
PROJECTIVITIES WITH FIXED POINTS ON EVERY 
LINE OF THE PLANE 

REINHOLD BAER 

The system of fixed elements of a projectivity contains with any 
two points the line connecting them and with any two lines their in­
tersection. It is, therefore, in its structure very much like a subplane 
of the plane under consideration ; and thus one may expect the struc­
ture of the projectivity to be dominated by the structure of the 
system of its fixed elements, provided this system is not "too small." 
To substantiate this we propose to investigate in this note a class of 
projectivities which we term quasi-perspectivities. They are charac­
terized by the property that every line carries a fixed point or, equiva-
lently, that every point is on some fixed line. 

Every perspectivity is a quasi-perspectivity, and a quasi-perspec-
tivity is not a perspectivity if, and only if, the system of its fixed 
elements is a projective subplane. Involutions are quasi-perspectivi­
ties too, and if the Theorem of Pappus is valid in the plane under 
consideration, then every quasi-perspectivity is a perspectivity or an 
involution. But already in the projective plane over the field of real 
quaternions there exist quasi-perspectivities which are neither per-
spectivities nor involutions, and we give a complete survey of the 
quasi-perspectivities in Desarguesian projective planes. 

Our results become particularly striking in the case of finite pro­
jective planes. If every line in such a plane carries n + 1 points, then 
we may show that there do not exist projectivities possessing exactly 
n fixed points, that a projectivity is a quasi-perspectivity if, and only 
if, the number of its fixed points is at least w + 1, and that it is a 
perspectivity if, and only if, the number of its fixed points is w+1 or 
n+2. If a quasi-perspectivity is not a perspectivity, then n=i2 where 
i+1 is the number of fixed points on a fixed line. 

The following notations will be used throughout. 
We consider a projective plane II in which the Theorem of Desar­

gues may or may not hold.1 If P and Q are two different points in II, 
then P+Q is the uniquely determined line passing through P and Q; 
if h and k are two different lines, then hk is the uniquely determined 
point in which they meet. 

A projectivity <f> is a 1:1 and exhaustive correspondence between the 

Presented to the Society, April 27, 1946; received by the editors October 18, 1945. 
1 For a definition of "projective plane" see, for example, Baer [l, p. 138]. Numbers 

in brackets refer to the Bibliography at the end of the paper. 
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points of II and between the lines of II such that the point P is on the 
line h if, and only if, the image point P 0 is on the image line h<f>. 

The point P is a fixed point of the projectivity <j> if P = P<j>, and 
fixed lines are defined likewise. The system of all the fixed elements of 
<f> (fixed points as well as fixed lines) shall be denoted by $(0) . 

THEOREM 1. The following properties of a projectivity <j> imply each 
other. 

(i) P , P<t> and P<£2 are collinearfor every point P . 
(ii) Every point lies on a fixed line. 
(iii) Every line carries a fixed point. 
(iv) h, hct> and h<j>2 are copunctualfor every line h. 

PROOF. If (i) is true and P a point, then we distinguish two cases. 
Case 1. P is not a fixed point. Then Ps^P^ and h=P+P<l) is a well 

determined line containing P<f>2. But hj>^P<t>+P<t>2 — h shows that the 
fixed line h passes through the point P . 

Case 2. P is a fixed point. There exists a point Q?*P. If Q is a fixed 
point, then P+Q is the desired fixed line passing through P . Thus we 
assume that Q is not a fixed point. Then it follows as under Case 1 
that the line q = Q+Q<f> is a fixed line. If P is on q, then q is the desired 
fixed line through P . Hence we assume that P is not on q. There 
exists a point R^P which is not on q. If R is a fixed point, then P+R 
is a fixed line through P . Thus we assume that R is not a fixed point. 
Then we show as before that R+R(/> = r is a fixed line. But rj*q, 
since R is not on q. Thus r and q meet in a fixed point S. This fixed 
point 5 is different from P , since P is not on q, but 5 is on q. Then 
P+S is a fixed line through P . Hence we have shown in every case 
that (i) implies (ii). 

