CYLINDERS IN A CONE
B. M. STEWART AND F. HERZOG

1. The two problems. Let B, be the (¢ —1)-volume! of a figure that
liesin a (k—1)-dimensional hyperplane of the k-dimensional euclidean
space R;. Throughout this paper k will be a fixed integer greater than
unity. Let Q be any point in Ry, not a point of the hyperplane con-
taining By, and let % be the length of the altitude drawn from Q to
the hyperplane containing B,. If Q is joined to each point of B, by

Fi1G. 1.

a line, the resulting figure is a k-dimensional cone whose k-volume V
is given by V=Bh/k. If P, is the foot of the above altitude, choose n
points Py, P, + + -+, P, on PoQ in the natural order Py, Py, P, - + -,
P,, Q. Through P; (=1, 2, - - -, n) draw a hyperplane parallel to
By cutting the cone in a (k—1)-dimensional figure B; which is similar
to Bo. Let Vi, be the k-volume of the right cylinder one of whose
bases is B; while the opposite base lies in the hyperplane containing
Bia (1:=1, 2, -, n). Let X,.=Vi+TVoat - - - + Van and let
X1ny X2my * ¢ * , Xnn be the altitudes of the cylinders Via, Vaa, * * +y Van,
respectively. (Here i, is the length of P; ,P;.)

Figures 1 and 2 illustrate the cases k=2, n=4 and k=3, n=3, re-
spectively.

Received by the editors August 22, 1945,
1 By “m-volume” we mean the m-dimensional content; thus 1-volume=Ilength,
2-volume=area, and so on.
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Our first problem is to obtain the maximum of X, for fixed #» when
no restrictions other than the above are placed upon the Vi, Our
second problem is to obtain the maximum of X, for fixed #» under the
added condition that Vi, = Vas= : + + = Van. We shall refer to these
problems hereafter as the first and second problems, respectively.? In
order to avoid ambiguity in notation we shall denote those values of
the variables X,, X1, %2q, * * * , Xnn Which correspond to the solution
of the first problem by Sa, Sia, Sz, * * *, San, respectively, and those
values which correspond to the solution of the second problem by
Ta, tiny tan, * =+, tun, respectively.

Fic. 2.

In the first problem we show that

(1) Sn = ynk—lV)
n= 1=y, h’
) S1 ( Yn) .
Sin = YnYn—1° " yﬂ—f+2(1 - yﬂ-—i-f-l)h! 1= 2) 31 AN (3

where the numbers y, are defined by the recursion formula

3) ¥ =0, Yo = (b — 1)/(k — ypa*Y), n=1,2,---.

2 The second problem for the case k=2, n=2, but for a quarter-circle rather thana
triangle, was treated in the following paper: B. M. Stewart, T'wo rectangles in a quarter-
circle, Amer. Math. Monthly vol. 52 (1945) pp. 92-94.
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In the second problem we show that
4 Ty = knu,V,
(5) tin = wn[(1 4 )X+ thn2) + ++ A+ wni) 2B =1,2, -+« , 13
where the numbers %, are defined by the recursion formula
(6) w = 1/(k — 1), Un = tny/(1 + Un_1)¥, n=12---.

2. Proof. The following formulas which will be needed in the proof
follow easily from the proportion Bi/(k—x1,)*~t=Bo/h*1:

(7) Vin = Boxln(h - xln) k—-l/hk—-—l'
(8) V' = Bo(h — x1,)%/kR*Y,

where V' is the k-volume of the cone whose base is B; and whose alti-
tude P1Q has the length & —x,.

The proofs of the results for both problems are by induction with
respect to #n. The two problems are identical when #=1, and by ele-
mentary calculus it follows readily from (7) together with X;=Vn
that su=tu=~h/k and that S;=Ty=[(k—1)/k]*1V. These results
agree with (1), (2), (4), and (5) when n=1.

In the first problem we assume that formulas (1) and (2) are correct
for n—1 where n=2. Let x1, be chosen arbitrarily (0 <x1,<#k) and,
depending on the choice of x1,, let %24, %34, © * * , Xan be chosen so as
to maximize the combined k-volume of the remaining #» —1 cylinders,
namely :

Xn—-l, = V2n + V3n + -4 Van.
By the induction hypothesis (see (1)) the maximum of X,_,’ is given
by Sn-1’ =9.-1*"1V’. We thus obtain, for each choice of x1,, a maxi-
mum value of X,, namely, X, = Vi,+S.-1". Considering this X, as a
function of x1., namely (see (7) and (8)),

(9)  Xn = Boxia(k — 212) ¥/ B* 1 4y 1 ¥ Bo(h — x10) ¥/ kB*,
we see that X, reaches its maximum value S, when x;, has the value
— k-1 —
=t ()
or by (3) we may write
(10) sin = (1 — ya)h,

in agreement with (2). Substituting this value of sy, for x1, in (9)
and using (3) we obtain (1).

