
POLARITIES IN FINITE PROJECTIVE PLANES 

REINHOLD BAER 

Introduction. If w is a finite projective plane,1 then every line in T 
carries the same number n+1 of points and through every point there 
pass n+1 lines. The total number of points (lines) in w is n2+n+l. 
This integer n ( ^2 ) shall retain its significance throughout this note. 
No further requirement is imposed upon x. In particular it is not 
necessary that the Theorem of Desargues is valid in x. 

We are going to use the arithmetical properties of n, and of other 
suitably selected numbers, for an investigation of the polarities2 in w. 
In this fashion we prove the rather surprising fact that there exist 
always at least n+1 absolute points ( = points lying on their polars). 
This lower limit is reached for even n if, and only if, all the absolute 
points are collinear, and for odd n if, and only if, no line carries more 
than two absolute points. If the number M of absolute points is 
greater than n+1, then n is a square, and every prime divisor of n 
is a divisor of ikT— 1. 

A polarity will be termed regular, if any two lines which carry ab­
solute points, but do not carry their own poles, carry the same num­
ber of absolute points. Denoting this number by i+1, we find 
0 < i 2 ^ w , i^n modulo 2 and n — ls^O modulo i+l. If n is even, then 
w = i2; if n is odd and TT Desarguesian, then i = l or n = i2. These re­
sults are corollaries to theorems describing the distribution of elliptic 
and hyperbolic elements3 for a regular polarity. 

As an application of these results we prove the nonexistence of hy­
perbolic polarities, using this term in a rather comprehensive fashion.4 

This theorem constitutes a generalization of Topel's theorem6 assert­
ing that every geometry of Bolyai-Lobachevskiï is infinite. 

1. The absolute elements. I t is well known6 that an absolute line7 

Presented to the Society, February 23, 1946; received by the editors September 2, 
1945. 

1 See, for example, Veblen-Young [5] or Baer [l] for the elementary concepts used. 
Numbers in brackets refer to the Bibliography at the end of the paper. 

2 For a definition of "polarity" see Veblen-Young [5, p. 263]. 
8 We follow Liebmann [3, pp. 36, 37] in introducing these concepts. For their 

definition, as used here, see §2 below. 
4 The definition of the term will be found in §3. For a more detailed discussion 

of this new concept, see a forthcoming publication of the author. 
8 Topel [4]. 
8 Baer [l, lemma], 
7 Of the polarity under consideration. We are going to omit this phrase in the 

future. 
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( = line passing through its pole) carries one and only one absolute 
point. 

LEMMA. If the line h is not an absolute line, then the number of points 
on h which are not absolute is even. 

PROOF. The pole H of h is not on h, since h is not absolute. If P 
is a point on h, then denote by P' the intersection of h and of the 
polar of P . The polar of P is then just the line8 H+P'. Thus it follows 
that P is absolute if, and only if, P = P ' , and that P" = P. The points 
on h which are not absolute occur therefore in pairs, proving our con­
tention. 

THEOREM 1. If n is even, then every line carries an odd number of 
absolute points. 

PROOF. If n is even, then every line carries an odd number of points. 
It is a consequence of the lemma that an even number of these is not 
absolute, and the number of absolute points is therefore odd. 

THEOREM 2. Assume that n is odd. Then the line h is absolute if, and 
only if, h carries one and only one absolute point. 

PROOF. That absolute lines carry one and only one absolute point 
has been remarked before. If the line h is not absolute, then it follows 
from the lemma that the line h carries an even number of absolute 
points, since h carries an even number of points for odd n. This proves 
our contention, since 1 is not even. 

Remark 1. If n is even, then it may happen that the absolute points 
are just the n + 1 points of a suitable line. But it follows from Theo­
rem 1 that every line carries absolute points. Thus there will exist 
lines which are not absolute, though they carry one and only one ab­
solute point. 

We denote by M the number of absolute points. This integer M and 
the invariant n are connected by the following fundamental congru­
ences. 

THEOREM 3. (a) M^n+1 modulo 2. 
(b) (Af-n-l)n<»'-1)/*(n<'-1>^ î-l)BO modulo p*1 

for every odd prime number p and every j^O. 

PROOF. If m is a positive integer, then we term an m-cycle every 
ordered set9 of m points P(l) , • • • , P(m) with the property: 

8 If P and Q are two different points, then P-\-Q designates the uniquely deter­
mined line passing through P and Q. 

9 Note that these points need not be different. 
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(*) P{i) is on the polar of P(i+1) for 0<i<m and P(m) is on the 
polar of P ( l ) . 

The m-cycles P ( l ) , • • • , P{m) and (?(1), • • • , Q(m) are said to be 
equal if, and only if, P(1) = <2(1), • • • , P(m)~Q(m). Finally we de­
note by N{m) the number of distinct m-cycles. 

