SOME REMARKS ABOUT ADDITIVE AND
MULTIPLICATIVE FUNCTIONS

P. ERDOS

The present paper contains some results about the classical multi-
plicative functions ¢(#), o(n) and also about general additive and
multiplicative functions.

(1) It is well known that #/¢(n) and ¢(n)/n have a distribution
function.! Denote these functions by fi(x) and fy(x). (fi(x) denotes the
density of integers for which n/¢(n) <x.) It is known that both fi(x)
and fa(x) are strictly incrtasing and purely singular.! We propose to
investigate fi(x) and fa(x); we shall give details only in case of fi(x).
First we prove the following theorem.

THEOREM 1. We have for every e and sufficiently large x
(1) exp (— exp [(1 + Qax]) <1 — fi(#) < exp (— exp [(1 — az])
where a =exp(—1y), v Euler’s constant.

We shall prove a stronger result. Put 4,=][;_p:, : consecutive
primes. Define 4; by A#/¢(Ar) Zx>A1—1/$(Ar—1). Then we have

) 1/4x <1 — fi(%) < 1/45".

First of all it is easy to see that Theorem 1 follows from (2), since
from the prime number theorem we easily obtain that log log A
= (14o0(1))ax, which shows that (1) follows from (2).

(2) means that the density of integers with ¢(n) =(1/x)n is be-
tween 1/4 and 1/4,1.

We evidently have for every n=0 (mod A4:), n/¢(n) =x, which

proves
1/4; £ 1 — fi(x).

To get rid of the equality sign, it will be sufficient to observe that
there exist integers » with #/¢(u) =%, (4, Ax) =1, and that the density
of the integers #=0 (mod %), %0 (mod A;) is positive. This proves
the first part of (2). The proof of the second part will be much harder.
We split the integers satisfying n/¢(n) Zx into two classes. In the
first class are the integers which have more than [(1—e)k]=7 prime
factors not greater than Bpi, where B=B(e) is a large number. In

Received by the editors June 22, 1945, and, in revised form, January 28, 1946.
1 These results are due to Schénberg and Davenport. For a more general result see
P. Erdss, J. London Math. Soc. vol. 13 (1938) pp. 119-127.
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the second class are the other integers satisfying n/¢(n) 2«. It is easy
to see that the number of integers of the first class does not exceed

(3) 21(Bpk)/Ar = O(Pk)/Ar < I/Ak

since w(Bpr) =0(pr) (w(x) denotes the number of primes not greater
than x), and from the prime number theorem log 4,> (1 —¢€)p: if &
is small.

Let now 7 be any integer of the second class. A simple argument
shows that

C1€1
n(-)< (Do
pin ? tart1 b log pu

The prime indicates that the product is extended over the p > Bps.
The first inequality follows from the definition of 4;, and from the

fact that # is of the second class, the second inequality follows from
the prime number theorem. Thus we have

Ci1€1
(0 z' .
pin log 2
Denote now by J; the interval (B thy, Bttipy), t=1, 2, - - + . It follows

from (4) that for every integer of the second class there exists some ¢
such that

() Zt

pin " log px

€1

where in ), the summation is extended over the primes in J;. Thus
for some ¢, #» must divide more than

(6) c1e1(B/2%) (pi/log pr) = B

primes in J;. The density of the integers satisfying (6), that is, the
density of the integers of the second class, is less than

0 (L) erepgeen <t

that is, D, ins, 1/p <1 for large enough k (Bis mdependent of k), if
B =DB(¢) is large enough. Theorem 1 now follows from (3) and (7).
From Theorem 1 we easily obtain that

hm Z exp (¢(n))

nm=l

exists. In fact we can also prove that for a <a
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1 z
lim — ), exp (exp (¢(n))

z—w X nm=l
exists. For a>a the limit is infinite.
THEOREM 2.

1/45

<1 — fix) < 1/45".
We omit the proof since it is very similar to that of Theorem 1.
THEOREM 3. Let €0, then

fil + ¢ = (1 + o(1))a/log e, fo(1 + € = (1 + o(1))a/log 2.

We prove only the first statement since the proof of the second is
essentially the same. Let # be an integer with #n/¢(n) <1+ €. Clearly
does not divide any prime p<(1—(14¢€)~1)1=¢e"14+0(1). Thus
(8) il 4+ €) < (14 o(1))a/log .

Denote by J; the interval
@1 -0 +9™) 41 -0+ H).

If an integer #5£0 (mod 2:), p:i<(1—(14+¢€)~1), does not satisfy
n/p(n) S1-+e¢, then a simple computation shows that for some ¢ it
must have at least ¢ prime factors in J;. Thus the number of these
integers does not exceed

A+ == (T ) /1= otasiog e,

t=1 \ pinJ,

which together with (8) proves Theorem 3.

