
A SUFFICIENCY THEOREM FOR DIFFERENTIAL SYSTEMS 

AUGUSTO BÔBONIS 

1. Introduction. This paper is concerned with a boundary value 
problem involving differential equations and boundary conditions of 
the form 

yl « [Aij(%) +\Bij(x)]yj, 

(1.1) Si[y, X] s (Mu + \M)3)yj(a) + (N*,-+ \N]3)yj(b) = 0 

(a g x S b) i, j = 1, 2, • • • , n), 

where the matrix of constants H-M^+XA/V, i^+XiV»/1!! has rank w 
for all values of the characteristic parameter X. In his dissertation 
the author [3]1 extended to such systems the concept of definite self-
adjointness introduced by Bliss [2] for problems with boundary con­
ditions independent of the parameter. Earlier, Bliss [ l ] had formu­
lated a definition of definite self-adjoint systems in such a manner 
that systems of this type had infinitely many characteristic values. 
This property is in general no longer true for systems that are defi­
nitely self-adjoint in the modified sense of Bliss [2], and the analogous 
definition of Bobonis [3] is such that definitely self-adjoint systems 
(1.1) need not possess an infinitude of characteristic values. As shown 
in [3], however, for definitely self-adjoint systems (1.1) the charac­
teristic values are all real and have indices equal to their multiplici­
ties; moreover, such systems admit expansion theorems analogous to 
those obtained by Bliss [2]. 

I t is the purpose of the present paper to consider a definitely self-
adjoint system (1.1) which satisfies the additional condition that the 
matrix ||5»/(a0|| is of constant rank on the interval aSxSb. Such a 
system is shown to be equivalent to a boundary value problem asso­
ciated with the second variation of a calculus of variations problem 
of the type considered by Reid [4], and the extremizing properties 
of the characteristic values of the equivalent problem lead to neces­
sary and sufficient conditions for the given problem to have an infini­
tude of characteristic values. The methods of proof herein used are 
analogous to those employed by Reid [5] in establishing the corre­
sponding results for definitely self-adjoint systems whose boundary 
conditions are independent of X. 
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1 The numbers in brackets refer to the bibliography at the end of this paper. 
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2. Statement of the problem. In the present paper matrix notation 
will be used whenever possible. The subscripts it j , k, a, will have the 
range 1, 2, • • • , n. Capital italic letters denote n-rowed square mat­
rices, the element in the ith row and 7th column being denoted by 
the same letter with the subscript ij. The vector (y») is denoted by 
the lower case letter y; Ay and y A represent the vectors (A ay/) and 
(yjAji), respectively, where the repeated subscript.; indicates a sum­
mation with respect to the subscript over the range 1, 2, • • • , n. 
The scalar product yjZj of the vectors y and z will be written yz. The 
transpose of the matrix A will be denoted by Z. Whenever the ele­
ments of the matrix A are differentiate functions, the matrix of 
derivatives is denoted by A'. For brevity, we shall also write -£[y] 
and VïC[z] for the adjoint differential operators whose components 
-0*[y] and 5Wt[z] are given by 

J&[y] - yt - Ai&)yh Mi[z] - zi + ZjAjiix). 

The elements of the matrices ||-4^(#)||, ||5t-,(x)|| are real-valued and 
continuous functions in a^x£*b and the matrices Jtf(X) = ||jlft7(X)|| 
« l l ^ + X A V H , ^(X)=||iV r^(X)||=||^v°+X^1 | | are such that the 
elements of JfcP, M1, N°, N1 are real-valued and the nX2n matrix 
WMifi+XMij1, Nif+XNij1]] has rank n for all values of the parameter 
X. It is assumed that not all of the elements of Ml, Nl are zero. 

The system of equations with boundary conditions to be considered 
here is 

/ - [A(x)+\B(x)]y; 
*[y,X]-5«[y] + X*i[y] 

s (M° + XMx)y(û) + (N° + XN^yib) - 0. 