(i) If 2<m, then N(m) ~(n2+n+l)(n+l)m-2+nN(m-2). 
To prove this recursion formula we say that the m — 1 points 

P ( l ) , • • • ,P(m — 1) form an m-chain if P(i) is on the polar of P(i+1) 
for 0 <i <m — 1. Since the point P ( l ) of an m-chain may be any point 
in the plane, P ( l ) may be selected in n2+n + l different fashions. If 
P ( l ) , • • • , P(i) are already selected, then P(i-f-l) may be any point 
on the polar of P(i), and thus P ( i + 1 ) may be chosen in n + 1 different 
ways. Consequently we have shown tha t : 

(i') the number N'(m) of different m-chains is (n2+n + l)(n + l)m~2. 
If P ( l ) = P ( m - l ) , then we term the m-chain P ( l ) , • • • , P ( m - l ) 

an m-chain of first kind; and it is an m-chain of second kind if 
P ( 1 ) T ^ P ( W — 1). If this m-chain is of the first kind, then P(m — 2) 
is on the polar of P (m-~1)=P(1 ) , proving that the m — 2 points 
P ( l ) , • • • , P(m —2) form an (m — 2)-cycle. Thus every m-chain of 
the first kind "begins" with an (m-*2)-cycle, and every (m —2)-cycle 
is the beginning of one and only one m-chain of the first kind. Hence 
we have shown tha t : 

(i") N(m — 2) is the number of m-chains of the first kind. 
If P ( l ) , • • • , P(m — 2), P ( l ) is an m-chain of the first kind, then 

P ( l ) , • • • , P(m — 2), P ( l ) , P is an m-cycle if, and only if, P is on 
the polar of P ( l ) . Hence there exist exactly (n + l)N(m — 2) m-cycles 
which begin with an m-chain of the first kind. 

If P ( l ) , • • • , P(m —1) is an m-chain of the second kind, then 
P ( l ) ^ P ( m —1), and the polars of P ( l ) and P(m — 1) meet in a 
uniquely determined point P . The only m-cycle beginning with the 
given m-chain of the second kind is, therefore, P ( l ) , • • • , P(m —1), 
P . Thus the number of m-chains of the second kind equals the num­
ber of m-cycles which begin with an m-chain of the second kind. I t 
is a consequence of (i') and (i") that this number is 

(n2 + n + l)(n + l)™"2 - N(m - 2). 

Combining the results of the last two paragraphs we find that 

N{m) = (» + l)N(m - 2) + (n2 + n + 1)(» + l)m~2 - N(m - 2) 

= (n2 + n + 1)(» + l)m~2 + nN(m - 2), 

completing the proof of (i). 
(ii) N(2m+l)^(n+l)2m+1+nm(M-n-l). 
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If w = 0, then we have to determine the number N(l) of 1-cycles. 
But the point P ( l ) is a 1-cycle if, and only if, P{m) = P(1) is on the 
polar of P ( l ) , and this is equivalent to saying that P ( l ) be an abso­
lute point. The number N{\) of 1-cycles is, therefore, just the number 
M of absolute points. Since the right side of (ii) reduces to M if m = 0, 
we have verified (ii) for w = 0. 

We now prove (ii) by complete induction with regard to m. We 
infer from (i) and the induction hypothesis that 

N(2m + 1) = (n2 + n + l)(n + 1)**-* + nN(2m - 1) 

= (n2 + n + l)(n + l ) 2 ^ 1 + n(n + l)2™"1 

+ nm(M - n - 1) 

= (» + l)2™-1^2 + 2w + 1) + n*(AT - » - 1) 

« (n + l ) 2 ^ 1 + »m(Jf - n - 1), 

completing the proof of (ii). 
(iii) iV(2w) = (w + l ) 2 w + ( w + l ) ^ + 1 . 
If m = l, then the right side of (iii) reduces to (n + l)(n+l+n2). 

But this is just the number of 2-cycles P ( l ) , P(2), since P ( l ) may 
be selected in n2+n + l ways, since P(2) has to be a point on the polar 
of P ( l ) , and since P ( l ) is on the polar of P(2) if, and only if, P(2) 
is on the polar of P ( l ) , so that P(2) may be any one of the n + 1 
points on the polar of P ( l ) . 

To prove (iii) now by complete induction with regard to w, we de­
duce from (i) and the induction hypothesis that 

N{2m + 2) = (n2 + n + 1)(» + l)2m + nN(2m) 

= (n2 + n + l)(n + l)2m + n(n + l )2 m + (n + l)nm+2 

= (n + l)2m+2 +(n+ l)nm+2, 

completing the proof of (iii). 
(iv) N(pJ')^N(pt~~l) modulo p'for every prime p and 0 <ƒ. 
If P ( l ) , • • • , P(p*~l) is a pi~~l cycle, then we may derive from this 

£j-i-CyCle a ^/-cycle by repeating it p times : 

p(D, • • • , p(^-i), • • • , P ( D , . . . . pc/»--*), • • •, p(i), • • • , Pip'-1). 