Assume now the validity of (ii). If P is some point, then there exists 
a fixed line p> passing through P . Since P is on p, P<t>{ is on ptf—p 
so that P , P<j> and P<j>2 are collinear as points on the same line p. 
Thus (i) is a consequence of (ii) ; and we have shown the equivalence 
of (i) and (ii). 

By duality we have the equivalence of (iv) and (iii). 
Assume now the validity of (ii) and consider a line h. If h is a fixed 

line, then consider a point P not on h. This point P lies by (ii) on a 
fixed line p which is different from h. Hence p and h are two different 
fixed lines meeting in a fixed point on h. Assume next that h is not 
a fixed line. Then h and h</> meet in a point K and this point K lies 
by (ii) on a fixed line k. Clearly K = hk, since h and k are different, the 
second line being fixed and the first one not. Hence Kcfr = {h4) (£0) 
«= (h4>)k = Kt showing that h carries the fixed point K. Thus we proved 
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that (iii) is a consequence of (ii) ; and it follows by duality that (ii) 
is a consequence of (iii), completing the proof. 

Every projectivity 05^1 meeting the requirements (i) to (iv) of 
Theorem 1 shall be termed a quasi-perspectivity. It is clear that every 
perspectivity meets requirement (ii), since a perspectivity possesses 
a line all of whose points are fixed points,2 and since every line meets 
this line in a fixed point. But every involution meets requirement (i) 
because of P=P<£2, showing that perspectivities as well as involutions 
are quasi-perspectivities. 

COROLLARY 1. If<j>isa quasi-perspectivity, and if the line h is not a 
fixed line, then h carries one and only one fixed point. 

We infer from Theorem 1, (iii), that h carries fixed points. But h 
would be a fixed line, if h carried two fixed points. 

COROLLARY 2. (a) The quasi-perspectivity </> possesses fixed lines 
carrying but one fixed point if, and only if, <t> is an elation.* 

(b) If the quasi-perspectivity 0 is not an elation, then a necessary and 
sufficient condition for the line h to be a fixed line is the existence of at 
least two different fixed points on h. 

PROOF. If <j> is an elation, the line h its axis and the point H on h 
its center, then a point is a fixed point if, and only if, it is on h, and 
a line is a fixed line if, and only if, it passes through H. Clearly the 
lines through H which are different from h are fixed lines carrying one 
and only one fixed point, namely H. 

Suppose conversely that 0 is a quasi-perspectivity and that the 
fixed line h of <f> carries one and only one fixed point H. If k is a fixed 
line different from h, then k and h meet in a fixed point on h so that k 
passes through H as the only fixed point on h. If P is a point not on h, 
then either P is a fixed point and P+H is a fixed line ; or else P is not a 
fixed point and P+P<£ is by Theorem 1, (i), a fixed line which neces­
sarily passes through H. Thus P+H is always a fixed line. Hence 
every line through H is a fixed line so that H is a center of </>. But 
projectivities possess an axis whenever they possess a center,4 and 
the axis is a fixed line so that it must pass through the center H. Con­
sequently # is an elation, completing the proof of (a), (b) is an im­
mediate consequence of (a) and Corollary 1. 

2 Namely the axis of the perspectivity; see Veblen-Young [l, p. 72]. 
8 An elation is a perspectivity whose center is on its axis; see Veblen-Young [l, 

p. 72]. 
4 See, for example, Baer [l, Corollary 2.3, p. 140]. 
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Preparatory to characterizing the perspectivities among the quasi-
perspectivities we introduce the following concept. The set T of 
points and lines is a closed configuration6 if it meets the following re­
quirements : 

If P 9^Q are points in T, then P+Q is in T. If h ?*k are lines in T, 
then hk is in I \ 

We note that the set of fixed elements of a projectivity is always a 
closed configuration. Another example are the projective subplanes6 

of n. 
LEMMA l.7 The closed configuration Y which contains both points and 

lines is not a projective subplane if, and only if, there exist a point H 
and a line h with the following properties : every point in Y with the pos­
sible exception of H is on h ; and every line in Y with the possible excep­
tion of h passes through H. 