Throughout the present paper we assume that the boundary condi­
tions of (2.1) satisfy the following hypothesis: 

For all values of\ the nX2n matrix \\M(K) iV(X)|| has rank n. More­
over, there exist matrices P(X) ^P°+\P1, QÇK) = Ö°+XQ1, together with 
matrices M*t N*9 P*, Q* independent of\ such that the 2nX2n matrices 

(2.2) 

are reciprocals f or all values of\. 
In particular, the differential system adjoint to (2.1) is given by 

2' = - z[A(x) +\B(x)]; 

- p* 

Q* 

- -P(x) 1 

GOO 1 ' 
1 M(X) JV(X) 

M* N* 

(2.3) 
t[z, X] s fi[z] + \fi[„] 3 z(a)[P° + XP*] + z(b) [Q° + XQ1] - 0. 
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The condition that the matrices (2.2) are reciprocals leads to the 
following useful relations 

- P*M° - P°M* - J, Q*M° + Q*M* - 0, 
- P*M! - PlM* = 0, Q*Mx + QlM* = 0, 

(2.4) * 
_ p*N<> - poN* _ 0> Q*NI + QIN* « 0( 

- P*Nl - P*N* - 0, Q*N° + QON* - J. 
(2.5) M(X)P(X) - 2V(X)Ö(X) - 0, 
(2.6) - M*P° + N*Qo - / , 

(2.7) - M°P* + N°Q* - 7, 

(2.8) - M*P* + 2V*Ç>* - 0, 

- M*Pl + N*Ql = 0, 
' - MXP* + N*Q* = 0. 

In the above J=||l<,-|| and 0 = ||0,-,|| denote the «X» identity and 0 
matrices respectively. 

Setting 

s*[y] - M*y(a) + N*y(b), t*[z] - z(a)P* + z(b)Q*, 

we have, in view of equations (2.4), that 

f*[z]s[y, X] + t[z, X]s*[y] = z(x)y(x) 

Consequently 

(2.10) t*b]s°[y] + t°[z]s*[y] - z(x)y(x) , 

(2.11) t*[*]*l[y] + tl[*]s*[y] = 0, 

for arbitrary sets y(a), y(b), z(a), z(b). 
It is to be emphasized that the boundary conditions of our prob­

lem are unchanged if the matrices MÇK) and NÇK) are replaced by 
r(X)Af(X), TÇK)N(K) where the matrix T(X) is nonsingular for all val­
ues of X and such that the product matrices r(X)ilf (X), T(\)N(k) re­
main linear in X. 

The hypotheses under which the boundary value problem is to be 
developed are the following: 

(Hi) The system (2.1) is self-adjoint under the nonsingular trans­
formation z~T(x)y, where T(x) is a nonsingular matrix with real-
valued elements of class C'. 
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(H2) S(x) = T(x)B(x) is symmetrie on aSx^b. 
(H8) The matrix 

II T(a)P*Ml T(a)P*Nl II 
(2.12) _ _ 

II T(b)Q*M1 T(b)Q*Nl || 
belonging to the quadratic form Q\y(a)y y(b)]=t*[Ty]sx\y\ is sym­
metrie. 

(H4) The quadratic expression 

(2.13) Kjy] m Q[y(a), y(b)] + f ySydx 

is non-negative for arbitrary vectors y{x) whose components are con­
tinuous on a S x g b. 

(H5) For an arbitrary value of X the only solution of the system 
(2.1) satisfying iQ;y]=0 is y(x)^0 on a^x^b. 

(He) B(x) is of constant rank n — ?n, 0Sm<n, on a^x^b. 
The characteristic values of problems satisfying hypotheses (Hi)-

(H5) are all real and the zeros of a permanently convergent power 
series (see Bobonis [3]), so that there are a t most a countable number 
of such values. Moreover since hypotheses (Hi)-(H6) remain invari­
ant under a linear change of parameter, it may be assumed without 
loss of generality that X = 0 is not a characteristic value of the problem 
considered. 

Necessary and sufficient conditions for the system (2.1) to be self-
adjoint under the transformation z = Ty are 

(2.14) TA + AT + T = 0, TB + BT = 0, 

(2.15) il4r(X)T~1(ö)3?(X) = N^T-WNfr). 

For the proof of the above conditions see Bobonis [3]. We have fur­
ther that equations (2.5), (2.15), together with the hypothesis (H3), 
justify the relations (Bobonis [3]) 

(2.16) M(\)T~Ko) - CP(\), N(\)T-\I>) = CQ(\), 

where C is a nonsingular constant matrix independent of X. 
We also have as a consequence of the previous hypotheses the fol­

lowing useful lemmas (Bobonis [3]). 

LEMMA 2.1. Hypotheses (H2) and (H4) imply that the quadratic form 
yS(x)y is positive semidefinite on aSx^b. 