Consider now one of the Nipty—Nip3'"1) ^'-cycles which cannot be 
derived from a ^'""^-cycle in the indicated fashion, say the cycle 
P ( l ) , • • • , P(pj). Suppose that i is an integer such that 0<>i<pJ' 
and such that P(k)~P(k+i) for every k where if necessary we re­
duce k+i modulo p3'. If ir^O, then i = i'ph where i1 is prime to p and 
0ûh<j- The permutation: k-~*k+i is a cyclic permutation which 
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leaves invariant the cycle P ( l ) , • • • , P (^0 - Every power of this per­
mutation leaves this cycle invariant; and thus this cycle is left in­
variant by the permutation: k—>k+ph. But this is impossible, since 
it would imply that the cycle under consideration could be derived 
from a ^"^-cycle. Hence our cycle is left invariant by the identity per­
mutation only. But the point sets P( i ) , • • -,P(/>0>P(1), * * - ,P(i—1) 
are all ^'-cycles, and from what we showed just now, it follows that 
they are all different. Consequently we can divide the set of those 
^'-cycles which cannot be derived from />/~"1-cycles into mutually ex­
clusive sets containing pi cycles each. Thus the number of these cycles 
which is N{p3)—N{p3~~l) is divisible by p\ proving (iv). 

From (ii), (iii) and (iv) we infer that 

M « N(l) m N(2) = (n + l)(w2 + n + 1) modulo 2. 

But n2+n + l is always an odd number, proving (a). 
From (ii) and (iv) we infer that we have for odd primes p 

(» + l ) p / + ntd-vi^M - n - 1) = N(pO ~ Nip*"1) 

s (n + I)**"1 + n^^l-l)'2(M - n - 1) modulo pK 

Since j g pJ'~l for 0 < j , it follows that the p3'~~lth and the £J*th power 
of n+1 are divisible by p\ if n+1 is divisible by the prime p. If w + 1 
is prime to p, then these powers of n+1 are congruent modulo p\ 
since p'—p3'"1 is the order of the multiplicative group of classes of 
residues modulo p3' which are prime to p. Hence it follows from the 
above congruence that 

(M - n - l)(rc<p/-1)/2 - rc^-1-1»2) s 0 modulo p*, 

and (b) is an immediate consequence of this congruence. 
Remark 2. The reader might wonder why we did not state the con­

gruences modulo 23 which could be deduced from (iii) and (iv) with 
the exception of the case j = 1, stated in (a). The reason is that these 
congruences are satisfied for every integer n—they do not involve M 
at all—so that they do not give any new information. As a matter of 
fact for most of our purposes it would suffice to state the case j = 0 of 
the congruences (b). But no simplification or abbreviation of our 
proofs could be obtained by the restriction to the case./= 0. 

The same method which we employed when proving (iv) could be 
used for a proof of the following generalization of (iv). 

(ivO N(m)=^2ddN(m/d) modulo m, where Km and where the 
summation ranges over all squarefree divisors d of m, the number d 
being + 1 or —1 according as the number of prime factors of d is 
odd or even. 
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But so far we have not made any applications of (iv') that could 
not be deduced from Theorem 3, (a) and (b). 

THEOREM 4. If p is a divisor of n, then M =1 modulo p. 

PROOF. For p*=2 we deduce this from Theorem 3, (a). If p is odd, 
then considering the special case j = 0 of Theorem 3, (b) we obtain 
0^(M—n — l)(tt(*-1)/2 — l)=sl— M modulo p1 proving our conten­
tion. 

Remark 3. From Kn it follows that n is divisible by certain primes; 
and Theorem 4 shows, therefore, the existence of absolute points.10 

We improve upon this statement in the next theorem. 

THEOREM 5. There exist at least n+1 absolute points. 

PROOF. If n is even, then we deduce from Theorem 1 the existence 
of absolute points on every line. Consider a point P which is not ab­
solute (every absolute line carries n of them). Then each of the n+1 
lines through P carries an absolute point, but no two of these lines 
through P have an absolute point in common. Thus there exist at least 
n+1 absolute points. 

If n is odd, then there exists by Theorem 4—as has been pointed 
out in Remark 3—an absolute point H. Denote by h the polar of H. 
Then h passes through H. If k is a line through H, k^h, then it fol­
lows from Theorem 2 that k carries an absolute point, different from 
H. Since there pass through H exactly n lines apart from ft, we have 
shown the existence of the absolute point H and of n further absolute 
points. 

COROLLARY 1. No line carries more than two absolute points if, and 
only if, n is odd and the number M of absolute points is n+1. 

PROOF. Suppose first that no line carries more than two absolute 
points. Since there exist by Theorem 5 at least n+1 absolute points, 
there exist lines carrying exactly two absolute points. It follows from 
the lemma that n is odd. If H is some fixed absolute point, then we 
infer from Theorem 2 that H is the one and only absolute point on 
the polar h of H, and that every line k^h passing through H carries 
one and only one absolute point different from H. Since every abso­
lute point may be connected with F b y a line, this implies that the 
number of absolute points is n+1. 