It follows from Theorem 3 that f{ (1) = «. It would be easy to
show that f{ (n/¢p(n)) = « for every n.

Denote by fi* and f,* the distribution functions of

1\« 1
1- —) and — > 0.
LI( ? Z *
THEOREM 4.
(a) ao (a) aa
fi +¢ = (14 0(1)) — fa =1+ 0(1)) —
log ¢! log ¢!

We omit the proof since it is very similar to that of Theorem 3.
Let us denote by F.(x), >0, the distribution function of
I1..(1 =1/1og p*)—1, a>0.
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THEOREM 5.
Fi(1 4+ ¢ = (1 + 0(1))be,

thatis, F{ (1) =b. Also FJ (1) =0 for a <1 and F{ (1) = » for a>1.

We do not give the details of the proof since it would be long and
similar to that of Theorem 3. We just make the following remarks:
If » satisfies

1
2

»in lOg P

then # does not divide any prime p=exp(1/e). Thus F{ (1+¢)
=<(14o0(1))ae. But here (unlike in Theorem 3) we have Fi(1+¢)
=(140(1))b, b<a. We obtain analogous results if we consider the
additive function Y, . 1/log p. It is possible that F{ (x) exists for
every 1 <x, but this we can not prove.

(2) The following results are well known:

S1+4e

) 3(1”3— (1 + o(1)) —x, g

M=l Mual

=+ o) T

The density of integers for which ¢(n+41)/(n+1) >o(n)/nis 1/2, also
the density of integers for which ¢(n+1)/(n4+1)>¢(n)/n is 1/2.2
Now we prove the following theorem.

THEOREM 6. Let g(n)/log log log n— . Then we have

n+-g(n) m
6)] 2 ?(;l—) = (1 4+ o(1)) —g(n)
(ii) The number of integers m in (n, n-+g(n)) which satisfy
¢(m+1)/(m~+1) >¢p(m)/m equals (1+0(1))g(n)/2.
(iii) The number of integers m in (n, n+tg(n)) which satisfy
m/p(m) Sc equals (1+0(1))g(n)fi(c). In other words the distribution
Sfunction of p(m)/m in (n, n+g(n)) is the same as the distribution func-

tion of p(m)/m.

All these results are best possible; they become false if for infinitely
many #, g(n) <c log log log .

We prove only (i); the proof of (ii) and (iii) are similar. Let
A =A(n) tend to infinity sufficiently slowly. Put

fu = Dl(m)Dz(m),
m

2 P, Erdés, Proc. Cambridge Philos. Soc. vol. 32 (1936) pp. 530-540.
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where . )
Dy(m) = H’ <1 - ?>, Dy(m) = }IIM" (1 - ?).

The prime indicates that p <4, the two primes that p>A4. We evi-
dently have

n+g(n) n+g(n) d

©) 1 72
= (1 + o()e(m) IT (1 - ;) = (U o) = g0

PSA
where the three primes indicate that the prime factors of d are not
greater than 4, and (g(n)/d) denotes the number of multiples of d
in (n, n+g(n)). Now we show that for sufficiently large 4 the num-
ber of integers in (n, n+g(n)) which satisfy

(10) Dym) <1 —¢
is o(g(n)). It will be sufficient to show that
(11) I1 Dom) > (1 = m)r»

for every 7>0, the product over m runs in (n, n+g(n)). We evidently

have
ImI Dam) > H1(1 _ %>2a<n)/p—1II2 (1 B %>

where, in ][], 4 <p <g(n), and in [],,  runs through the prime fac-
tors greater than g(n) of n(n+1) - - - (n+g(n)). Clearly

¢ \?(

> T (1-2) " > = mee.
>4 b4

From the prime number theorem we have [],<.p <e?. Thus

1 c

IL> I (1-)> =

p<2y b4 log y

where y=log[n(n+1) - - - (n+g(n))]. Hence using g(n)/log log log n
— o, we obtain by a simple calculation that

IL: > @ = ng)oem

which proves (11) and therefore (10). From (9) and (10) we obtain by
a simple argument that
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n+g(n) ¢( ) n+g (n) %2
(12) 2 — > =o(1)) X Dim) = (1 + o(1))g(m) =

(i) now follows from 9 and (12).3

Now we are going to prove that (i) is best possible. Put g(NV)
=clog log log N, n/2<N<n. Further let A4, A, ---, 4,
r=[2-1 log log log 7] be relatively prime integers all of whose prime
factors are less than 2—! log # and for which

1/4 < ¢(49)/4: < 1/2, i=1,2,-+,71

This is obviously possible since

1 c 1 \ (log log log n)/2
(- 1)<t o (1),
P< (log n)/2 ? log log » 4

Now choose /2 <N <n so that N+;j=0 (mod 4,), j<r. This is pos-
sible since by the prime number theorem 4,-4, : - -+ 4,<n/2. (In all
cases where we refer to the prime number theorem a more elementary
result would be sufficient.) Clearly

N+(log log log n)/2 ¢(m) < log log lOg n

m=N+1 m 4
From (9) we have

N+g (V) log log 1
(13) > 3(——)<<1+o<1»~<<zv>——‘3g—ig—°§—").

