COUNTABLE CONNECTED SPACES

WILLIAM GUSTIN

Introduction. Let \mathfrak{S} be the class of all countable and connected perfectly separable Hausdorff spaces containing more than one point. It is known that an \mathfrak{S}-space cannot be regular or compact. Urysohn, using a complicated identification of points, has constructed the first example of an \mathfrak{S}-space. ${ }^{1}$ Two \mathfrak{S}-spaces, X and X^{*}, more simply constructed and not involving identifications, are presented here. The space X^{*} is a connected subspace of X and contains a dispersion point; that is, the subspace formed from X^{*} by removing this one point is totally disconnected.

1. Sequences. The null sequence or any finite sequence of positive integers will hereafter be called more briefly a sequence. The null sequence or a sequence having an even number of elements is said to be even and a sequence having an odd number of elements is said to be odd. A sequence will usually be denoted by a lower case Greek letter: an arbitrary sequence by α, β, or γ; an arbitrary even sequence by λ, μ, or ν; the null sequence by o. A positive integer will be denoted by a lower case italic letter (not x, y, or z), which may also serve to represent the sequence consisting of that single integer.

The relation $\alpha \geqq i$ signifies that $a \geqq i$ for every element a of α, and $\alpha<i$ that $a<i$ for every element a of α. The null sequence vacuously satisfies both $o \geqq i$ and $o<i$.

The sequence formed by adjoining β to the end of α is denoted by $\alpha \beta$.

Definition. The relation $\beta \supset_{i} \alpha$ is to mean that a sequence α^{\prime} exists such that $\beta=\alpha \alpha^{\prime}$ and $\alpha^{\prime} \geqq i$.

Some immediate consequences of the preceding definitions are:
1.1. $\alpha \supset_{i} \alpha$.
1.2. If $\beta \supset_{j} \alpha$ and $j \geqq i$, then $\beta \supset_{i} \alpha$.
1.3. If $\gamma \supset_{i} \beta$ and $\beta \supset_{i} \alpha$, then $\gamma \supset_{i} \alpha$.
1.4. If $\gamma \supset_{a} \alpha$ and $\gamma \supset_{b} \beta$, then $\beta \supset_{a} \alpha$ or $\alpha \supset_{b} \beta$.

Proof. Let $\gamma \supset_{a} \alpha$ and $\gamma \supset_{b} \beta$; then sequences $\alpha^{\prime}, \beta^{\prime}$ exist such that

[^0]$\gamma=\alpha \alpha^{\prime}, \alpha^{\prime} \geqq a$, and $\gamma=\beta \beta^{\prime}, \beta^{\prime} \geqq b$. Since $\alpha \alpha^{\prime}=\beta \beta^{\prime}$, there exists a sequence $\alpha^{\prime \prime}$ such that $\beta=\alpha \alpha^{\prime \prime}$ or a sequence $\beta^{\prime \prime}$ such that $\alpha=\beta \beta^{\prime \prime}$. If $\beta=\alpha \alpha^{\prime \prime}$, then $\alpha \alpha^{\prime}=\beta \beta^{\prime}=\alpha \alpha^{\prime \prime} \beta^{\prime}$; hence $\alpha^{\prime}=\alpha^{\prime \prime} \beta^{\prime}$. But $\alpha^{\prime} \geqq a$, so $\alpha^{\prime \prime} \geqq a$ and consequently $\beta \supset_{a} \alpha$. Similarly, if $\alpha=\beta \beta^{\prime \prime}$, then $\alpha \supset_{b} \beta$.
2. Points in X. The space X shall consist of two disjoint subsets: Y, the set of all even sequences; and Z, the set of all ordered pairs $\{k,(\mu, \nu)\}$ composed of a positive integer k and a set $(\mu, \nu)=(\nu, \mu)$ of even sequences μ and ν. Hereafter a point μ in Y will be denoted by $y(\mu)$ and a point $\{k,(\mu, \nu)\}$ in Z by $z_{k}(\mu, \nu)$. Evidently X is countable.

The neighborhoods in X will be formed from certain subsets $Y_{i}(\alpha)$ of Y, defined for every positive integer i and every sequence α.

