THE ASANO POSTULATES FOR THE INTEGRAL
DOMAINS OF A LINEAR ALGEBRA

FRED KIOKEMEISTER

1. Introduction. The multiplicative ideal theory for a noncommuta-
tive ring 4 as developed by Asano! postulates the existence in 4 of a
maximal bounded order R which satisfies the maximal chain condition
for two-sided R-ideals contained in R and the minimal chain condi-
tion for one-sided R-ideals in R containing any fixed two-sided
R-ideal. Let 4 be a separable algebra over the field P, and let P be
the quotient field of the domain of integrity g. It has been shown [2,
pp. 123-126] that if g has a Noether ideal theory, then a maximal
domain of g-integers exists in 4 and satisfies the conditions of the
Asano theory. It is the purpose of this paper to prove that the con-
dition of separability can be removed from 4 and that it need only
be postulated that 4 shall have an identity.

2. Subgroups of direct sums. Let G be a commutative group with
operator domain Q. Let G be the direct sum of the Q-subgroups
Gy, G, - - -, Ga. We shall write G=G1+ G2+ - + + +Gn. The direct
summand G; gives rise to a projection «; which is an endomorphism
of G on Gi: if g=g1+g+ - - - +gu 2:EG;, then aug=g;. The sum
oy tag+ - - - +a, is the identity operator I. Furthermore the sum
of any subset of the projections a1, @, * + -, a. is a projection. We
shall label in particular the operators &; =Z;-1Ol:‘- Then 6,=04, and
6,=1. In general 8;11=08;+ain. If wEQ, then wa; =aw, and as a re-
sult wd; = 6;w; that is, a; and §; are Q-operators. It follows that o;H
and §;H are Q-subgroups whenever H is an Q-subgroup.

LeMMA 1. Let the commutative group G=G1+Gs+ « - + +G, contain
the Q-subgroups H and K. If HD K, then ac;HD oK, §;H2 8:K, and
8 HNG;:2 6:KNGs.

Since HDO K, the image ;K of K under the homomorphism of H
on a;H must be contained in o;H. By the same argument §;H2 6K,
and therefore §;HNG;2 6;KNG;.

LeEMMA 2. Let the commutative group G=G1+Ga+ - - + +G, contain
the Q-subgroups Hand K. If HO K and if o.H = oK, 6: HNG; = §:. KNG,
then H=K.
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Since 6;=a; and aulH =K, it follows that §;H = §,K.

We shall assume that §;H=6§;K and prove that under this as-
sumption 8;y . H = 8;11K. Since ;11 K = (8;+ i) K S 0:K + ;41K and
0:1 K C i1 H, it is obvious that 0 KC (6;K+oz,-+1K)f\8;+1H. On the
other hand let d:k1+a:1k2 be an element of §;K 4,1 K contained in
0:1H. Consider that (8;+a;y1)k: is an element of 8;1 K and therefore
an element of &;.H. Then 6;.H contains 8:k1+aipike— (8:+aip)k
=0£¢+1(k2 —kl) WhiCh lies in 6.-+1Hf\G.-+1 = 6¢+1Kf\G;+1__C_6;+1K. It fOl-
lows immediately that 8:k1+ ik = (8i+air1) kit (ke — ko) lies in
8:11K, and 8;nHN(0:K +0iaK) = 8;11K. However, since §;K =6;H
and a‘,-.,.;K =a,-+1H ’ then §;K +a.~+1K = 0;H +0£.‘+1H ’ and 6.'+1K = 6.'+1H
f\‘(B.‘H+a.~+1H) = 5,’+1H.

The lemma follows by finite induction; for §,H=H, §,K=K.

LeEMMA 3. Let the commutative group G=Gi+Gs+ « - - +G, contain
the Q-subgroup H. Let vy be an automorphism of G contained in the cen-
trum of Q. Then HDvH, a;HDai(vH) =v(a;:H), and §;HNG;2 d:(vH)
NG; ='Y(5.HnG.)

The automorphism 4 lies in the centrum of Q and therefore yH will
be an Q-subgroup of H. It follows by Lemma 1 that c;HDoi(vH),
0:HD 6;(vH), and 6.HNG:2 8:;(yH)NG;. Since v lies in € and «; and
8; are Q-operators, a;(YH) =v(o;H) and 8;(yH) = (8;H).