N+(log log log n)/2 M 2
Thus finally from (10) and (11) we obtain by a simple calculation

N+g(N) ?@—)— < (1 _ c) ____g(N)
m

m=N
which shows that (i) is best possible.

THEOREM 7. Let gi(n)/log log n— . Then we have

nt+01(n) 4 T2
6 2 —(mm—) = (1 + o(1)) ——gl(n)

(ii) Let ga(n)/log log log n—o. The number of integers m in
(n, n+ga(n)) which satisfy a(n+1)/(n+1)>o(n)/n equals (1+40(1))
-g(n)/2.

8 This proof is similar to a proof in P. Erdés, J. London Math. Soc. vol. 10 (1935)
pp. 128-131.

¢ This proof is similar to a proof of Chowla and Pillai, J. London Math. Soc. vol. §
(1930) pp. 95-101.
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(iii) The number of integers m in (n, n+g(n)) whick satisfy o(m)/m
<c equals (140(1)) g(n) fa(c).5 All these results are best possible.

We omit the proof of Theorem 7, since it is similar to that of Theo-
rem 6. We must allow g1(#)/log log n— =, since it is well known that
for some m <n, a(m) > ¢ log log n (for example, m =] ] ,<qog 2 £)-

Let f(n) =1 and F(n)=1 be multiplicative functions with

S 1= ZF(”)
I3 ? ?

Then we have:

THEOREM 8. Let A =A(n) tend to inﬁnity arbitrarily slowly, then

n+A
I 2 flm) <1+ <o<1)) — Zlf(m)
and m:: Meun
— Z F(m) > (1 + o(1>) — ZIF(m)

The proof is quite trivial; it is similar to that of (9). It can be shown
that lim (1/%)Y_%_.f(m) and lim (1/%)Y %, F(m) exist.

Denote by V(n) the number of prime factors of # and by d(#) the
number of divisors of #. We can prove analogs to Theorem 6 for these
functions. But the results are very unsatisfactory since for v(n) we
have to choose g(n) =nelelen and for d(n), g(n) =n° for some suit-
able c. These results are probably very far from best possible.

(3) Let B=p1o%he%2 « o . ok P paal v . . K pyok, Put (p‘.ac)bc
=p;*i+1, We prove the following theorem.

THEOREM 9. Let 1 <x, then for almost all n the number of b's greater

than x equals
%71 log log # + o(log log ).

ReEMARK. We immediately obtain that every interval (x, x+¢)
contains (1+0(1)) (e¢/x(x+¢€)) log log n b’s.

We are going to give only an outline of the proof. First of all we can
assume that all the a's are 1, since for large 7 the number of integers
not greater than # for which 7 or more of the o's is greater than 1
is less than ez, since the number of these integers is clearly less than

(Zp: —#)f/rl<en.

§ This result has been stated previously, see footnote 4.
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Denote by F(n) the number of prime factors p of # such that no prime
g in (p, p*) divides n. F(n) is thus the number of s not less than x.
We have

(14) Z F(m) = — log log 7 4+ o(log log n).
Me=]
We now give a sketch of the proof. Clearly

S Fm) = 3 fo(n)

m==1

where f,(n) denotes the number of integers m <%, with m=0 (mod p)
and m#0 (mod ¢q), p <g<p® It is easy to see that for p <n*

fo(m) = (1 + o(1))n/px (p large).
fo(n) = n/p.

Also for all p

Thus
SFm =Y —+0 3 =+ olog log n)

] psnt D% ne<p<n

log log n
=({1+0(1)——
which proves (14). Now we have to show that
F(m) = (1 4 o(1))(log log n)/x

for almost all m <#n. We use Turdn’s method.® We have

Z (F(m) — — log log n)2

Me=]
log 1 2
Z F*m) — — log log » Z F(m) + n (ig_;og_n).

NOW M=l M=l
n l 1 2
(15) S Fm) = (1 + o) (ﬁg-g—”-)

We omit the proof of (15), it is similar to the proof of (14). Thus

E <F (m) — — Iog log n>2= o(n(log log n)?)

Maal

which proves Theorem 9.

¢ P, Turén, J. London Math. Soc. vol. 9 (1934) pp. 274-276.
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THEOREM 10. For almost all n we have

> bi = (1 + o(1)) log log n log log log n.
piln
THEOREM 11. Let 1 <x be any number. For almost all n there exist
intervals (m, m*), m* < n, such that for every m <y <m?, n#0 (mod y).