Assume conversely that n is odd and M—n+1. If the line h carries 
an absolute point P, then either h is an absolute line and P its pole 

10 The corresponding theorem for projectivities is trivial, since every involutorial 
projectivity possesses fixed points. 
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or else the polar w of P is an absolute line, passing through P , and 
WT* h. But each of the lines different from w and passing through P 
carries by Theorem 2 at least one further absolute point. Since there 
pass through P just n lines different from w, since different lines 
through P meet in P , and since there exist exactly n absolute points 
different from P , it follows that the lines through P which are differ­
ent from w carry just one absolute point different from P . This result 
applied to h proves that h carries a t most two absolute points. 

COROLLARY 2. The following properties imply each other: 
(i) n is even and A f = w + 1 . 
(ii) There exists a line all of whose points are absolute. 
(iii) All the absolute points are collinear. 

PROOF. Suppose that (i) is satisfied and that the line h carries a 
point P which is not absolute. I t is a consequence of Theorem 1 that 
every line carries absolute points. The n+1 lines through P have no 
absolute point in common and carry each at least one absolute point 
which is necessarily different from P . Hence every line through P 
carries one and only one absolute point, since only n + 1 absolute 
points are available. Thus we have shown that a line carries one and 
only one absolute point if, and only if, not all of its points are abso­
lute. Since there exist, by Theorem 5, at least two different absolute 
points, and since these may be connected by a line, this line carries 
absolute points only, and we have shown that (ii) is a consequence 
of (i). a 

If h is a line all of whose points are absolute, then it is impossible 
that a point outside h is absolute,11 proving that (iii) is a consequence 
of(ii) . 

Assume finally the collinearity of the absolute points. Then there 
exists a line h which carries all the absolute points. Since there are 
n + 1 points on h, and since by Theorem 5 there exists at least n+1 
absolute points, it follows that every point on h is absolute and that 
M—n+1. If k is a line different from h which does not pass through 
the pole of h, then k is not absolute, though its one and only absolute 
point is its intersection with ft. Hence n is even by the lemma, prov­
ing that (i) is a consequence of (iii). 

Remark 4. Conditions (ii) and (iii) may be combined into the fol­
lowing condition which is equivalent to them. 

(iv) There exists one and only one line all of whose points are ab­
solute. 

11 See Baer [ l , lemma]. 
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Remark 5. Corollaries 2 and 1 show the impossibility of improving 
Theorem 5, since it is easy to construct polarities in finite Desar-
guesian planes which meet the requirements of these corollaries; see 
the Appendix to §2. 

THEOREM 6. If there exist more than n+1 absolute points, then n is 
a square. 

PROOF. If n is not a square, then there exists12 an infinity of odd 
prime numbers p such that n is not a quadratic residue modulo p. If 
p is such a prime number, then n is prime to p and18 n(p~~l)l2^l 
modulo p. Since w(p~1)/2 — 1 is prime to p, it follows from Theorem 3, 
(b) that M=n+1 modulo p for each odd prime number p such that n 
is not a quadratic residue modulo p. Since there exists an infinity of 
such primes, we have M = n+l, if n is not a square, as we claimed. 

The following alternative proof may be of interest. There exists, 
if n is not a square, at least one odd prime p such that n is not a 
quadratic residue modulo p. Then n and n{p~l)pi,2 — l for O ^ j are 
prime to p. Hence it follows from Theorem 3, (b) that M—n —1=0 
modulo p3' for every positive j , proving that M— n+1. 

THEOREM 7. There exist at least n(n+l)/2 points which are not abso­
lute, but are on absolute lines.u 

PROOF. There exist by Theorem 4 at least n+1 absolute lines. If 
h(l), • • • , h(n+l) are n+1 distinct absolute lines, then each of them 
carries n points which are not absolute. The line h{ j) meets each of the 
lines h{l)y • • • , h(j—l) in a point which is not absolute. Thus there 
are on h(j) a t least n—j+1 points which are not absolute and which 
are not on the lines h(l), • • • , h(j—l). This assures us of the exist­
ence of at least n+(n-~ 1)+ • • • + l~n(n + l)/2 distinct points on 
the absolute lines h(l), • * • , h(n+l) which are not absolute, proving 
our contention. 

Remark 6. I t is a consequence of Theorem 1 of the next section 
that the lower limit given in the present theorem may actually be 
reached. 

COROLLARY 3. There exist at least (n+l)(n+2)/2 points which are 
on absolute lines. 

This is an immediate consequence of Theorems 4 and 7. 
I t is of interest to note that the limit given in Theorem 7 accounts 
12 See, for example, Hecke [2, p. 199, Satz 147]. 
13 See, for example, Hecke [2, p. 57, (31)]. 
14 Such points will be termed hyperbolic points. 
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for just less than half of the points in the plane, and that more than 
half of the points of the plane are accounted for by Corollary 3. 

2. Regular polarities. It will be convenient to introduce the follow­
ing notation:15 If the line h is not absolute, but carries absolute points, 
then h is an elliptic line; dually the point H is termed a hyperbolic 
points if H is not absolute, though absolute lines pass through H. 
Clearly the pole of an elliptic line is hyperbolic and the polar of a 
hyperbolic point is elliptic. 