Definition. $Y_{i}(\alpha)$ is the set of all points $y(\mu)$ such that $\mu \supset_{i} \alpha$.
Some properties of these sets are:
2.1. $y(\mu) \in Y_{i}(\mu)$.
2.2. If $j \geqq i$, then $Y_{j}(\alpha) \subset Y_{i}(\alpha)$.
2.3. If $y(\mu) \in Y_{i}(\alpha)$, then $Y_{i}(\mu) \subset Y_{i}(\alpha)$.
2.4. $Y_{a}(\alpha) Y_{b}(\beta) \neq 0$ is equivalent to: $\beta \supset_{a} \alpha$ or $\alpha \supset_{b} \beta$.

Proof. If the set $Y_{a}(\alpha) Y_{b}(\beta)$ contains a point $y(\mu)$, then $\mu \supset_{a} \alpha$ and $\mu \supset_{b} \beta$; therefore, $\beta \supset_{a} \alpha$ or $\alpha \supset_{b} \beta$.

Now, if $\beta \supset_{a} \alpha$, define $m=\max (a, b), \nu=\beta$ if β is even, $\nu=\beta m$ if β is odd. Thus ν is even and $\nu \supset_{b} \beta$ so $y(\nu) \in Y_{b}(\beta)$. Moreover $\nu \supset_{a} \beta \supset_{a} \alpha$, hence $\nu \supset_{a} \alpha$ so $y(\nu) \in Y_{a}(\alpha)$. Therefore $Y_{a}(\alpha) Y_{b}(\beta) \neq 0$. Similarly $Y_{a}(\alpha) Y_{b}(\beta) \neq 0$ if $\alpha \supset_{b} \beta$.

Corollary. If $\alpha \neq \beta$ and $\alpha \beta<i$, then $Y_{i}(\alpha) Y_{i}(\beta)=0$.
To every point $z=z_{k}(\mu, \nu)$ a unique positive integer $q(z)=q_{k}(\mu, \nu)$ is assigned as follows. The set of all sets (μ, ν) of even sequences μ and ν, being countable and infinite, can be mapped onto the set of positive integral primes by some 1-1 mapping $p(\mu, \nu)$. Define

$$
q_{k}(\mu, \nu)=[p(\mu, \nu)]^{k}
$$

According to the unique factorization theorem of arithmetic, q is a 1-1 mapping of the point set Z onto a subset of the positive integers. Moreover, since the infinite sequence of positive integers $q_{k}(\mu, \nu)$ for $k=1,2, \cdots$ is strictly increasing, $q_{k}(\mu, \nu) \rightarrow \infty$ as $k \rightarrow \infty$.
3. Neighborhoods in X. For every point x in X and every positive integer i, a neighborhood $V_{i} x$ of x is now defined.

Definition.

$$
\begin{aligned}
V_{i} y(\mu) & =Y_{i}(\mu) \\
V_{i} z_{k}(\mu, \nu) & =z_{k}(\mu, \nu)+Y_{i}(\mu q)+Y_{i}(\nu q), \quad q=q_{k}(\mu, \nu)
\end{aligned}
$$

Under this definition of neighborhood X forms a Hausdorff topological space; that is, X satisfies the following neighborhood axioms.

Axiom 1. To every point x in X there corresponds at least one neighborhood of x; every neighborhood of x contains x by 2.1 or by definition.

Axiom 2. If $V_{i} x$ and $V_{j} x$ are two neighborhoods of x, a neighborhood $V_{m} x$ of x exists such that $V_{m} x \subset V_{i} x V_{j} x$. Indeed, if $m=\max (i, j)$, then $V_{m} x=V_{j} x V_{j} x$ by 2.2.

Axiom 3. If $V_{i} x$ contains a point $y(\mu)$, there exists a neighborhood of $y(\mu)$ contained in $V_{i} x$. By 2.3 such a neighborhood is $V_{i} y(\mu)$.

Axiom 4H. Every two distinct points x, x^{\prime} in X are Hausdorff- or H-separable; that is, there exist neighborhoods $V_{i} x$ of x and $V_{i} x^{\prime}$ of x^{\prime} such that $V_{i} x V_{i} x^{\prime}=0$. The intersection $V_{i} x V_{i} x^{\prime}$ can be reduced to the sum of at most four intersections, each of the form $Y_{i}(\alpha) Y_{i}\left(\alpha^{\prime}\right)$. If α, α^{\prime} are both even, then $\alpha \neq \alpha^{\prime}$ since $x \neq x^{\prime}$. And also $\alpha \neq \alpha^{\prime}$, if α, α^{\prime} are both odd; for then even sequences μ, μ^{\prime} and positive integers q, q^{\prime} exist such that $\alpha=\mu q, \alpha^{\prime}=\mu^{\prime} q^{\prime}$, and, since $x \neq x^{\prime}, q \neq q^{\prime}$. Thus, according to the corollary of $2.4, Y_{i}(\alpha) Y_{i}\left(\alpha^{\prime}\right)=0$ when i is chosen so that $\alpha \alpha^{\prime}<i$. An integer i then exists for which $V_{i} x V_{i} x^{\prime}=0$.