LEMMA 2.2. Hypotheses (H3) and (H4) imply that the quadratic form 
Q[y(a)> y(b)] is positive semidefinite. 
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LEMMA 2.3. If f or continuous y(x) we have that ^ [ y ^ O , then hy­
potheses (H2), (H3), and (H4) imply By^O on a^x^b, s1\y]=0. 

The previous lemmas enable us to state that if hypotheses (H2), 
(H3), (H4) are satisfied, hypothesis (H5) is equivalent to : 

(H5 ') The only solution of y' —Ay, 5°[y]=0 satisfying ySys-0 on 
a^x^by 5 1[y]=0, i s y ( # ) s 0 . 

We can also see with the help of relations (2.10) and (2.11) that 
if y{x) and y*(x) are solutions of (2.1) for distinct values of X, then 

(2.17) **[Ty]sl[y*] + f ySy*dx = Q. 

As a consequence of hypothesis (He) it follows that there exist m 
sets of continuous functions VLu(x) (e = l, 2, • • • , m)y such that on 
a^x^b} 

(2.18) Si3(x)llj£(%) = 0. 

The sets IItÉ can be chosen orthonormal in the sense that 

UuWJItoix) s I€ff (e, a = 1, 2, • • • , m). 

In view of hypotheses (H2) and (H6) it follows that there exists an 
nXn matrix R(x) such that the (n+m)X(n+m) matrices 

Sij(x) Ui<r(x) Rij(x) n tV(*) 

are symmetric reciprocals on a^x^b. 
Moreover, in view of Lemma 2.1 and relation (2.18), the quadratic 

form Rij(x)uiUj is positive for every non-null set (ui) satisfying 

The matrix 

(2.19) 

nit(x)uj = 0 

P*MlT-\a) P*WT-l{b) 

Q*MlT-\a) Q*NlT-\b) 

(* - 1, 2, ,m). 

is symmetric and positive semidefinite since it is obtained by multi­
plying the positive semidefinite matrix (2.12) on the left by the non-
singular matrix 

T-^a) 0 

0 T-i(6) 

and by the transpose of the latter matrix on the right. 
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Multiplication of (2.19) on the left by the nonsingular matrix 

II - M* N° || 

Il - M* N* || ' 
and by the transpose of the latter matrix on the right, with the use 
of equations (2.7), (2.8), (2.9) and (2.16), show that the matrix 
( — M°P1+N*Q1)Z? is symmetric and positive semidefinite. Conse­
quently, the matrix E*= C~l( — M*Pl+N°Ql) is also symmetric and 
positive semidefinite. Equations (2.5), (2.6), together with the 
second, fourth, sixth and seventh equations of (2.4), imply 
pi-I»(-M*Pl+WQl)j*P*CEt <21 = ö*(~^ 0 -P 1 +^ r °Ö 1 )=0*C , £ .As 
the nX2n matrix ||P*Q*|| is of rank n, it follows that Eijgj = 0 is 
satisfied by a set (#*•) if and only if Piilgj — 0, Q ^ g / = 0. In particular 
the rank of E is equal to the rank of the nX2n matrix, || T1 <5X||, which, 
in turn, is equal to the rank of HlPiV1!! in view of (2.16). Hence the 
rank of E is equal to «—r, Q?£r<n, and there exist r sets of con­
stants gip (v~l9 2, • • • , r) such that EijgJV = 0. The constants giV can 
also be chosen normed and orthogonal in the sense that g%ygi, — Iyv. 
I t clearly follows that there exists a constant matrix 3C such that the 
symmetric (n+r)X(n+r) matrices 

1 En giy 

1 gj'p 0vy 
' 

Wij giy 1 

1 gjy 0„7 1 

are reciprocals. Moreover, the quadratic form SdjUiUj is positive for 
all non-null sets (Ui) satisfying g,„w,= 0 (*> = l, 2, • • • , r). 

3. A minimum problem and its accessory boundary value problem. 
An arc z{x) is admissible if the functions Zi(x) are of class D' on 
a^x^b and satisfy the differential equations 

(3.1) TLfiMMfo] = 0 (€ - 1,2, • • • , m). 