It remains to show (2) for =2, 3, - - -, n. Note that S,/ repre-
sents the solution of the first problem for V’. Hence if the altitudes of
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these n—1 cylinders are denoted by s1,1-1", S2,01’s * * * 5 Sn—1,n—1’, WeE
have si,=$i_1,n-1" for¢=2, 3, - - -, n and hence by the induction hy-
pothesis (see (2)) Sin =Vn-1Vn—2 * * * Yn—it2(l —Vn—it1) (B —s1,). By (10)
this establishes (2) for £=2, 3, - - -, #n. This completes the proof of (1)
and (2).

In the second problem, the case n=1 having been disposed of
above, we now assume that (4) and (5) are correct for n—1, where
n=2. We shall choose %1, arbitrarily but such that it is possible to
inscribe # —1 cylinders of k-volume equal to Vi, in V’. By the induc-
tion hypothesis (see (4)) this is possible if and only if

(11) (n—10)Via £ k(n — Dua,V'.

By virtue of (7) and (8) and the fact that 0 <xi. <k, the inequality
(11) is equivalent to

(12) 0 < %1 £ taah/(1 + wny).
Our problem is therefore to maximize the quantity
(13) Xn = nVl,. = nBoxl,.(h - xm) k_l/hk—l

within the interval (12). But the function X, increases over the interval
0<x1,=h/k and the right-hand end point of the interval (12) is less
than k/k. (This follows easily from (6): the u, form a decreas-
ing sequence of positive numbers, hence #,1/(1+%p-1) <u,1Z9;
=(k—1)*1/k¥<1/k, n=2, 3, - - - .) Therefore the function X, as-
sumes its maximum in the interval (12) at the right-hand end point,
so that we obtain i, =#n_1h/(14+u4—1) and by (6) we may write

(14) tin = u,.(l + u,._l) k—lh,
(15) h— tyy = h/(l + M,._.l).

Substituting the values of #, and h—t, from (14) and (15) for x1,
and i —xy, in (13) we obtain (4).

When %, assumes the value ¢, given in (14), the inequal-
ity (11) becomes an equation. Consequently, the #—1 cylinders
Vany Vany * + +, Van must be the solution of the second problem for V’.
Hence if the altitudes of these cylinders are denoted by # 4/,
bona’y ¢ oy tam1,n—1’, we have fin=1ti1,n’ for ¢=2,3, .-, n and
hence, by the induction hypothesis (see (5)),

tin = un—l[(l + un—ﬂ)(l + un—s) A (1 + un-—‘)]k—l(h - tln)-

By (15) and (6) this establishes (5) for =2, 3, - -+ -, n. Since (14)
agrees with (5) for =1, this completes the proof.
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3. Asymptotic formulas for S, and T,. The problem arises whether
the quantities S, and T, given by (1) and (4), respectively, can be
expressed directly in terms of #. This seems possible only for the S,
in the case k=2, that is, for the problem of maximizing the combined
area of n rectangles inscribed in a triangle. Indeed in this case (3)
becomes ¥, =1/(2—y,1), which together with y,=0 yields easily by
induction that y,=#n/(n-+1). Hence from (2) and (1) we obtain
Sin=h/(n+1)fori=1,2,-.,nand S,=nV/(n+1) or

Sa/V=1—=1/(n+ 1).

Thus the problem arises to give at least an asymptotic formula for
S./V when k=3, as well as an asymptotic formula for T,/ V when
k=2,

We begin by establishing an asymptotic formula for the y, (in
the case k= 3). We put

(16) Zn=1— 9y,
and obtain from (3)
(17) 20=1, 1/2, = F(za), n=1,2+.-,
where
E— (1 —z)F?
18 Fg) = —m— .
(s ®) 1—(1—2)%1

It is easily established from (3) by mathematical induction that
(k—1)/k=y.<1 so that by (16)

(19) 0 <z, = 1/k, n=12.--.