I t is a consequence of Theorem 5, §1, that there always exist two 
different absolute points. The line connecting them is certainly not 
absolute, since it carries at least two absolute points; and thus there 
exist always elliptic lines and hyperbolic points. The lines carrying 
more than one absolute point are all elliptic lines. The converse is 
true, if n is odd (Theorem 2, §1); but if n is even, then there may 
exist elliptic lines carrying one (or w + 1) absolute points (Corollary 2, 

The polarity under consideration shall be termed regular if any two 
elliptic lines carry the same number of absolute points. The existence 
of irregular polarities may be inferred from Corollary 2, §1. On the 
other side it is easy to show that the polarity is regular whenever n 
is odd and the Theorem of Desargues (or an even weaker hypothesis) 
is valid. Whether or not it suffices to assume that n be odd or that 
the absolute points are not collinear, in order to assure regularity, is 
still an open question. 

As has been pointed out before, there exist always two different ab­
solute points. Assuming now, as we shall do throughout this section, 
the regularity of our polarity, it follows that the number of absolute 
points on an elliptic line cannot be less than 2. Thus there exists a 
positive number i such that every elliptic line carries exactly i+1 abso­
lute points; and it is an immediate consequence of the lemma of §1 
that i^n modulo 2. 

THEOREM 1. The number of absolute points is in+l, the number of 
hyperbolic points is (in+^nii+l)""1, and the number of points that are 
neither absolute nor hyperbolic is nin—i^ii+l)"1. 

PROOF. The existence of absolute points is a consequence of Theo­
rem 3, §1. If H is an absolute point, h its polar and k^ha, line through 
H, then k is not absolute, since absolute lines carry one and only one 
absolute point. Consequently k is elliptic and carries, therefore, ex­
actly i absolute points which are different from H. Since there pass 

15 Liebmann [3, pp. 36 ,37] . 
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exactly n lines through H which are different from h, since different 
lines through H have only H in common, and since every absolute 
point, not H, is on a line through H which is different from fe, it fol­
lows that in + 1 is the number of absolute points. 

If h is some absolute line, then its pole H is the only absolute point 
on h, and all the other n points on h are hyperbolic. Since every hyper­
bolic point lies on exactly i+1 absolute lines, and since the num­
ber of absolute lines has been shown to be in+1, it follows that 
(in+l)n(i+l)~l is the number of hyperbolic points. 

There exist altogether n2+n+l points of which in+1 are absolute 
and (in + l)n(i+l)~l are hyperbolic. The number of points that are 
neither absolute nor hyperbolic is therefore 

n2 + n + 1 - (in + 1) - (in + l)n(i + l ) " 1 

= n2 + n — in — (in + l)n(i + l)"*1 

« [(» + 1 - i)(i + 1) - (in + l)]n(i + 1)-* 

= (n - i2)n(i + 1)-*. 

THEOREM 2. Every elliptic line carries (n — l)i(i+l)~"1 hyperbolic 
points and (n-~i2)(i+l)-~l points that are neither absolute nor hyper­
bolic. 

PROOF. Denote by j the number of hyperbolic points on the elliptic 
line h. Each of these lies on exactly i+1 absolute lines. Of all the in+1 
absolute lines (Theorem 1) exactly i+1 meet the elliptic line h in ab­
solute points; and thus we have 

in+1- (i + 1) = j(i + 1) or j « (n - l)i(i + 1)~\ 

as we claimed. 
Since every elliptic line carries altogether n + 1 points of which i+1 

are absolute and (n — l)i(i+l)'~1 are hyperbolic, it follows that the 
number of points on an elliptic line that are neither absolute nor hy­
perbolic is exactly 

n + 1 - (i + 1) - (n - l)i(i + l ) - 1 

= [(n - i)(i + 1) - (n - l)i](i + l ) " 1 = (n - i2)(i + 1)-*. 

COROLLARY 1. (a) i+1 is a divisor of n — 1. 
(b) i2^n. 
(c) i27^n implies i2+i+l ^n. 
(d) i2 = n if, and only if, every point is either absolute or hyperbolic. 
(e) i2 = nif n is even. 
(f ) n is a square if i ?± 1. 



1946] POLARITIES IN FINITE PROJECTIVE PLANES 87 

PROOF. It is a consequence of the first statement of Theorem 2 that 
i+l is a divisor of (n — l)i. But i and i+l are relatively prime, show­
ing that i+l is a divisor of w — 1. 

It is a consequence of the second statement of Theorem 2 that 
(n—i2)(i+l)-~l is a not negative integer. Hence §<*n--i2, proving (b) ; 
and n^i2 implies 1 g(w —i2)(i+l)~l or i + l ^w—i2, proving (c). 

It is a consequence of the last statement of Theorem 1 that i2 = w 
is equivalent to saying that the number of points that are neither ab­
solute nor hyperbolic is 0, proving (d). 