The class Hi* is defined as the totality of admissible functions satisfy­
ing the following additional conditions 

(3.2) giyh[z] = 0 (7 = 1,2, . . . , r ) , 

(3.3) G[z(a), z(b)] + f zKzdx = 1, 

where G[z(a), z(b)] is a quadratic form in the arguments z(a), z(b) 
having (2.19) as matrix of coefficients, and K= — 5T~X . The second 
equation (2.14) and the symmetry of *S show that K is symmetric. 
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Suppose Hi* is non vacuous, and consider the problem of minimizing 
the expression 

(3.4) l[z] - t°[z]3Ct°[z] + f M[z]RM[z]d% 

in this class. In view of (3.2) the quadratic form 2°[s]3C/0[2] is posi­
tive unless /°[s]=0; similarly, (3.1) implies that the integral of (3.4) 
is positive unless M[z] =0 on a^x^b. As X = 0 is not a characteristic 
value of (2.1), it is also not a characteristic value of the adjoint sys­
tem and consequently I [ J S ] > 0 for all arcs of Hf. For a minimizing 
arc z{x) define 

(3.5) RifMilA + n«M« - ti. 

From the first necessary conditions of the above defined calculus of 
variations problem we know that there exist multipliers /*«(#)> A, and 
dy such that in addition to (3.1), (3.2), and (3.3) we have 

(3.6) f ' - ^ f + AKz - 0, 

Pi^iktlb] + g sidy) - APl's)[T"\] - f,(a) - 0, 

QUwJk[z] + ghdy) - AQ%s)[r\] + M*) - 0. 

Solving (3.1) and (3.5) simultaneously we have that 

(3.8) sw[*]-srf M.-n*ry. 
In view of (2.5), (2.6), (2.7), and (2.8) it follows that (3.7) is equiva­
lent to 

(3.9) 5°[r] -A^lr - 1 *] , 

(3.10) Xi£[*] + «<7*r - - s![f]• 
Solution of (3.10) simultaneously with (3.2) and use of equation (2.6) 
together with the second, fourth, sixth, and seventh of equations 
(2.4) yield 

(3.11) fi[%] ~ C-Mf] = 0 , dy - - giySÏÜ]. 

Therefore the system (3.1), (3.2), (3.5), (3.6), and (3.7) is equivalent 
to the system 

atM-sr, *°M-c-v[r]-o, 
( } -Or] - - A#S, ,«[r] - A ^ Z ^ ] = o. 
Concerning the above system we shall prove the following result. 

THEOREM 3.1. The system (3.12) is normal. 
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Suppose the system is not normal. Then functions Zi(x) =0, f i(x) 9*0 
exist satisfying (3.12) for constant A. The functions Çi^ILuij,* would 
then satisfy the system 

•Clri-o, *°[r]-o, *i[r] = o. 
Since B^II^ssO we have that B^fosO. This implies by hypothesis 
(H5' ) that Çi(x) = 0 which is contrary to the hypothesis that Çi(x) T^O. 
Therefore, the system is normal. 

The positiveness and reality of the characteristic values of the sys­
tem (3.12) have been proved by Reid [4]. We also know that the 
characteristic values of such a system are at most denumerably in­
finite in number, since they are the zeros of a permanently convergent 
power series. 

4. Sufficient conditions for the existence of infinitely many char­
acteristic values. To prove our sufficiency theorem use will be made 
of two theorems proved by Reid [4]. They will be inserted here for 
reference. 

THEOREM 4.1. Suppose that the class Hi* is not empty and A=Ai is 
the greatest lower bound of I [z] in this class ; then Ai > 0 and A = Ai is the 
least characteristic value of (3.12). 

THEOREM 4.2. Suppose Ai <A2 < • • • <At~i are consecutive charac­
teristic values of (3.12 ) and corresponding to A =*Ap(p = 1,2, • • • , / — 1 ) ; 
there are rp linearly independent solutions ZiQp, Çiqp (qp = l,2, • • - , rp). 
Define the class Ht* as the subclass of arcs belonging to Hi* satisfying the 
conditons 

G[z(a), zQp(b)] + I ZiKififydx = 0. 
J a 

Then, if H* is not empty and At is the greatest lower bound of I[z] in 
this classf A*>A*_i and A=A* is a characteristic value of (3.12). 

Consider once more system (3.12). Let z, f be a solution of this 
system for some value of A. If we use(2.14) and (2.16) it then follows 
that s = ( — l/All2)Trj defines a vector 77 such that 77, f is a solution of 

-CM = A1 '2^, s*[r,] + A*/V[f] = 0, 

' £ [ f ] = A 1 / 2 ^ , s*\£] + A ^ V h ] = 0. 