PROOF. The sufficiency of this condition is obvious. Assume con­
versely that T is not a projective subplane. Then there exists a line w 
in T carrying a t most two points in T. 

Case 1. No point in T is on w. Then w is the only line in T, since 
the existence of a line V9^w in T would imply that the intersection 
of v and w would be on w and in T. There exists a t least one point W 
in T. If there would exist a point V9eWin Y, then V+WT^W, since 
neither F nor Wis on w; but the line V+W would be in T which has 
been shown to be impossible. Thus T consists of the line w and the 
point W not on w. 

Case 2. There is one and only one point W in T and on w. If re is a 
line in T, XT^W, then x and w meet in a point which is both in T and 
on w. Hence x passes through W, showing that every line in Y passes 
through W. 

If PT*Q are points in I \ then P+Q is a line in Y so that P+Q 
passes through W. This implies the collinearity of all the points in T, 
proving again the validity of our condition. 

Case 3. There exist exactly two points in Y which are on w. Sup­
pose W' and W" are the two different points in Y which are on w. 
If x is any line in I \ XT^W, then x and w meet in a point in Y and on w. 
Hence x passes through one and only one of the two points W' 
and W". 

6 The term "configuration " refers usually only to finite systems, a restriction that 
we do not impose on this concept. M. Hall [l ] terms "degenerate projective plane" 
what we would call a closed configuration which is not a subplane. 

6 These are sometimes referred to as "nets. " 
7 This lemma has been stated without proof by M. Hall [l, p. 232]. 
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Our condition is certainly satisfied by T if there exists at most one 
point in T which is not on w. Thus let us assume the existence of two 
different points Q', Q" in T which are not on w. Then Q'+Q" be­
longs to T, is not w, and passes therefore through one and only one 
of the points W' and W". We assume without loss in generality that 
W', Q' and Q" are collinear. 

Suppose now that the point U in T is neither on w nor on Q'+Q". 
Then Q' + £7 is a line in T which cannot pass through W', since other­
wise U would be on Q' + W'^W' + W". Thus Q' + U passes through 
W"\ likewise we see that Q"+U passes through W". If the lines 
Q'+ U and Q"+ U were different, then they would meet in £7= W" 
which is impossible, and if the lines Q'+U and Q"+ U were equal, 
then U would be on Q'+Q" which we excluded too. It follows that 
the only point not on Q'+Q", but in I\ is W", and w is readily seen 
to be the only line in T which does not pass through W". Thus our 
condition is satisfied, completing the proof of Lemma 1. 

THEOREM 2. The quasi-perspectivity <j> is a perspectivity if> and only 
if, the system $ of fixed elements of <j> is not a projective subplane. 

PROOF. If <j> is a perspectivity, then there exists a point H and a 
line h such that the set of fixed points, with the possible exception 
of H, is just the set of points on h, and such that the set of fixed lines, 
with the possible exception of h, is just the pencil of lines through H. 
It is clear that 4> is not a projective subplane. 

Assume conversely that * is not a projective subplane. There exist 
fixed points and fixed lines, since by Theorem 1 every point is on a 
fixed line and every line passes through a fixed point. We note further­
more that $ is a closed configuration. Hence we may infer from 
Lemma 1 the existence of a fixed point H and of a fixed line h with 
the following properties: 

If P is a fixed point, P^H, then P is on h; and if k is a fixed line, 
k 5* h, then k passes through H. 