We omit the proofs of Theorems 10 and 11. They are similar to that
of Theorem 9.

For some time I have not been able to decide the following ques-
tion: Is it true that almost all integers # have divisors d; and d., such
that d1 <d2 < 2d1

(4) Let f(n) be an additive function which has a distribution func-
tion. Then it is well known that?

(16) > f(®) < o > (f(p))? < w,
» P » ?
F@) =£(p) if |f(p)| =1 and f(p)' =1 if |f(p)| >1. Assume now that

|f(p*)| = C (f(n) is assumed to be real valued). We prove the follow-
ing theorem.

THEOREM 12. Let ] f(p“)l =c. Denote by F(x) the distribution func-
tion of f(x). We have
F(x) > 1 — exp (— ¢x),

for every ¢ and sufficiently large x. In other words the density of integers
with f(n) 2 x is less than exp(—cx).

Put g(n) =exp(2¢f(n)), g(n) is multiplicative and clearly has a dis-
tribution function. Define

film) = 25 fp),  gu(n) = exp (2cfu()).

pln,pSk

For sake of simplicity we assume that f(p*) =f(p). It is well known
that the distribution function Fi(x) of fi(n) converges to F(x), thus
the distribution function Gx(x) of gr(x) converges to G(x) (G(x) is the
distribution function of g(x)). Suppose now that Theorem 12 is false,
then there exists a constant ¢ and infinitely many x, with x,— » and

F(z,) > 1 — exp (— cx,).
Therefore for any 7 there exists a k so large that

Fi(x,) > 1 — exp (— cx,).

7 P. Erdés and A. Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721,
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Thus the density of integers with gu(n) >exp(2cx,) is greater than
exp(—¢x,) and hence

Zs;gk(m) > (1 —¢) exp (ca)m

for n sufficiently large. Thus for any 4 there exists k and #,, such that
for all n>n,

(7 Engk(m) > An.
On the other hand
Z nim) = g";lgmgk@) = ég‘u + (8:(2) — 1)
Put gu(p) —1=hi(p). Clearly
> nim = S IL0 + e = Z[ 2]t

M=l mel plm

where hi(d) =] [, ahs(p). Thus
hk( ) ki(p)
Egk(M) S"E I;I(l-l- » >

From the fact that g(#) has a distribution function and that f(p<) is
bounded, it easily follows that (we shall give the details in the proof of
Theorem 13)

k() (k(p))*
= ST Ty
Thus finally

<o,  kp) =g(p) -1

E gr(m) < e H (1 + -%) < cam,

me=l

which contradicts (17), and this contradiction establishes the theo-
rem.

It is easy to see that Theorem 12 is best possible. Let ¢(x)
tend to infinity arbitrarily slowly; then there exists an additive
function f(n) such that its distribution function F(x) satisfies
F(x;) <1 —exp(—¢(x:)x:;) for an infinite sequence x; with x;— 0.
We omit the proof.

THEOREM 13. Let g(n) 20 be multiplicative. Then the necessary and
sufficient condition for the existence of a distribution function is that
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’ ’

? » ?
where (g(p)—1)" =g(p)—1 if Ig(p)—ll =1 and 1 otherwise.

The proof follows very easily from (16). Put log(g(n)) =f(n). g(n)
has a distribution function if and only if f(#) has a distribution func-
tion. Thus from (16)
lo ! lo N2
> (og g(2))" _ o, 3 ((log ()))* _ -

» P ) ?
Now it follows from (19) that if we neglect a sequence of primes g with
> 1/g< « that lg(p)—ll <1/2. Thus

log g(p) = log (1 + (g() — 1)) = g(p) =1+ (1/2)(g(p) — 1)* + - - - .

Also simple computation shows that (log g(p))'>(1/4)(g(p) —1)2.
Thus from (19)

ay T EDZV s @0

(19)

> (g(;b)p— 1)? < w

and

2 ((1/2)(g(p) — 12+ (g(p) — 1)+ -+ ) < w.

Thus Y_,(g(p) —1)/p < , which shows that (18) is necessary.
If the two series in (18) converge, then clearly

log g(2) e —1)  A/2)k) -1 o
L (WD LI, )

and

> (log j}(?))2 <Y (g(ﬁ)p- 1)? <w

which shows that f(n), and therefore g(n), has a distribution function.
Thus (18) is necessary, which completes the proof of Theorem 13.

These results suggest that if g(n) is multiplicative, satisfies (18),
lg(p“)[ <c, then g(n) has a mean value, that is, lim(1/x)D_%.,f(n)
exists. I have not yet been able to prove this.

?
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