all h, h on 

* + ƒ ( « ) ^ i < ^ ô + / ( a + l ) , 

or equivalently : 
(L') There exists a k < l/M such that whenever 

b+f(a)^h<t2£b+f(a+l) and h-h^T-(b+f(a+l)-(b+f(a)), 

we must have/(<2) - / « 0 Ûkr(ƒ(&+ƒ(a+1) -ƒ(&+ƒ(<*)). 
77se condition (L') « sufficient f or one-one (B). 
For, by definition of i l f , / (6+/(a + l) -ƒ(&+ƒ(«) ^ M(f(b + l) -ƒ(&)) 

a n d c + / ( & + / ( a + l ) - ( c + / ( & + / ( a ) ) g J f ( ( c + / ( è + l ) - ( c + ƒ ( & ) ) . Now 
use (L') on the interval (c+f(b), c+f(b+l)) and we have 

f(c+f(b+f(a+1) - f(c+f(b+M S kM(f(c+f(b+1) - f(c+f(b)) 

£kM\f(c+l)-f(c)). 

By iteration of this process, one obtains 

f(ci + • • • + f(c, + 1) - fid + • • • + ƒ(*) 

^ fr-WKfid + 1) - / (d)) ^ (kM^M, 

which approaches zero since k<l/M. 
While this discussion is cumbersome, it nevertheless shows that a 

function f(t) defined arbitrarily (consistent with monotonicity) at 
/ = 0, 1, 2, • • • , p — 1, p, and then at all t — b+f(a), a, b on 
0, • • • , p — 1, and elsewhere by the broken line connecting these 
points, must satisfy (L) with £ = 1, since the ratio of inner to outer 
slope on the straight segments is unity. 

Thus the broken line function connecting ƒ(())= 0, / ( 1 ) = £ > 0 , 
(e arbitrarily small constant), / ( 1 + e ) = 1—e,/(2) = 1 (for£ = 2) yields 
a one-one (B). The slope on (1, 1+e) however is (1— 2e)/e, which 
may be arbitrarily large. 

9. Algebraic examples of the one-one case. Example 1. Let 
f(t)=*tn/pn for an integer p^2 and an integer n on \^Ln<p. One 
verifies the properties of §2, and condition (K") with (i = n/p. For 
n = 1, our theory reduces to the classical decimals with base p. In the 
general case let q be an integer not greater than p — 2, and let C° be the 
limit for sequence {q, q, • • • }. Then C° = g+/(C°), and the number 
a = C°/p satisfies pa = q+an or a n — pa+q = 0, where 0^q/p^a<(q 
+ 1)/P£P — 1/P- Thus the equation xn-px+q = 0, l^n<p, O^q 
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^p — 2y has exactly one real root on [0, 1), namely a = (l/p) 

•(«+ƒ($+ƒ(« + 
In particular, for n = 2, £ = 3, g = l, *2--3tf + l =0 , a = (3~S1 /2)/2 is 

approximately 

(l/3)C» = (l/3)(l + l(1 + l(u-l)2)2), 

with error not greater than /33 = (2/3)3. 
Example 2. F o r / ( 0 = ( l + 0 1 / w — 1, p = 2n — l,n>l, one has slope on 

(0, p) not greater than 1/n. We consider 7 ==1+/(<Z+ƒ(<?+ • • • ) 
where 0 < g ^ 2 n - 2 . We have y = l+f(q+y-l) = l + (q+y)l/n-l or 
7n—7 —g = 0. Thus, the equation xn—x — q = 0, n>l, 0<q?£2n — 2, 
has only one real root 7 on (1, 2], namely the number 7 above. 

Forinstance,w = 2 , ^ = 3,g = l , x 2 - ^ - l = 0 , 7 = l + / ( l + / ( l + • • . . 
The successive C>° are l+jf(l) = 21/2 = (1 + 11/2)1/2 (from here on radi­
cals are "nested"), 1 + / ( 1 + / ( 1 ) = (1 + (1 + 11/2)1/2)1/2, and so on. 
Hence (1+51 /2) /2 = (1 + (1 + ( 1 + • • • )1/2. 