Suppose that Q is a point on h. There exists a line q^h through Q 
which does not pass H. This line q carries a fixed point which is differ­
ent from H and which therefore is on h. But q and h meet in Q, prov­
ing that Q is a fixed point. Thus every point on h is a fixed point; 
that every line through H is a fixed line is shown likewise. The point 
H is the center and the line h is the axis of 0, proving that 0 is a per­
spectivity. 

A closed configuration Y in the projective plane II is termed maxi­
mal if it is different from II, and if II is the only closed configuration 
which contains T as a proper subset. One deduces without difficulty 
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from Lemma 1 that the maximal closed configurations which are not 
projective subplanes consist of a line A, a point H, the points on h and 
the lines through H. 

THEOREM 3. The systems of fixed elements of quasi-perspectivities are 
maximal closed configurations. 

PROOF. Suppose that $ is the system of fixed elements of the quasi-
perspectivity <t>. Then 5> is a closed configuration. If $ is a proper sub­
set of the closed configuration I\ then we may assume without loss 
in generality that T contains a point P which is not in <£. Every line 
through P carries a fixed point of <j> which is necessarily different from 
P. Hence every line through P is in I\ If h is a fixed line not passing 
through P, then every point on h is the intersection of h and of a line 
through P which both belong to I\ Hence every point on h is in T. 
Every point is on a fixed line (Theorem 1), and thus every point is 
in r with the possible exception of the points on the uniquely deter­
mined fixed line through P (Corollary 1). Now it is easily seen that 
every line and, therefore, every point is in T, completing the proof. 

It is very easy to construct examples of maximal closed configura­
tions which are not the systems of fixed elements of a suitable pro-
jectivity and examples of maximal closed configurations which are the 
systems of fixed elements of a suitable projectivity, but not of a quasi-
perspectivity. 

If T is a maximal closed configuration, then we may form the group 
A = A(r) of all the projectivities which leave invariant every element 
in T. It is possible that A = 1. The following facts are immediate con­
sequences of Theorem 1 and the fact that the systems of fixed ele­
ments are closed configurations. 

COROLLARY 3. Suppose that T is a maximal closed configuration in 
the projective plane II, that every point in II is on a line in T, and that 
every line in II passes through a point in T. 

(a) If <jf>?̂ l is in A(r), then 0 is a quasi-perspectivity whose system 
of fixed elements is T. 

(b) If <j> and y are in A(r), and if there exists an element not in T on 
which 4> and y have the same effect, then <j>~y. 

If the point P is not a point on T, and if P* is the set of all the 
images of P under projectivities in A(r), then it follows from the 
preceding Corollary 3 that the points in P* are collinear and that 
A(r) induces a regular group of permutations in P*. If in particular 
A(T) is a finite group, then all systems P*, for P not in I\ contain the 
same number of elements, this number being the order of the group 
A(r>. 
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The following lemma will be convenient for the construction of pro-
jectivities whose system of fixed elements is a subplane. 

LEMMA 2. The system $ of fixed elements of the projectivity <t> is a 
projective subplane of the projective plane II if, and only if, there exist 
four fixed points of <f> no three of which are collinear8 

PROOF. The necessity of the condition being obvious, let us assume 
the existence of four fixed points U, V> W and Z of 0 such that no 
three of these four points are collinear. If P is any fixed point of <£, 
then we have to show that three different fixed lines pass through P . 
If P happens to be one of the four basic points, say P=U, then 
U+ V, U+ Wand U+Z are three different fixed lines passing through 
P . If P is different from the four basic points, then the lines P + U, 
P+V, P + W a n d P-\-Z are fixed lines passing through P . Thus we 
have proved our contention, provided three of these lines are differ­
ent. Assume therefore that only two of these lines are different. Not­
ing the impossibility that three of these lines are equal, we may as­
sume without loss in generality that P + U-P-\- F and P+W=P+Z 
so that P is the intersection of the fixed lines U+ V and W+Z. But 
the lines W+U and V+Z meet in a fixed point M and the line M+P 
is the desired third fixed line through P . 