Thus X is a nondegenerate countable Hausdorff space. Evidently X is also perfectly separable.
4. Connectedness of X. Two distinct points x, x^{\prime} in a space E are said to be \bar{H}-separable provided neighborhoods V of x and V^{\prime} of x^{\prime} exist such that $\bar{V} \bar{V}^{\prime}=0$; otherwise, the points x, x^{\prime} are said to be \bar{H}-inseparable. A single point is also said to be \bar{H}-inseparable if it is \bar{H}-inseparable with every other point in E.

A space E containing an \bar{H}-inseparable point x is connected; for otherwise E could be covered by two non-null disjoint isolated (open and closed) sets V, V^{\prime}, one of which contains x; but this would imply the contradiction

$$
0=V V^{\prime}=\bar{V} \bar{V}^{\prime} \neq 0
$$

Moreover, if E is a Hausdorff space, then no point of E satisfies the regularity axiom, or, more briefly, is regular. For let x^{\prime} be any point
in E distinct from x. Since x, x^{\prime} are H-separable in E, there exist disjoint neighborhoods V of x and V^{\prime} of x^{\prime}; consequently

$$
V \bar{V}^{\prime}=0=\bar{V} V^{\prime}
$$

If x were a regular point of E, then a neighborhood U of x would exist such that $V \supset \bar{U}$, so

$$
0=V \bar{V}^{\prime} \supset \bar{U} \bar{V}^{\prime} \neq 0
$$

Similarly, if x^{\prime} were a regular point of E, then a neighborhood U^{\prime} of x^{\prime} would exist such that $V^{\prime} \supset \bar{U}^{\prime}$, so

$$
0=\bar{V} V^{\prime} \supset \bar{V} \bar{U}^{\prime} \neq 0
$$

By considering the sets $Y_{i}(\alpha)$ every point in the space X is now shown to be \bar{H}-inseparable. Hence X is connected and no point of X is regular.

Definition. $Z_{i}(\alpha)$ is the set of all points $z_{k}(\mu, \nu)$ such that $\mu q \supset_{i} \alpha$ or $\nu q \supset_{i} \alpha, q=q_{k}(\mu, \nu)$.
4.1. $\bar{Y}_{i}(\alpha)=Y_{i}(\alpha)+Z_{i}(\alpha)$.

Proof. The following equivalent statements show that $Y \bar{Y}_{i}(\alpha)$ $=Y_{i}(\alpha)$:
$y(\mu) \in \bar{Y}_{i}(\alpha)$.
For all $j: V_{i} y(\mu) Y_{i}(\alpha) \neq 0$.
For all $j: Y_{j}(\mu) Y_{i}(\alpha) \neq 0$.
For all $j: \alpha \supset_{i} \mu$ or $\mu \supset_{i} \alpha$.
$\mu \supset_{i} \alpha$.
$y(\mu) \in Y_{i}(\alpha)$.
The following equivalent statements show that $Z \bar{Y}_{i}(\alpha)=Z_{i}(\alpha)$, where $q_{k}(\mu, \nu)$ has been abbreviated to q :
$z_{k}(\mu, \nu) \in \bar{Y}_{i}(\alpha)$.
For all $j: V_{j} z_{k}(\mu, \nu) Y_{i}(\alpha) \neq 0$.
For all $j:\left[Y_{j}(\mu q)+Y_{j}(\nu q)\right] Y_{i}(\alpha) \neq 0$.
For all $j: Y_{i}(\mu q) Y_{i}(\alpha) \neq 0$ or $Y_{i}(\nu q) Y_{i}(\alpha) \neq 0$.
For all $j: \alpha \supset_{j} \mu q$ or $\mu q \supset_{i} \alpha$ or $\alpha \supset_{j} \nu q$ or $\nu q \supset_{i} \alpha$.
$\mu q \supset_{i} \alpha$ or $\nu q \supset_{i} \alpha$.
$z_{k}(\mu, \nu) \in Z_{i}(\alpha)$.
4.2. $Z_{a}(\alpha) Z_{b}(\beta) \neq 0$; hence every two distinct points in X are \bar{H}-inseparable.