It remains to prove that §;(yH)NGi=v(8;:HNG;). Consider that
"YG{ ="ya.G=a,fyG=a,~G= G;. Then 5,'(")’1{)ch = 6.-(7H)f\'yG.- =“Y(3.'H)
NyG;. Let y8:;h=+g:; v is an automorphism, and 8;x=g;. It follows
that v(8:H)NyG2v(0:HNG;). But certainly v(8:HNG;) Sy(8:H)
NyG; for any operator ¥.

THEOREM 1. Let G be a commutative Q-group, and let Q contain an
automorphism vy in its centrum. Let G be the direct sum of the Q-sub-
groups Gy, G, * + + , G, and let G contain the Q-subgroup H. If for every
Q-subgroup A; of Gi the Q-group A;/vA; satisfies the minimal (maximal)
chain condition for Q-subgroups of A:/vA:, then the Q-group H/vH sat-
isfies the minimal (maximal) chain condition for Q-subgroups of H/yH.

A chain of Q-subgroups

(A) HDH:DH;D--+-DvH
implies, by Lemmas 1 and 3, the existence of the 2z chains
oH D a;Hy D asHz D -+ + 2 y(aiH), 1=1,2,-++,mn,

(B) &HNG:D&H NG D 8&Hs NG
D D y(EHNGY, i=1,2,,n.
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Lemma 2 implies that if the chain (A) is infinite, at least one of the
chains (B) must be nontrivially infinite. If the minimal chain condi-
tion fails in H/vH, it must fail in one of the groups o;H/v(c;:H) or
8:HNG;/v(6;HNG;) where a;H and §;HNG; are Q-subgroups of Gi;.

The statement of the theorem for maximal chains follows by the
same argument.

3. Chains of g-modules. Let g be a domain of integrity with
Noether ideal theory. This implies that in g every ideal is the product
of powers of prime ideals and that a prime ideal is divisorless. If P
is the quotient field of g, fractional ideals are defined in P. The set
of all ideals in P forms a group under multiplication. In particular
if a is an ideal, a~! will exist such that aa—!=g, and if ac= b¢, then
a=b.

A g-module in P is a set of elements of P which forms a group under
addition and is closed under multiplication by elements of g. The
g-module a is an ideal if aaCg for some element a0 of g. The prod-
uct of an ideal contained in g and a g-module a is contained in a. If
aDDb, the group a/b is a g-module (not contained in P).

LeMMA 4. If g has a Noether ideal theory, and if a is a g-module in
the quotient field P of g, the g-module a/aa has a composition series for
any element a0 of g.

Let a be a g-module contained in P, and let a be an element not
equal to 0 of g. If the principal ideal (a) has the factorization
pmpe” -+ - - P, in g, we shall prove that the chain of g-modules

C2PIDPID - DPED PP Dap 02 aa
allows no nontrivial refinement. The series
o/at 2 pio/aa D piafea 2 - - - 2 pro/as
2 yipw/aa D - - - 2 ap, 6/as 2 (0)

will include a composition series for a/aa.

Let p be a prime ideal in g, and let b be a g-module contained in P.
Assume that between b and pb there lies a g-module ¢ equal to neither:
5D ¢Dpb. Then there is an element 8 of b not contained in ¢ and
an element v of ¢ not contained in pb. We form the chain of ideals
of P: (B8, ¥) D(»8, ¥v) Dn(B, 7). Since p8CTpbCc and yE&c, (v8, 7).
But 8 is not an element of ¢, and therefore (p8, v¥) and (B8, ) are dis-
tinct. Since p(B, ¥) Spb and v is not an element of pb, p(B, ¥) and
(pB, v) are distinct. It would follow that gD (pB, v)(B, ¥)*Dp is a
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chain of distinct ideals in g. However, the prime ideal p is divisorless.
It follows that aDpa allows no nontrivial refinement.

If M is a P-module with linearly independent P-basis #;, %2, * + +, %n
we shall write M = Px,+Pxy+ - - - +Px,.

THEOREM 2. Let M = Px,+Pxs+ - - - + Px, contain the g-module N.
Then if 7y is an element not equal to 0 of g, the g-module N/yN has a
composition series.

The module N is a g-submodule of the direct sum Px;~+ Pxs+ - - -
=+ Px,. The element v of g is an automorphism of M, and the operator
domain g is commutative. Lemma 4 assures us that for every g-sub-
group ax; of Px; the g-module ax;/y(ax;)=~a/ya has a composition
series. The conditions of Theorem 1 are satisfied, and the g-module
N/ N must have a composition series.

4. Orders of finite linear algebras. We shall again assume that g
is a domain of integrity with Noether ideal theory and that P is the
quotient field of g. We consider a linear algebra 4 with identity e of
order 7 over the field P.