Of the four fixed lines U+ V, V+ W> W+Z and Z+ U no three are 
copunctual. Hence we infer by duality from the result of the first 
paragraph that there are on every fixed line of <j> a t least three fixed 
points; and this completes the proof of the lemma, since fixed lines 
meet in fixed points and since the lines through fixed points are fixed 
lines. 

LEMMA 3. If II is the projective plane over the (not necessarily com-
mutative) field9 G, and if 4>T^1 is a projectivity of II, then the following 
condition is necessary and sufficient f or the system $ of fixed elements of<j> 
to be a projective subplane of H : 

(*) There exists an automorphism a 5* 1 of the field G and a system 
of homogeneous coordinates of II such that the point with coordinates 
(xQ, XI9 #2) is mapped by </> upon the point with coordinates (#0

a, #i°S #2°0* 

This may be deduced by the customary arguments10 from Lemma 2. 

1 M. Hall [l, p. 231] uses this property as a postulate instead of the equivalent 
requirements that every line carries at least three points and every point is on at 
least three lines on which requirement our discussion is based; see Baer [l, p. 138]. 

9 The word "field" shall always be used in this general sense. 
10 See, for example, Baer [2] or Brauer [ l] . 
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LEMMA 4. The projectivity <f> of the projective plane II over the field G 
which is determined by the automorphism a of G according to Lemma 3, 
(*), is a quasi-perspectivity if, and only if, there exists a number CT*0 
in G such that ca~c and11 {xa—x)a=^c{xa—x) for every x in G. 

PROOF. If the condition is satisfied, then 
a" a2 a' a a a 

(xo , %i , x2 ) = (1 + c)(xQ, xh x2) - c{xo, %i, x2); 

and we infer from Theorem 1, (i), that 0 is a quasi-perspectivity. 
Assume conversely that 0 is a quasi-perspectivity. Consider the 

point with coordinates (1, x, y) for x and y in G. Then we infer from 
Theorem 1, (i), the existence of numbers r, s in G such that 
(1, x"2, ya*)~r(\, xa, ya)+s(ly x, y) or l=r+s, xai=*rxa+sx, 
y<*2 = rya+sy; this is equivalent to the following statement: 

If x and y are numbers in G, then there exists a number s in G such 
that xa2—xa+s(x—xa) and ya2=ya+s(y—ya). 

From a 9e 1 we infer the existence of an element z in G such that 
za9£z. Then there exists one and only one number c 5̂ 0 in G such that 

(za — z)a = c(za — z). 

If / is any number in G, then it follows from the result, obtained in the 
preceding paragraph of this proof, that 

(/« - t)a « c(t« - t) 

is valid too. Apply this in particular on t~za and obtain 

c(z«2 - za) = (za* - za)« « {{za - %)*)« = (c(za - z))a = ca(zal -z«) 

proving c = ca, since ZT&Z* implies za9£za2
1 and this completes the proof 

of Lemma 4. 

THEOREM 4. Suppose that II is the projective plane over the field G, 
and that the projectivity <j> of Tl is determined by the automorphism a 
of G according to Lemma 3, (*). Then <j> is a quasi-perspectivity, but not 
an involution12 if, and only if, there exists a number c in G which does 
not belong to the center of G such that <rl+c is in the center of G and such 
that 

x? = (1 + c)%(\ + c)~lfor every x in G. 