Proof. Evidently there exist even sequences μ, ν such that $\mu \supset_{a} \alpha$ and $\nu \supset_{b} \beta$. And since $q_{k}(\mu, \nu) \rightarrow \infty$ as $k \rightarrow \infty$ a positive integer k exists for which

$$
q=q_{k}(\mu, \nu) \geqq \max (a, b)
$$

Therefore $\mu q \supset_{a} \alpha$ and $\nu q \supset_{b} \beta$; so $z_{k}(\mu, \nu) \in Z_{a}(\alpha) Z_{b}(\beta)$.
Thus X is an \mathfrak{S}-space whose every point is \bar{H}-inseparable.
5. The space X^{*}. Let X^{*} be the relative subspace of X formed by removing from X all points $z_{k}(\mu, \nu)$ except those of the form $z_{k}(\mu, o)$, $\mu \neq 0$. Notice that every X^{*}-neighborhood of a point in X^{*} is also an X-neighborhood of that point. The argument of 4.2 shows that the set $Z_{a}(\alpha) Z_{b}(0)$ contains a point of X^{*}. The point $y(0)$ is then an \bar{H}-inseparable point of X^{*}. Thus X^{*}, being a nondegenerate connected subspace of an \mathfrak{S}-space, is also an \mathfrak{S}-space.
6. The space $X^{* *}$. Let $X^{* *}$ be the relative subspace of X^{*} formed by removing from X^{*} the single point $y(o)$. This point is a dispersion point of X^{*}; for the following recursive construction of isolated subsets in the space $X^{* *}$ shows that $X^{* *}$ is totally disconnected.

Definition. For every non-null even sequence λ and every positive integer i such that $\lambda<i$ let

$$
X_{i}(\lambda)=\sum_{n=1}^{\infty}\left[Y_{i}^{n}(\lambda)+Z_{i}^{n}(\lambda)\right],
$$

the sets $Y_{i}^{n}(\lambda)$ and $Z_{i}^{n}(\lambda)$ being recursively defined as follows:
$Y_{i}^{n}(\lambda)$ is the set of all points $y(\mu)$ such that $\mu \supset_{,} \alpha^{n}$, where $\alpha^{n}=\lambda$ if $n=1$, and $\alpha^{n}=q(z)$ for some $z \in Z_{i}^{n-1}(\lambda)$ if $n>1$;
$Z_{i}^{n}(\lambda)$ is the set of all points $z=z_{k}(\mu, o)$ such that $y(\mu) \in Y_{i}^{n}(\lambda)$ and $q(z) \geqq i$.
6.1. $V_{i} x \subset X_{i}(\lambda)$ for all $x \in X_{i}(\lambda)$; hence $X_{i}(\lambda)$ is open in $X^{* *}$.

Proof. Let $y(\mu) \in Y_{i}^{n}(\lambda)$; then $\mu \supset_{i} \alpha^{n}$. If $y(\nu) \in V_{i} y(\mu)$, then $\nu \supset_{i} \mu \supset_{i} \alpha^{n}$, so $y(\nu) \in Y_{i}^{n}(\lambda)$.

Let $z=z_{k}(\mu, o) \in Z_{i}^{n}(\lambda)$; then $\mu \supset_{i} \alpha^{n}$ and $q(z) \geqq i$. If $y(\nu) \in V_{i} z$, then $\nu \supset_{i} \mu q(z)$ or $\nu \supset_{i} q(z)$. Now $\nu \supset_{i} \mu q(z), q(z) \geqq i$, implies that $\nu \supset_{i} \mu \supset_{i} \alpha^{n}$ and hence that $y(\nu) \in Y_{i}^{n}(\lambda)$. And $\nu \supset_{i} q(z), z \in Z_{i}^{n}(\lambda)$, implies that $y(\nu) \in Y_{i}^{n+1}(\lambda)$.
6.2. $V_{i} x X_{i}(\lambda)=0$ for all $x \in X_{i}(\lambda)$; hence $X_{i}(\lambda)$ is closed in $X^{* *}$.

