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PM**£(*') f° r h£rS$2 where h ( < ^ ) is the point nearest to s* at 
which €(li)«<r(4j). If $(52)==<r(52), then let h~$%. For r<t2 let p(r) 
=p(^)+log log log fc — log log log r for Ui^r^h where #1 (<*2) is the 
point of intersection of y—p with y = p (£2) + log log log fe—log log log r. 

Let p(r)~p for r i^ rgwi . It is always possible to choose H SO large 
that r\<ti\. We repeat the procedure and note that 

p(r) 2 «r) ^ cr(r) 

and p(r) =cr(f) for r «fit, /2, £3, • • • . Hence limr̂ oo p(r) —p* and 

log M(r) 
hm sup « 1. 
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1. Introduction. Although the connections between the spectral 
resolution of a self-adjoint transformation in Hubert space, the mo­
ment problem, and Riesz' integral representation [l]1 for linear func­
tional on the space Care known (cf. Stone [2], Murray [3], Widder 
[4], Lengyel [5]), the following elementary derivation of the spectral 
theorem from the Riesz theorem exhibits the connections in, perhaps, 
the simplest light. We consider only bounded self-adjoint transforma­
tions H\ one can treat an unbounded H by considering (I+i ï 2)- 1 , 
which is bounded and self-adjoint [3, p. 95]. Note that the derivation 
does not involve the separability of the Hubert space £ . 

2. Six lemmas. Let H be a self-adjoint transformation with the 
bounds a, J—that is, a\\f\\*£(Hf, /)^&||/| |2 for all f EH, and \\H\\ 
= max(|a|, \b\). Denote by C the space of continuous real-valued 
functions defined on the closed interval (a, 6), with \\f(x)\\ =max| f(x) | 
(a^x^b). Let p(x) « S o ^ 7 be any polynomial with real coefficients, 
and let p(H) be the corresponding transformation i>(H) ^jTjllcJIt* 
where£T0 = J. 

Received by the editors September 6, 1945. 
1 Numbers in brackets refer to the references cited at the end of the paper. 



I946J THE SPECTRAL THEOREM 329 

LEMMA 1. \\p(H)\\£\\p(x)\\~maxxe(a,h)\p(x)\. 

Murray [3, p. 82] gives a proof of the lemma; we remark only that 
the general case can be reduced to the case of a self-adjoint H in 
w-dimensional Euclidean space. The inequality is almost obvious 
when H is represented by a finite diagonal matrix; and the lemma is 
essentially equivalent to the statement that every »2-symmetric ma­
trix can be reduced to diagonal form by unitary transformations. 

Given any two elements/, g E $ , consider the expression (p(H)ft g), 
taking on real or complex values, as an operator defined over the 
linear set of polynomials included in C The linearity of the operator 
is obvious; its continuity follows from Lemma 1: 

l(#(fl)/.f)|a!||#(fl)ll-IMI-lWI^{IMI-yill#(*)ll. 
Since the polynomials are dense in C (Weierstrass approximation 
theorem), the operator can be extended uniquely to a linear functional 
defined over all C, without increase of norm. The Riesz theorem [l ] 
then yields immediately: 

LEMMA 2. There exists a function of bounded variation p(X; ƒ, g) 
(agX^è) such that 

(p(H)fg)~ fbp(\)dp(K;f,g)t 

the uniqueness of p being assured by the normalization conditions: 
p(a; ƒ» g)~0 and p(X; ƒ, g)=p(X+0; ƒ, g), a<\<b. p(X; ƒ, ƒ) is real, 
andVar(a>b)PÇk;f,f)£\\f\\\ 

The structure of the p(X; ƒ, g) is implied by the following elementary 
properties of the Stieltjes integral (cf. Widder [4]). 

LEMMA 3. Letf(x)f g(x) be continuous and y(x) be a normalized f une-
tion of bounded variation on (a, b). Then G(x) = fâg(t)dy(t) is a normal­
ized function of bounded variation^ and ftf(t)dG{t)~flf{t)g(t)dy{t). If 
ffrndy(t)=0 (w = 0, 1, 2, • • • ), then y(t)^0. 

LEMMA 4. (1) p(b;f, «)«(ƒ, t). 0 £ P ( X ; / , / ) ^ | | / | | 2 ; 
(2) p(X;/i+/2, «)-p(X;/i, *)+p(X;/2, g); 
(3) p(X; cff g)=*cp(k;ft g); 
(4) p(k;f,g)-pQi;g,f). 

The equality in (1) arises on setting p(X) = 1 in Lemma 2. But then 
P(^î ƒ» ƒ) is nondecreasing, whence the inequality. The proof of (2) 
is typical of the remaining statements: 
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ƒ X»</p(X; h + h g) « (#w(/i + 70. *) - (HVi. «) + (# n /* *) 

- ƒ XMP(X;/1,g)+J X»dp(X;/,fg) 

= ƒ X«<ï{p(X;/if g ) + p(X; ƒ,,«)}. 

Set 7(X) =p(X;/i+/2, g) - {p(X;/i, g)+p(X;/2, g)} and apply Lemma 3. 

Lemma 4 and the representation theorem [2, p. 63] for bounded, 
bilinear symmetric functional defined over a Hubert (or unitary) 
space yield the following theorem : 

LEMMA 5. There exists a set of bounded self-adjoint transformations 
FÇK) (a^XSft) such that (F(k)f, g)=p(X; ƒ, g). F(a)=*0, and F(f>)=*I. 

That the JF(X) are projections is a consequence of the following re­
sult: 

LEMMA 6. F(p)F(k)~F(y)t where *> = min(/j, X). In particular, 
F*(K) = F(\). 

For, let m and n be arbitrary (m, w = 0, 1, 2, • • • ). Then 

ƒ x*<*|J M ^ Ö W . * ) } - ƒ x«-x-rf(F(xyfg)-(H-+"y.«) 

- (fl*/f fl««) - f X»<*(F(X)/, fl"«) 

- ƒ \*d(H~F(Mf, g) 

- ƒ X » j | J ^d(F(n)F(\)f, g)| . 

Application of Lemma 3 yields 

f M-rf(FG0F(X)/, «) - f M-rf(P0*)/,«)- f »md(F(v)f, g); 

and another application, F(JJL)FÇK) = F(v)f where *> = minOu, X). 

3. The spectral theorem. In order to put our results into standard 
form we modify the definition of the family of projections by setting 
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E(k)=0(k<a)tE(\)~F(\+0) (a£\<b), E(k)~I Çk^b). The £(X) 
thus obtained form a finite resolution of the identity: They are all 
projections; EÇk)E(tx) ~E(v)> where j> = minGu, X); £(X+0)=£(X) 
( - o o < \ < o o ) ; (E(\)f, g) is of bounded variation; £(X)=0 (X<a) 
and£(X)=/(X^&). 

To allow for the change in definition at the point X=a we modify 
the limits of integration from (a, b) to (a — e, i), € being an arbitrary 
positive number. Our final result is then the following: 

SPECTRAL THEOREM. Let H be a bounded self-adjoint transformation 
with bounds a, b. Then there exists a finite resolution of the identity EÇK) 
such that 

(P(H)f,g)~ f p(\)d(E(\)f, g), 

e being an arbitrary positive number. 
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