PROOF. Assume firstly the existence of a number c in G, not in the 
center of G, such that c~"l+c is in the center of G and such that 

11 Note that a and 4> are involutions if, and only if, c« — 1. 
12 It is a consequence of Theorem 2 and Lemma 3 that 4> cannot be a perspectivity 

either. 
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#« = (1 +c)x(l +c)~K Then c = ca and 

x«2 - exc1 - (1 + c)2x{l + c)~2 - effer1 

= [(1 + cYx - cxc-^l + c)2](l + <0~2 

= [x + c2x - cxic"1 + c)](l + c)~2 

= \x + c2x - (c-1 + c)cx}{\ + c)~2 = 0 

so that xa%=*cxc~l. But c is not in the center of G. Hence a2 5^1, prov­
ing that </> is not an involution. Furthermore we find that 

(xa — x)a — c(xa — #) = ff"2 — (1 + c)ffa + ex 

= ff"2 — ff*2(l + c) + CX = — ff*26 + 6# 

= — {cxc~x)c + cx = 0, 

and it follows from Lemma 4 that 0 is a quasi-perspectivity. This 
proves the sufficiency of our condition. 

Assume conversely that 0 is a quasi-perspectivity, but not an in­
volution. Then a2 y^l, since #2 is determined by a2, and we infer from 
Lemma 4 the existence of a number c?*0 in G such that c — ca and 
such tha t 

(1) ff"2 = (1 + c)tf* — cx for every x in G. 

From a25*l we infer es* — 1. 
If y is an element in G, then we may apply (1) on x ==y2, and we find 

that 

(1 + c)y2« - <;;y2 = y2"2 « (y*2)2 = [(1 + <?)y« - *y] f 

= (1 + c)ya{\ + c)ya — (1 + c)yacy — cy(l + c)ya + cycy 

or 

(1 + c)ya{ya - (1 + c)ya + cy) = cy(y + cy - (1 + <0?a); 

thus we have shown that 

(2) (1 + c)yac(y — ya) = cy{\ + c)(y — ya) for every y in G. 

If in particular y ?*ya
t then we may divide by y — ya in (2), proving 

tha t 

(3) (1 + c)yac = cy(l + c) for y y* y*. 

If c were equal to 1, then the characteristic of the field G would be 
different from 2, since we have already shown that c?*--1. There 
exist elements y^y", since a 5^1; we should infer from (3) that ya=y 
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is a consequence of y^y* which is impossible. Thus we have shown 
that 

(4) <; * 0, 1, - 1. 

If WT^W", then y^wa — w is an element not equal to 0, satisfying 
y<*=z(w<x—w)«SzC(wa-- w) —cyyéyby (1) and (4). Hence we may apply 
(3) on this particular element y, and we obtain, because of (1), 

c(wa - w)(l + c) = cy(l + c) ^ (1 + c)yac = (1 + c)(wa - w)«e 

= (1 + c)c(wa — w)e. 

Since e^O, this implies (wa — w){\ +c) = (1 +c)(wa — w)c or 

(5) wa — w = c(wa — w)c for every w in G, 

since this formula (5) is trivially true, in case w = wa. 
If y^y", then we infer from (3) and (5) that 

cy — yac = [cy(l + c) — eye] — yac = (1 + c)yac — eye — yae 

= eyac — eye = c(ya — y)c = ya —• y; 

and from this result we deduce that 

(6) ya(l + c) = (1 + e)y whenever y 7e ya. 

Consider now an element x s-uch that x = xa. We deduce from a 9e 1 
the existence of an element 2 in G such that 25^2". Then y = # + 2 is an 
element in G, satisfying y ?£ya, and it follows from (6) that 

*«(1 + e) = (y - *)«(! + c) - y«(l + c) - *«(1 + <;) 

= (1 + c)y - (1 + *)* - (1 + <?)(y - 2) = (1 + *)*. 

Combining this result with (6) and (4), we have shown that 

(7) xa = (1 + c)x(l + e)~l for every x in G. 

If x is an element in G, then it follows from (1) and (7) that 

0 = [x«
2 - (1 + c)x* + ex]{l + e)2 

« (1 + c)2x - (1 + e)2s(l + c) + cx(l + c)2 

= cx{\ + c)2 — (1 + e)2xe ~ ex — xe + cxe2 — e2xc 

or, since e 5*0 by (4), 

0 « asc"-1 — £ - ! # Jf %c — c% 

or 
#(e + £~x) ** (e + e""1) x for every x in G, 
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proving that c+c1 is in the center of G. It follows from (7) and ay£\ 
that c cannot be in the center of G, and this completes the proof of the 
necessity of our condition. 