Proof. Let $y(\mu) \notin X_{i}(\lambda)$. Suppose the set $V_{i} y(\mu) X_{i}(\lambda)$ contains a point $y(\nu)$; then $\nu \supset_{4} \mu$ and $\nu \supset_{4} \alpha^{n}$. Therefore $\mu \supset_{i} \alpha^{n}$ or $\alpha^{n} \supset_{i} \mu$. Now $\alpha^{n} D_{\imath} \mu$, since $\alpha^{1}=\lambda<i$ and since α^{n} is a single integer if $n>1$. Hence $\mu \supset_{i} \alpha^{n}$, so $y(\mu) \in Y_{i}^{n}(\lambda)$-a contradiction.

Let $z=z_{k}(\mu, o) \notin X_{i}(\lambda)$. Suppose the set $V_{i} z X_{i}(\lambda)$ contains a point
$y(\nu)$; then $\nu \supset_{i} \mu q(z)$ or $\nu \supset_{i} q(z)$, and $\nu \supset_{i} \alpha^{n}$. Therefore

$$
\mathfrak{A}^{n}: \alpha^{n} \supset_{i} \mu q(z) \text { or } \mu q(z) \supset_{i} \alpha^{n} \text { or } \alpha^{n} \supset_{i} q(z) \text { or } q(z) \supset_{i} \alpha^{n}
$$

Now $\lambda \neq 0, \lambda<i$, and $\lambda=\alpha^{1}$; \mathfrak{H}^{1} then reduces to $\mu q(z) \supset_{i} \lambda$; so $\mu \supset_{i} \lambda$, $q(z) \geqq i$, and consequently $z \in Z_{i}^{1}(\lambda)$-a contradiction. If $n>1$, then $\alpha^{n}=q\left(z^{\prime}\right) \geqq i$ for some $z^{\prime} \in Z_{i}^{n-1}(\lambda)$, so \mathscr{N}^{n} reduces to: $\mu q(z) \supset_{i} q\left(z^{\prime}\right)$, $\mu \neq 0$; or $q(z)=q\left(z^{\prime}\right)$. Now $\mu q(z) \supset_{i} q\left(z^{\prime}\right), \mu \neq 0$, implies that $\mu \supset_{i} q\left(z^{\prime}\right)$, $q(z) \geqq i$, and hence that $z \in Z_{i}^{n}(\lambda)$-a contradiction. And $q(z)=q\left(z^{\prime}\right)$ implies that $z=z^{\prime} \in Z_{i}^{n-1}(\lambda)$-also a contradiction.

The sets $X_{i}(\lambda)$ are then isolated subsets of $X^{* *}$ for $\lambda \neq 0, \lambda<i$. Notice that

$$
\begin{array}{lll}
x=y(\lambda) \in X_{i}(\lambda), & \\
x=y\left(\lambda^{\prime}\right) \notin X_{i}(\lambda) & \text { if } & \lambda^{\prime} \neq \lambda \text { and } \lambda^{\prime}<i, \\
x=z_{k}(\lambda, o) \in X_{i}(\lambda) & \text { if } & q(x) \geqq i \\
x^{\prime} \oplus X_{i}(\lambda) & \text { if } & x^{\prime} \in Z \text { and } q\left(x^{\prime}\right)<i .
\end{array}
$$

Now there exists for any two distinct points x, x^{\prime} in $X^{* *}$ an isolated set $X_{i}(\lambda)$ containing x but not x^{\prime} : if $x=y(\lambda), x^{\prime}=y\left(\lambda^{\prime}\right)$, choose i so that $\lambda \lambda^{\prime}<i$; if $x=y(\lambda)$ and $x^{\prime} \in Z$, choose i so that $\lambda q\left(x^{\prime}\right)<i$; and if $x=z_{k}(\lambda, o)$ and $x^{\prime} \in Z$, choose $i=q(x)$, then $q\left(x^{\prime}\right)<i$ and $\lambda<i$, since it may be assumed that $q\left(x^{\prime}\right)<q(x)$ and since the mapping p can.be selected so that $\mu \nu<p(\mu, \nu)$.

Thus the space $X^{* *}$ is totally disconnected. In particular, every two distinct points in $X^{* *}$ are \bar{H}-separable; hence $y(0)$ is the only \bar{H}-inseparable point of X^{*}.

[^1]
[^0]: Presented to the Society, November 24, 1945; received by the editors August 24, 1945.
 ${ }^{1}$ Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. vol. 94 (1925) pp. 262-295; see pp. 274-283 for the example.

[^1]: University of California at Los Angeles