If n is even, then we infer from Theorem 1, §1, that every point 
is on an absolute line so that every point is either absolute or hyper­
bolic. Hence (e) is a consequence of (d). (f) is an immediate conse­
quence of Theorem 1 and Theorem 6, §1. 

THEOREM 3. On a line that is neither absolute nor elliptic there are 
(in+1)(i+l)"1 hyperbolic points and (n+i)(i+l)~l points that are 
neither absolute nor hyperbolic. 

PROOF. If the line h is neither absolute nor elliptic, then none of the 
points on h is absolute. Denote by m the number of hyperbolic points 
on h. Since each hyperbolic point is on exactly i+l absolute lines, 
and since the number of absolute lines is in+1 (Theorem 1), it fol­
lows that in+l—m(i+l)t proving our first contention. 

The number of points on h that are neither absolute nor hyperbolic 
is therefore 

* + 1 - (in + l)(i + l)-1 = [(» + l)(i + 1) - (in + l)](i + l)-1 

= (n+i)(i+l)-K 

It is customary to term lines h and k perpendicular if h passes 
through the pole of k and k passes, therefore, through the pole of h. 
A point may be termed16 elliptic if it is the intersection of two per­
pendicular elliptic lines. Dually the polars of elliptic points are termed 
hyperbolic lines. 

THEOREM 4. Every elliptic line carries at least (n — I)i(i+1YX ellip­
tic points. 

PROOF. If the line h is elliptic, then the pole H of h is hyperbolic. 
Dualizing Theorem 2 we find that there pass exactly (n — l)i(i+l)"x 

elliptic lines through H. All these are perpendicular to ht and they 
meet h in (n — \)i(i+l)^x different points which are clearly elliptic, 
proving our contention. 

This is a change from the terminology used by Liebmann [3, pp. 36, 37]. 
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COROLLARY 2. There are at least (i — l)(i+w)(i+l)~1 points on every 
elliptic line which are at the same time elliptic and hyperbolic. 

PROOF. We make first the obvious remark that absolute points are 
never elliptic. If h is an elliptic line, then it carries n+l — (i+l) 
~n—i points that are not absolute, and of these (n--l)i(i+l)'~'1 are 
hyperbolic (Theorem 2) and at least (n — l j i^+l)""1 are elliptic (The­
orem 4). Thus the number of points on h that are at the same time 
elliptic and hyperbolic is not less than 

- (n - ö + 2(» - l)i(i + I)"1 

« - [ ( » - i)(i + 1) - 2(n - l)i](i + I)"1 

« (i2 - i + ni - n){i + l)"1 = (i - 1)(* + »)(* + l)"1. 

Note that the lower limit given in Corollary 2 is 0 if, and only if, 

THEOREM 5. If Ki, then every point is hyperbolic or absolute or 
elliptic.17 

PROOF. If the point P is neither absolute nor hyperbolic, then there 
pass, by Theorem 3, exactly (in+l)(i+l)~l elliptic lines through P. 
But 
( « i + l ) ( i + l ) - i - ( » + l ) / 2 

- (i + 1)-*[2(MI + 1) - (i + l)(n + l)]/2 

= (i + ly^in + 1 - i - »)/2 = (t + l ) - 1 ^ - l)(f - l)/2 

is certainly a positive number, since Ki. Hence (n+l)/2 
<(iw + l ) ( i+ l ) _ 1 , proving that more than half of the lines through 
P are elliptic. Since P is not situated on any absolute line, there exist 
exactly (n + l)/2 pairs of perpendicular lines, meeting in P. Since 
more than half of the lines through P are elliptic, one of these pairs 
of perpendicular lines must consist of elliptic lines. Hence P is elliptic, 
proving our theorem. 

Remark. If n is even, then it follows from Theorem 1, §1, that 
every point is on an absolute line. Thus for even n every point is 
absolute or hyperbolic. Likewise every line is absolute or elliptic, 
proving that for even n hyperbolic and elliptic points are the same. 

THEOREM 6. The following three conditions are necessary and suffi­
cient for the absence of points that are at the same time hyperbolic and 
elliptic. 

(a) > - l . 
17 The word "or" used here should not be understood in the exclusive sense. 
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(b) If P is an elliptic point on the elliptic line h, then the line through 
P perpendicular to h is elliptic. 

(c) Every point is elliptic or absolute or hyperbolic. 