We shall need the two following facts about F(2), defined in (18).
In the first place,

E—1
Ci1,12 — Cro1,222+ + -« + (— 1)*gh-1 )

The terms in the denominator on the right are decreasing in absolute
value when 0<2<2/(k—2), hence for such values we have F(z) >1
+1/2, so that in particular by (19), since 1/k<2/(k—2),

(20) F(z) > 1+ 1/z;, j=1,2---.

Secondly, we conclude from (18) that F(2) is a regular function
except for poles at the points z=0 and z=1—exp [2mim/(k—1)] with
m=1,2, - .,k—2,sothat F(z) admits of a Laurent expansion in the

F(i) =1+
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region 0<|z| <|1—exp[2ri/(k—1)]| =2 sin[r/(k—1)]. This Lau-
rent series is easily seen to be

0

(21) F@) =1/z4+ E/2+GGE), G@) =2 ans™,

me=1

where the power series G(z) converges for I 3| <2 sin[r/(k—1)]. Since
1/k<4/(k—1) =2 sin[r/(k—1)] for k=3, we conclude that G(z)/z
is bounded for |z| =1/k. The latter fact together with (19) yields

(22) G(2) = O(z,).3

From (17) and (20) we have 1/2;>1+1/3;4,j=2, 3, - - - . By add-
ing these inequalities from j=2 to j=#, we obtain 1/2,>n—1-+41/2;
hence

(23) 2n = O(1/n).

From (17) and (21) we conclude that 1/z;=1/2,1+k/2+G(3;-1),
j=2,3, .. Byadding these equations from j=2 to j =u, we obtain

a1

(24) /20 = /21 + k(n — 1)/2 + 3 G(z2).

=1
Applying (22) and (23) to the G(2:) in (24), we thus obtain
1/2, = kn/2 + O(log n) = (kn/2)[1 + O(n~1 log n)],
2, = (2/kn)[1 + O(n~'log n)] = 2/kn + O(n~2 log n).

Therefore by substituting this result in (1), we obtain the following
asymptotic formula, valid for 2= 3:

So/V = y b1 = (1 — z,)%1 = [1 — 2/kn 4+ O(n~? log n) ]*-1,
S./V =1—2(k— 1)/kn + O(n2 log n).

To establish an asymptotic formula for T,/ V when k22, we begin
with an asymptotic formula for the u#,. We write (6) in the form
1/u;= (1 +u,-_1)’°/u,-_1 or

k
(25) 1/u; = 1/uiy+ k+ Cratijy + 2 Cromtia™,
m==3

where the Y, in (25) is to mean zero when £ =2. By adding these equa-
tions from j =2 to j=n, we obtain

3 The notation f(n) =0(¢(n)) is used here to mean that l f(n)l <A¢(n) for suffi-
ciently large n, where 4 is independent of #» but may depend on k. In particular we
shall use the fact that Z"'_‘_:(l /3)™ is of the form log n+0(1) when m=1 and of the
form O(1) when m>1. Also if ¢(n)—0 the reciprocal value of 14+0(¢(n)) is again of
the form 14-0(¢(n)).
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n—1 k n—1
(26) 1/tn = 1/uy+ k(n — 1) + Cr2 2, s + 2 Ciom 2 ™!

=] M3 =]
for n=2, 3, .. Hence since #;>0 for ¢=1, 2,--., we have
1/u,>k(n—1)and
27 u, = 0(1/n).

Applying (27) to the u; on the right of (26), we have (see footnote 3)
1/u, = kn + O(log n) = kn[l + O(n~ log n)],
(28) ta = (1/kn)[1 + O log n)] = 1/kn + O(n~2 log n).
Using (28) in (26) we have, since >_1-142 log :=0(1),
1/u, = kn + 271k — 1) log n + 0(1)

k—1 logn 1
=kn|ll4+——om + 0o{—)|,
2k n n
1 k—1 logn 1
Uy =—| 1 — —— + o{—)|.
kn 2k n n

Finally, substituting this result in (4), we obtain the following asymp-
totic formula:

E—11 1
T,V =1—o_- 8% +o(——).
2k n n

4. Table. In conclusion we append a brief table which indicates
how involved the numbers s;, S, tin, T» become, even for small val-
ues of k& and =.

First problem Second problem
k=2 k=3 k=2 k=3
su/h 1/2 1/3 tu/h 1/2 1/3
Sy/V 1/2 4/9 TV 1/2 4/9
su/h 1/3 5/23 tie/h 1/5 4/31
sn/h 1/3 6/23 taa/h 2/5 9/31
S/ V 2/3 | 324/529 Ty/V | 16/25 | 17496/29791
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