An order R of A which contains g can be defined to be a subring of
A which contains g and a basis for 4 [2, p. 124]. We shall consider
only orders of 4 which contain g. A left (right) R-ideal of R is a sub-
module M of R such that RMCTIN (IMRC M) and which contains a
regular element of 4. Then I contains an element ¥ #0 of g and con-
tains the two-sided ideal ¥R: every order R is bounded. Since R con-
tains g, R and every R-ideal of R are g-modules.

THEOREM 3. Let g be a domain of integrity with Noether ideal theory,
and let P be the quotient field of g. If A is a linear algebra with identity
of finite order over P, every order of A which contains g will satisfy the
maximal condition for any chain of left (right) R-ideals contained in R
and the minimal condition for any chain of left (right) R-ideals in R
containing a flxed left (right) R-ideal.

We may consider the algebra 4 to be the P-module Px;+Px,
+ .+« +Px, where x1, 3, - - - , £, constitute a linearly independent
basis for A over P, and R as a g-submodule of 4. An R-ideal I of R
contains an element 50 of g so that R2IMDyR. By Theorem 2
every chain of g-modules between R and ¥R must be finite. In par-
ticular a chain of R-ideals between R and IR must be finite since an
R-ideal is a g-module if R contains g.

Two orders R and R’ are said to be equivalent if there exist regular
elements a, b, ¢, d of 4 such that aRbCR’, cR’"dCR. An order is said
to be maximal if it is contained in no equivalent order.
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The Asano treatment of the ideal theory of a class of equivalent
orders depends on three postulates:

I. There exists a maximal bounded order R in the class.

II. The minimal chain condition holds for left R-ideals in R which
contain a fixed two-sided R-ideal.

III. The maximal chain condition holds for two-sided R-ideals con-
tained in R.

In Theorem 3 we have shown that postulates IT and III are satisfied
by any order of 4 which contains g. If a maximal order exists, it must
be bounded since every order is bounded.

An order of A which contains g and contains only integral elements
of A is called an integral domain. A maximal integral domain is an
integral domain which is contained in no other integral domain.

LEMMA 5. If the order R contains g and is equivalent to the integral
domain S, then R is an integral domain.

Since R is equivalent to S there exist regular elements a, b such
that aRbCS. Since R is an order of 4 there exists in g an element
B5£0 such that 86! is an element of R. Then B6—!RCR. Similarly S,
which is an order of 4, must contain aa™! for some element a0 of g,
and aSe—1CS. Then

a[a(Bb'R)b]a~! C a[a¢Rb]a~! S aSa~! C S,
> (@) (eB)R(ba™t) < S.

Set af =+, ab~'=c; then ¢(yR)c™1C.S, and yRC ¢ LSc where ¢ is a
regular element of 4. It follows that 4R consists only of integral ele-
ments of 4.

Let 7 be an element of R. Let g[r] indicate the polynomial domain
generated by 7 with coefficients in g; g[7] is a commutative ring con-
tained in R. Further vg[r] is a ring of integers. If we consider that
g[7] is a g-module contained in the P-module 4 = Px;+Pxy+ -« - +
+ Px, we may apply Theorem 2 to g[r] and obtain that every chain
of g-modules between yg[r] and g[r] is finite. If H is the union of g
and yg[r], H is a ring of integers, and vg[r]SHCg[r]. Since gCH,
the chain of H-modules

HCHrC (Hr, H?) C - - - Cglr]

is a chain of g-modules between H and g[r] and must be finite in
length. It follows that r satisfies an equation 7* = hyr*¥—1-4-for¥—24- . . .

~+hir with coefficients in H. Then 7 is g-integral, and R is an integral
domain [3, p. 90].
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COROLLARY. A maximal integral domain S is a maximal order in the
class of orders equivalent to S.

We can now establish the existence in 4 of a maximal order by the
following argument: Let all integral domains S, of 4 be well-ordered.

Construct a chain
SCS,,CS,,C---

of domains containing a fixed domain S by choosing S, to be the first
which contains S, S,, to be the first which contains .S,,, and so on. The
union R of the S,; will be a maximal integral domain and, by the
above corollary, R is a maximal order. The class of orders equivalent
to R will satisfy the Asano postulates.

THEOREM 4. Let g be a domain of integrity with Noether ideal theory,
and let P be the quotient field of g. Every linear algebra with identity of
finite order P contains a nontrivial class of orders which satisfy the
Asano postulates and which contain only integral elements of the algebra.
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