PROOF. Assume first the absence of points that are at the same time 
hyperbolic and elliptic. Then we infer i = l from Corollary 2. If h is 
an elliptic line, then its pole H is a hyperbolic point. From i = l and 
Theorem 2 we infer now that the number of absolute points on h is 2, 
and that there are exactly (n —1)/2 hyperbolic points on h. We de­
duce from Theorem 4 the existence of not less than (w —1)/2 elliptic 
points on h. Since the classes of elliptic, absolute and hyperbolic 
points are mutually exclusive, and since there are n+1 =2 + (w —1)/2 
+ (n —1)/2 points on h, we have shown that (» —1)/2 is the number 
of elliptic points on A. It follows from Theorem 2 that there pass 
through H exactly (# —1)/2 elliptic lines. Each of them is perpendicu­
lar to h, and they meet h in (» —1)/2 different elliptic points. Thus a 
point P on h is elliptic if, and only if,18 P+H is elliptic, showing the 
necessity of (b). If finally the point Q is neither absolute nor hyper­
bolic, then no absolute line passes through Q. There exist absolute 
points. Thus, connecting Q to an absolute point, we obtain an elliptic 
line through Q. But we have shown that the (» —1)/2 points on an 
elliptic line, that are neither absolute nor hyperbolic, are elliptic, 
proving that Q is elliptic. This completes the proof of the necessity of 
the three conditions (a) to (c). 

We assume conversely the validity of the conditions (a) to (c). 
If the point P is elliptic, then there exists, by definition, a pair of 
perpendicular elliptic lines h, k which meet in P. The pole H of h 
is a hyperbolic point, and we infer from (b) that a point Q on h is 
elliptic if, and only if, H+Q is an elliptic line. We infer from (a) that 
there<are on h exactly two absolute points, and it follows from Theo­
rem 2 that the number of hyperbolic points on h is (# —1)/2, and that 
the number of elliptic lines through If is (n —1)/2. Since the elliptic 
points on h are just the intersections of h with elliptic lines through Ht 

it follows that (« —1)/2 is the number of elliptic points on h. Since 
there are on h just n+1 =2 +(ft — l)/2 + (n — l)/2 points, we infer 
from (c) the impossibility of the existence of an elliptic point on h 
which is at the same time hyperbolic, completing the proof. 

Remark. That (c) is not a consequence of (a) and (b), and that (a) 
is not a consequence of (b) and (c), will be shown in the Appendix. 
Whether or not (b) is a consequence of (a) and (c) is still an open 
question. 

18 See footnote 8. 
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COROLLARY 3. If no point is at the same time hyperbolic and elliptic, 
and if the two perpendicular lines h and k meet in the point P, then 
(i) P is elliptic, provided both lines h and k are elliptic or h and k are 
both hyperbolic; and (ii) P is hyperbolic, provided one of the lines h and 
k is elliptic and the other one is hyperbolic. 

PROOF. Tha t P is elliptic if h and k are elliptic is the definition of 
elliptic points, and that P is hyperbolic if one of the lines h and k 
is elliptic, though the other one is hyperbolic, may be inferred from 
Theorem 6, (b). Assume finally that P is a hyperbolic point. Then it 
follows from Theorem 6, (a) that exactly two absolute lines pass 
through P; and it follows from Theorem 2 that (n — l)/2 is the num­
ber of elliptic lines passing through P . Since hyperbolic lines cannot 
be absolute or elliptic, the number of hyperbolic lines through P is 
(» —1)/2 too. Every elliptic line through P is perpendicular to a hy­
perbolic line through P , since P is not elliptic, and since lines that 
are neither absolute nor elliptic are hyperbolic by Theorem 6, (c). 
Thus every hyperbolic line through P is perpendicular to an elliptic 
line through P , since elliptic and hyperbolic lines through P are equal 
in number. The condition, stated under (ii), is therefore necessary and 
sufficient for P to be hyperbolic, and (i) is an immediate consequence 
of this fact. 

COROLLARY 4. 4 is a divisor of n+l if no point is at the same time 
elliptic and hyperbolic. 

PROOF. If P is an elliptic point, then we infer from Theorem 6, (a), 
and Theorem 2 that (n+l)/2 elliptic lines pass through P , and we 
deduce from Corollary 3, (i), that the elliptic lines passing through P 
occur in pairs of perpendicular lines. Thus ( w + l ) / 2 is even and w + 1 
is divisible by 4. 

Appendix. The Desarguesian case. To illustrate the preceding con­
siderations we collect here without proofs19 the main facts for the 
special case that the Theorem of Desargues holds in the finite pro­
jective plane under consideration. Then it is well known that the 
projective plane may be represented by means of coordinates from 
a finite field F. This field F is commutative and contains pm elements 
for p a suitable prime. Every line carries pmJrl points so that n — pm. 

A. p = 2. 
Then there arise two possibilities. Either aH the absolute points are 

collinear or else the polarity is regular with i2 = n. 
19 Most of the proofs are simple and immediate. Some of them will be given in a 

forthcoming study of polarities in Desarguesian projective planes. 
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B. p is odd. 
Then the polarity is always regular, and the point P on the elliptic 

line h is elliptic if, and only if, the line through P perpendicular to h 
is elliptic. The number i is either 1 or i2 = w. If i = 1, then points are 
at the same time elliptic and hyperbolic if, and only if, — 1 is a square 
in F, and this is the case if, and only if, pm — 1 is divisible by 4. Thus 
n + 1 is divisible by 4 if, and only if, — 1 is not a square in F, and we 
have shown, by Theorem 6, §2 : 

No point is at the same time elliptic and hyperbolic if, and only if, 
i = l and 4 is a divisor of n+1. 

