SOME PROPERTIES OF ABSOLUTELY
MONOTONIC FUNCTIONS

P, C. ROSENBLOOM

In this note we collect several fragmentary results which were ob-
tained as by-products of another investigation. They are rather
loosely connected with each other, but still may be of some interest.

We recall that a function f(xi, - + +, x;) is said to be absolutely
monotonic in a set D if f and all its partial derivatives exist and are
non-negative in D. If D is of the form 0=5x:<a;, ¢=1, - - -, %, then
a necessary and sufficient condition that f be absolutely monotonic in
D is that it can be expanded in a power series in %1, - - -, x; with
non-negative coefficients converging in D. (The well known theorem
of Bernstein [1]! for the case k=1 can be extended in a trivial man-

ner.)

TuEOREM 1. If f(x) is absolutely monotonic in 0Sx<a, and if
0=x1, X2, * * *, X¥n<a, and if L(x) is the Lagrange interpolation poly-
nomial of f(x) at the points x1, - - + , xn, then

J(%) — L(x)
g(x) = ——— o(®) = (&= x1) - -+ (£ — %),
()
is an absolutely monotonic function of %, %1, + + +, x» in the range
0=x,%, * **,xs<a.

Proor. The function g(x) can be expressed as a divided difference
of f(x) (see for example, Milne-Thompson [2]):

g(#) = [war+ - - 2],

where
(%) — f(21)
[5%,] = ———",
x— %
and
[x2y- - - x) = Loa - - Bl = [x;,xl--- il v R=2,-00,m.
X — Xp

It is sufficient, then, to show that if f(x) is absolutely monotonic in
0=<x<athen

Received by the editors August 7, 1945, and, in revised form, January 14, 1946.
1 Numbers in brackets refer to the Bibliography at the end of the paper.

458



ABSOLUTELY MONOTONIC FUNCTIONS 459

f(®) = f(=1)
X — %

is absolutely monotonic in the square 0%, x1<a. But if f(x)
=D m-o0n%", 0n 20, then
(%) — f(xy >
I——)—-f.—l — Z a”(xn—l ..I_ xlxﬂ‘z + PP + xln—l)
X — % nm=l
is a power series with non-negative coefficients converging for 0=Sx,
x1<a, and is therefore absolutely monotonic there.

COROLLARY. We have f(x) = L(x) for x in the intervals [x., a],
[#n—2, Zpa), -+ -, while f(x) S L(x) in the intervals [xn—1, %a], [%n-s,
Xn—2], + + + ; if the equality sign holds at an interior point of any of these
intervals, it holds identically.

It will be convenient to introduce the notations

xlkl e xlkn

V(kl,"' , kn) =

’

xnkl Y x”kn

and
V(kl’ ct kn)

TV, 1, n=1)
LEMMA. If0S ki <ke<  + + <kg, whereks, - - -, k, are integers, then

ARy, - - -, ky) is a symmetric polynomial in x,, - -+, Xn, With non-
negative coefficients.

A(kli ct kﬂ)

Proor. It is obvious that 4 is a symmetric function. For n=1,
A (k) =x4, and the lemma is true. Suppose now that #>1. Then
setting m;=kip1— k1, we have

ARy ooy ky) = xi*t e oo 2, 514(0, my, + + ¢, My1)

0, £3™ — x,™, ..., gMl — g mam1
Xk x ket
0, Xna1™ — K™, ¢ 00 ) Xy Tl — g, ML
1, x,™, cee, XpMem1

(% — %)+ +« (2 — 20)V(0, 1, , 8 —2)

Xyl gy o g,

xlkl . e xnkl
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Now we multiply the first column in the numerator by x,m~™ and
subtract from the second; then we multiply the first column by
x,m~™ and the second by x,™#™2 and subtract from the third and so
on. We thus obtain

L2 IRV 2
A(k1, tt kn)=
Veo,1,---,n-2)
xlml—l..l_ x”xlml—2+ PR +xnml—l’ xlms—l_l_ P +xnm2—m1-lx1m1’ .
=x*e e 0,51 04yt Ap),
where A(ay, + + +, @u—1) is formed with the indicated exponents and
the variables %1, * - -, ¥n—1, and the summation runs over all systems

of a’s satisfying
OfSarSEm—1lmSasSme—1, - ;M2 S 01 £ My — 1,
and

=m—1—a)+ -+ M-1—1— ).