COROLLARY 4. If H is the projective plane over the field G, then the 
following condition is necessary and sufficient for the existence of a quasi-
perspectivity which is neither a perspectivity nor an involution : 

There exists a number c in G which does not belong to the center of G, 
though c+c~~l is in the center. 

This is an almost immediate consequence of Theorem 2, Lemma 3, 
and Theorem 4. 

COROLLARY S.IfH is the projective plane over the commutative field G 
then every quasi-perspectivity is a perspectivity or an involution^ and the 
existence of quasi-perspectivities that are not perspectivities is equivalent 
to the existence of involutorial automorphisms not equal to 1 of G. 

This is readily deduced from Corollary 4, Theorem 2 and Lemma 3. 
In order to show the existence of quasi-perspectivities that are 

neither perspectivities nor involutions we consider the projective 
plane II over the field G of real quaternions. The number i in G satis­
fies i2 = — i so that i+i*1 = 0 is an element in the center of G, though i 
itself is not in the center of G. Thus i is an element c meeting the re­
quirements of Corollary 4, and this shows the existence of quasi-
perspectivities of II which are neither perspectivities nor involutions. 

If II is the projective plane over the (not necessarily commutative) 
field G, and if T is a projective subplane of II, then T is the projective 
plane over a suitable subfield G0 of G. It is easy to establish a 1:1 
and monotone increasing correspondence mapping the (partially 
ordered) set of the projective subplanes of II which contain T upon 
the set of subfields of G which contain Go. In particular T is maximal 
if, and only if, G0 is maximal. Lemma 3 establishes a correspondence 
between the projectivities of II which leave invariant the elements in 
r and the automorphisms of G which leave invariant the elements 
in Go. This shows that this type of Galois theory of projective planes 
may be reduced completely to the Galois theory of fields. If in par­
ticular G is a commutative field, and if G is a normal separable exten­
sion of Go, then Go is maximal if, and only if, the degree of G over G0 

is a prime p. In this case both the group of automorphisms of G which 
leave invariant the elements in Go and the group A(r) of projectivi­
ties of II which leave invariant the elements in V are of order p} and 
it is readily seen that the projectivities in A(r) are quasi-perspectivi­
ties (involutions) if, and only if, £ = 2. This shows in particular that 
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the maximality of $(0) does not imply that 0 is a quasi-perspectivity. 
We apply finally the results obtained so far to the special case of 

finite projective planes. If II is a finite projective plane, then every 
line carries the same number w + 1 of points and every point is on n + 1 
lines; the total number of points (lines) is 1+n+n2. This integer n 
(^2) shall retain this significance throughout. 

We denote by N=N(<I>) the total number of fixed points1* of the pro-
jectivity <f> of the finite projective plane II. 

LEMMA 5. If 4> is a projectivity of the finite projective plane II, and if 
n g N9 then <t> is a quasi-perspectivity. 

PROOF. Suppose that no fixed line passes through the point W. 
Since there exist at least two fixed points, there exists a fixed point 
PT*W.I{ W were a fixed point, then P+W would be a fixed line which 
is impossible. Hence Wis not a fixed point. 

Suppose next that there exists a fixed point Z on the line W+ W<t>. 
Then Z is different from both W and W<t> so that 

(W + W<j>)4> = (Z + W)<t>~Z+W<t>~W+W<l>. 

Thus the presence of a fixed point on W+W<f> would imply that 
W+ W<j> is a fixed line through W. This is impossible. Hence there is 
no fixed point on the line W+ W<f>. 