3. Hyperbolic polarities. The polarity under consideration shall be 
termed hyperbolic,20 if there exists a nonvacuous set of points, called 
the interior points, subject to the following requirements: 

(i) The point P is an interior point if, and only if, the points on 
its polar are neither interior nor absolute points. 

(ii) The point P is neither interior nor absolute if, and only if, there 
exist interior points on its polar. 

(iii)21 If the line h passes through the interior point P, then there exists 
an interior point Q?*P on h. 

(iv) If h and k are perpendicular lines, and if each of these lines car­
ries interior points, then h and k meet in an interior point. 

I t is known22 that, in general, (iv) is not a consequence of the first 
three postulates. Whether or not (iv) may be deduced from (i) to (iii) 
in case the projective plane is finite is still an open question. 

I t will be convenient to term a line interior if it carries interior 
points, and to term elements exterior if they are neither absolute nor 
interior. I t is readily seen that the polar of an exterior point is an in­
terior line, that the pole of an exterior line is an interior point, that 
elliptic points and lines are interior, and that hyperbolic points and 
lines are exterior. 

The main result of this section is the following theorem. 

THEOREM. 2 3 There does not exist a hyperbolic polarity in a finite plane. 

The proof will be effected in several steps. 
I. Any two interior lines carry the same number of interior points. 
PROOF. Assume first that the interior lines h and k are not per-

20 For a justification and discussion of this term, see a forthcoming publication 
of the author. 

21 No use will be made of this condition in the proof of the theorem below. 
22 A proof of this fact will be given in a forthcoming publication. 
23 This is an extension of Topel's theorem that the planes of Bolyai-Lobachevskiï 

are infinite; see Topel [4]. 
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pendicular. We may assume without loss in generality that the num­
ber m of interior points on h is not less than the number m' of interior 
points on k. Denote by K the pole of k. If J is an interior point on hy 

then JT^K, since K is exterior, J+K is an interior line perpendicular 
to k\ and it follows from (iv) that J+K and k meet in an interior 
point / ' . If / and Q are different interior points on h, then K is not 
on J+Q — h so that the interior lines K+J and K+Q, perpendicular 
to fe, meet k in different points J ' and Q' respectively. Thus there 
exist at least m interior points on k, proving mf ^mSmf or w = m'. 
This proves our contention for interior lines that are not perpendicu­
lar. 

Assume now that h and k are perpendicular interior lines. They 
meet by (iv) in an interior point P . Every line through P is interior, 
and there exist n + 1 lines through P. Hence there exists an interior 
line q through P which is different from h as well as k. Since h, k> q 
are copunctual, and since h and k are perpendicular, q is not perpen­
dicular to either h or k. Hence it follows from what we showed in the 
first paragraph of this proof that the number of interior points on h 
is the same as the number of interior points on q is the same as the 
number of interior points on k, and this completes the proof of I. 

We infer from I the existence of an integer m (^0) such that: 
I'. Every interior line carries exactly m+1 interior points. 
Next we prove: 
II. Every interior line carries exactly m + 1 exterior points. 
PROOF. If P is an interior point on the interior line h, then the 

polar of P carries only exterior points by (i). Thus the polar of P 
meets h in the exterior point P'. If H is the pole of h, then H is not 
on hy and H+P' is the polar of P. Since the polars of points on h have 
only the pole H of h in common, one verifies now that h carries at 
least m + 1 exterior points. 

If Q is an exterior point on h, then its polar is an interior line (by 
definition of exterior point) which passes through the pole H of h. 
Thus the polar of Q is perpendicular to h and interior. It follows from 
(iv) that the polar of Q meets h in an interior point Q'. One verifies 
as before that the number m+1 of interior points on h cannot be 
less than the number of exterior points on h. Our contention II is an 
immediate consequence of the results of the two paragraphs of this 
proof. 

III. Every interior line carries n — 2m — l absolute points. 
PROOF. Every line carries n+1 points. Every point on an interior 

line is either interior or absolute or exterior, and these three classes 
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are mutually exclusive. Now III is an immediate consequence of I ' 
and I I . 

I I I ' . The polarity is regular with i~n — 2m — 2. 
This is an almost immediate consequence of I I I , since exterior lines 

do not carry absolute points. 
I t has been pointed out before that elliptic points are interior and 

hyperbolic points are exterior. We infer from (i) that interior points 
cannot be exterior. Hence elliptic points cannot be hyperbolic. Thus 
it follows from I I I ' and Theorem 6, (a), §2, that w —2m —2=i = l , 
and it follows from III that every interior line carries exactly two 
absolute points. Since all the n-\-l lines passing through some in­
terior point are interior, and since these have only an interior point 
in common, this implies the existence of 2(n+l) absolute points. On 
the other hand it follows from Theorem 1, §2, that there exist exactly 
i w + l = » + l < 2 ( « + l ) absolute points, a contradiction proving our 
theorem. 
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