Now, if 77*, f* is a solution of (4.1) the functions 77 = 17*+f*, f = *?*+f* 
and 77 = 77* —f*, f = — 77*+f* are also solutions of this system. Hence 
if A is a characteristic value of (3.12) of index r, it follows that there 
exist r linearly independent solutions 77, f of (4.1) such that for each 
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of these solut ions we have e i ther 77 = f or 77=—f. Suppose t h a t 77, 
f = 77 is a solution of (4.1). T h e n ^ = 77 is a solution of (2.1) for X=A 1 / 2 . 
Likewise, if 77, f = —77 is a solution of (4.1), 37 = 77 is a solution of (2.1) 
for X =A 1 / 2 . Therefore, t h e sum of t he indices of A1 / 2 a n d — A1 / 2 a s 
characteristic values of (2.1) is not smaller than the index of A as a 
characteristic value of (3.12). On the other hand, if y(x) is a charac­
teristic solution of (2.1) for some Xs^O, z = ( — 1/X) Tyi f = y is a solu­
tion of (3.12) for A=X2. Relation (2.17) implies that the set of char­
acteristic solutions corresponding to values A1/2 and — A1/2 are linearly 
independent and, therefore, we have that the index of A as a char­
acteristic value of (3.12) is not less than the sum of the indices of 
A1/2 and —A1/2 as characteristic values of (2.1). Hence, we have the 
following result. 

THEOREM 4.3. If Ais a characteristic value of (3.12), then either A1/2 

or — A1/2 is a characteristic value of (2.1) ; conversely} if X is a character-
istic value of (2.1), then A =X2 is a characteristic value of (3.12) with index 
which equals the sum of the indices of X and — X as characteristic values 
of (2.1). 

The three preceding theorems imply the analogue of Theorem 4.1 
of Reid [5]. 

THEOREM 4.4. A system (2.1) satisfying hypotheses (Hi)-(H6) has 
an infinity of characteristic values if and only if there are infinitely many 
arcs z=wp(x) (£ = 1, 2, • • • ) satisfying (3.1) and (3.2) and such that 
for each r and arbitrary constants ft^Ot (£ = 1, 2, • • - , r) the arcs 
w = wt(x)ft satisfy the condition 

G[w(a), w(b)] + I wKwdx > 0. 
J a 

Finally, it is to be noted that if z is admissible then there exists a 
vector h(x) with components piecewise continuous on a^x^b and 
such that Vtf[z] = —h(x)B(x). Furthermore, if the end values of z 
satisfy (3.2) it follows that there exists a constant vector k^(ki) such 
that t°[z]=kE. From the form of the matrix E it then follows tha t 
h(a) =kC~lM\ h(b) = -kC^N0 satisfy fi[z]+tl [h] = 0. That is, an ad­
missible z satisfies (3.1) if and only if 

(4.2) Stf[a] = - *(*)£(»), t°[z] + fi[h] = 0, 

where h(x) is piecewise continuous on a^x^bf it being understood, 
in particular, that the components of h(x) may be discontinuous at 
x=a and x = b. 
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UNIVERSITY OF PUERTO RICO 

ON THE SUMMATION OF MULTIPLE FOURIER SERIES, IIP 

K. CHANDRASEKHARAN 

Let ƒ(x) =f(xi, • • • , Xk) be a function of the Lebesgue class L, 
which is periodic in each of the ^-variables, having the period 2w. Let 

1 
1 * (2TT)* 

• • • I f(x) exp { - i(viXi + • • • + VkXk) }dxi • • • dxk, 

where {vh} are all integers. Then the series ^an.. .Vk exp i{viXi+ • • • 
+VhXk) is called the multiple Fourier series of the f unction ƒ (#), and 
we write 

ƒ(*) ~ Z <V--v* exp i(vi%x + • • • +****)• 

Let the numbers (i>i*+ • • • +n2), when arranged in increasing order 
of magnitude, be denoted by Xo<Xi< • • • <Xn< • • • , and let 

cn(x) - X) *n-~n exP *0"i*i + • • ' + n*k), 

where the sum is taken over all vi2+ • • • H-J^—X», 

*(*> *) - Z) c*(x) exP ("" M » 
SB(») - Z Cn(»), \n£R2< Xn+1. 
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