If P is any fixed point, then W+P is not a fixed line. Thus it is 
impossible that W+P carries more than one fixed point. But there 
exist at least n fixed points each of which may be connected with W 
by a line which does not carry any further fixed points. Since there 
pass exactly n+1 lines through W> it follows that the line W+W<l> 
is the one and only line through W which does not carry fixed points, 
and that all the other lines through W carry one and only one fixed 
point. 

Since no line through W is a fixed line, no line through W<t> is a 
fixed line. Hence it follows from the previous discussion that 
W<t> + W<j>* is the one and only one line through W<f> which does 
not carry fixed points. But W+ W<t> is a fixed point free line passing 
through W<t>. Hence 

W + W<t> - W<t> + W^ - (W + W<t>)4>, 

proving that W+ W</> is a fixed line passing through W. This is a con­
tradiction which shows that every point is on a fixed line. It follows 
from Theorem 1 that ^ is a quasi-perspectivity. 

13 It will be shown elsewhere that this is the number of fixed lines too. 
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If </> is an elation, then the set of its fixed points is just the set of 
points on some suitable line, proving N(4>) = n+1 ; if <j> is a homology,u 

then the set of its fixed points consists of all the points on its axis and 
of the center which is not on its axis so that N(<j>) = n+2. 

THEOREM 5. The following properties of the projectivity </> of the finite 
projective plane U imply each other. 

(i) <j>is a quasi-perspectivity y but not a perspectivity. 
(ii) The system $ of fixed elements of </> is a projective subplane of II 

and n=i2 where i+1 is the number of fixed points on a fixed line. 
(iii) n+2<N(cf>). 

PROOF. If (i) is satisfied by <£, then we infer from Theorem 2 that 
$ is a projective subplane of the finite plane II. There exists therefore 
an integer i^£2 such that every fixed line carries i+1 fixed points 
and such tha t i+1 fixed lines pass through any given fixed point. 
N((f>) = 1 +i+i2 is then the total number of fixed points and the total 
number of fixed lines. Consider a line h which is not a fixed line. I t is 
a consequence of Corollary 1 that h carries one and only one fixed 
point Hf and that every point P^H on h is situated on one and only 
one fixed line. Since every fixed line meets h in one and only one 
point, and since exactly i+1 fixed lines pass through the fixed point 
iJ, it follows that the other i2 fixed lines meet h in the n points differ­
ent from Hy proving that n~i2. Thus we have shown that (ii) is a 
consequence of (i). 

If (ii) is satisfied by 0, then 

may be inferred from 2 ̂ i , showing tha t (iii) is a consequence of (ii). 
If finally (iii) is satisfied by <£, then we infer from Lemma 5 that <f> 

is a quasi-perspectivity. Since N(<t>)=n + 1 or n+2 for perspectivi-
ties, </> cannot be a perspectivity, proving that (i) is a consequence 
of (iii). 

COROLLARY 6. Suppose that <j> is a projectivity of the finite projective 
plane II. 

(a) N{<f>)^n. 
(b) n+1 SN(<f>) ift and only if, <f> is a quasi-perspectivity. 
(c) n+1 =iV(0) if y and only if y <j> is an elation. 
(d) # + 2 = ^ ( 0 ) if y and only ify <f> is a homology. 

PROOF. If 0 is a quasi-perspectivity, then either ^ is a perspectivity 

14 See Veblen-Young [l, p. 72]. 
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and N(<f>)=*n+l or w+2, or else it follows from Theorem 5 that 
n+2 <2V(<£). If conversely n + 1 âiV(<£), then it follows from Lemma 5 
that </> is a quasi-perspectivity, proving (b). If furthermore N(4>) 
~n+lorn+2, then it follows from Theorem 5 that 0 is a perspectiv-
ity, and (c) and (d) are immediately inferred from a previous remark. 
If n^N(</>), then it follows from Lemma 5 that <j> is a quasi-perspec­
tivity, and hence it follows from (b) that n+1 â^V(<£). Thus n^N(<l>) 
implies w+l^iV(0), proving (a). 
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