Hence if the lemma is true for n—1, it is true for #. The lemma fol-
lows, then, by induction.

THEOREM 2. If f(x) and g(x) are absolutely monotonic in the interval
0=x<a, then
1 f(uxs)  g(vxems)

1 f(uxy) glvxsxy)
1 fluxs) g(vxrxe)

is an absolutely monotonic function of its five arguments for 0 Sx1, xe,
x3<a, 0Su=<1/e,0=0v=1/a

PrOOF. Let f(x) =2 mo@nx® g2(%) =2 moba®, @220, 0,20, n=0,
1, - .. Then

1 umx,"™ g(‘szxs)

v(,1,2)

1

T EE—— UM K™ VXX
70, 1, 2) " g(vwam)

1 umxz™  g(vx1%3)

- 1 umx™ v x"xs™
Z 1 um™x,™ v"x3"%1"

20 V(O 1,2)
1 umxg™ 9"x, %"



1946] ABSOLUTELY MONOTONIC FUNCTIONS 461

Now
1 umxy™ v x %" 1 X% urx™t 9, X "X X"
......... xlﬂxzﬂxs‘”-...........

= u™"V(n, m + n, 0).
Hence
1 flux:) g(vxas) -

—_— |1 ux VX3% = anbu™"A(0, n, m + n).
70,1, 2) fluxs)  g(vasxy) > ( + n)

1 flum) gomm) | "

If the terms of the last series are rearranged we obtain a power series
in the five variables with non-negative coefficients converging in the
range specified above.

THEOREM 3. If f(x) =D 2 o@ax™, @2 >0, and any1/an is monotonically
non increasing, and if f(x) and g(x) are absolutely monotonic in 0 S x <a,
then

1 f(2)  f(x1)g(1)
1 f(xa) flx2)g(2)
1 f(xs) f(ws)g(2s)

is an absolutely monotonic function of all three variables for 0= x4, %3,
xs<a.

70,1, 2)

PROOF. Let g(x) =2 nobnx™, 0,20, 0S x <a. Let 0<S x4, %2, 357 <a.

Then
1 fx) f(x1)g(x1)
1 f(xs) S(22)g(%2)
1 f(ws) f(%5)g(s) 1w e
o i ™ %1mg(%y)
= mz_lg —__V(O, 1,2) 1 2™ x"g ()
1 x3m x3mg(%s)

0 ]

= Z Z a,.amqu(O, m, n + 9)'

m=1 ntq=2

v(,1,2)

Now by elementary estimates
| 400, m, n+ g)| < 27'm(n + q)(m + n + q — 2)ymintes
= m?(n + ¢)(n + ¢ — )ymintes

if m=1,n4+¢=2 and [a,.l <CR—, Ib,.l =< CR—», where r <R<a, and
C is a suitably chosen constant. Then this series is dominated by
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Cri3 S min+ Qn + g — D(r/Rymre

Ml ntgme2

- cz,—a( > mie/R) m) ( > Kk + 1)(k — 1)<r/R>'=).

M=l K2

and is therefore absolutely convergent. Hence we can rearrange it as
follows:

0 m—1 « ) 8
> am{— 2 A0, a,m) Y Gacgbg + 2 A0, m, B) X ap_,bq}

Ml a0 gm0 Bmm+4-1 g=0
hed ag—. [/
= 3 40, o ﬁ){ZM«%( e _ )}
0<a<lp gm0 ag [

and the latter can be rearranged as a power series in &, &3, and x3. But

Ga—q  Ga—q Ga—gt1 Qa1 < ap—q ag—1 ap—q

e e e e

= = .

Ca Ga—g+1 Ga—q+2 QGa @p—g+1 as G

Therefore the resulting power series has only non-negative coeffi-
cients.

We feel that the last two theorems are at most mere curiosities as
they stand, since we haven’t any idea as to what significance the
above determinants may have. It is to be hoped that proofs can be
found which will be more illuminating than the above purely compu-
tational ones.
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