Recalling the remark at the end of §4, and using n = 2> p = 3f q = 2, 
x2—x — 2 = 0 , 7 = 2 = l + / ( 2 + / ( 2 + • • • ), the successive approxima­
tions being l + / ( 2 ) = 3 1 / 2 , l + / ( 2 + / ( 2 ) = (2+31 '2)1/2 , 1 + / 2 + / 2 + / 2 
= (2 + (2+31 /2)1 /2)1 /2 , and so on. But using the sequence p-\ 
+KP-1+ • • • + / ( p - 2 ) , we have 3 = 2 + / 2 + / 2 + . • . with ap­
proximations 2 + / ( l ) = l+2 1 / 2 , 2 + / 2 + / l = l + (2 + 21/2)1/2, whence 
2 = (2 + (2 + ( 2 + • • • )1 /2 which is the classical limit occurring in the 
inscribed polygon theory [2]. 

Finally, for n = 3, £ = 2 * - l = 7, g = 6, x*-x-6 = 0, 7 = 2 = l + / ( 6 
+ / ( 6 + • • • » the approximations being 1 + / 6 = 71/3, l + / 6 + / 6 
= [6 + 71/3]1/3, or again using the (p — 2)-terminating approximations, 
2 = { 6 + [ 6 + (6+ • • • )i/3]i/3ji/3< 

10. "Spectra" of the topological maps of the unit interval. Let 
T={Fi(t)} be the class of all continuous increasing functions on 
0 = £ = 1 with 7*1(0) =0 , -Fi(l) = 1. These are the topological mappings 
of the unit interval onto itself [S]. If p is any integer not less than 2 
and f{t) is of the type in §2 : 

(M) f if) continuous increasing on O^t^p; /(0) =0 , f{p) = 1, then 
Fit) =fipt) is in the class T. Thus all our functions may be regarded 
as magnifications of the functions of T by a factor £ in the /-direction. 
Conversely, if Fiit) is in T and p ^ 2, then FPit) = Fiit/p) is a function 
of type (M). Hence for every Fiit) in T we regard the sequence of 
functions [Fiif), F2(t), F9(t), • • • } where FPif) = Fxif/p) for p^2. 
The associated sequence of perfect sets Lp of limit numbers of Fpif) 
is a curious sort of "spectrum" for F\. 
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For a fixed Fi(t) in T, the correspondence (2, Fi(t))<r+(nt, Fi(t)), 
0 ^ / ^ l , is a one-one correspondence of the points on the curves 
y = Fi(t) and y = Fn(t). This induces a one-one correspondence be­
tween the points of the curves Fn and Fn+i, namely, (nt, Fi(t)) 
<r->((n + l)tf Fi(t)), O ^ / ^ l . The latter may be used to show that the 
slopes sn, sn+i of the chords at corresponding points of Fn and Fn+t 
satisfy sw>sw+i. Hence if some Fn satisfies (K') so do all succeeding 
Fnf and thus Lp = [0, p), p^n. If Fi is of bounded slope, there will 
exist an Fn of slope everywhere less than one. Moreover, one can show 
that if Fn satisfies (D') and (JO, so does Fn+\. This leads to the ques­
tion whether Lp = [O, p) implies Lp+i = [0, £ + 1). This is in fact not 
the case. 

Example. The broken line function Fi defined by J F I ( 0 ) = 0 , 

FI(4/9) = 1/3, Fi(5/9) = 2 / 3 , ^i( l ) = 1 has L 2 = [0, 2), since the prod­
uct of every two connected slopes of F2 is less than one (condition (K) 
with n = 2; note that the test (L) fails). But Fz(i) is the function of §7 
with Lz of measure zero. However Lp = [O, p), £ = 4, since the maxi­
mum slope of -F3 is one and all successors therefore have slope less 
than one. 

11. Unsolved problems. (1) State simple necessary and sufficient 
conditions on ƒ(/) such that (B) be one-one. (2) Do there exist func­
tions f(t) which give C° < T° for non-terminally-periodic sequences 
{cv} ? (3) Do functions exist with sets L of every measure between 0 
and p ? (4) The limits of periodic sequences of period k are algebraic 
numbers of degree nh at most for the function of Example 1, §9. Char­
acterize algebraically all such limits. 
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