
SOME NEW VIEWPOINTS IN DIFFERENTIAL 
GEOMETRY IN THE LARGE1 

SHIING-SHEN CHERN 

1. Introduction. Differential geometry in the large is concerned 
with relations which exist between the local properties of a geometric 
being2 given in a manifold and the properties of the manifold as a 
whole. The manifold is differentiable in the sense that it is covered 
by a set of coordinate neighborhoods, each having the same number 
of coordinates, and that two differerit systems of coordinates in a 
common region are related by a differentiable transformation of class 
not less than 1. The latter assumption allows the use of differentiation 
in studying the local geometry and thus leads to a number of geo­
metric properties the study of which was initiated by Euler, Gauss, 
and Monge. 

To give an example of a problem of this nature we consider a closed 
surface 5, differentiably imbedded (of class not less than 2) in a 
Euclidean space of three dimensions. Let K be the Gaussian curva­
ture and dA the surface element of S. Then the classical Gauss-
Bonnet formula asserts that 

(1) ^ff KdA - 2(1 - p), 

where p is the genus of S. This formula expresses the genus p of S, 
a topological invariant, in terms of a differential invariant. In other 
words, p is completely determined by the local properties of S. 

As another example consider a closed curve C imbedded in the 
Euclidean plane. If C is rectifiable with length / and bounds a region 
of area A, then 

(2) P - 4TA £ 0. 

The equality sign holds only when C is a circle. This so-called iso-
perimetric inequality has recently been derived in an unexpected 

An address delivered before the Summer Meeting of the Society in New Brunswick 
on September 15, 1945, by invitation of the Program Committee; received by the 
editors June 22, 1945. 

1 Dedicated to Professor Elie Cartan. 
2 The term geometric object was first suggested by Professor Oswald Veblen, who 

now prefers to use geometric being, a translation of the French term "être géométrique" 
due to Cartan. 
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way in integral geometry, which deals with the integrals of differ­
ential invariants. 

In problems of this nature there are two aspects, a local one and a 
global one. During several decades of intensive work the local aspect 
has been extensively studied and developed, culminating in the doc­
trine of tensor analysis. While tensor analysis gives an adequate tool 
for handling most local problems, it is natural that the study of 
global problems will necessitate the introduction of new concepts and 
the modifications of the classical treatment which has so far been 
followed. It is the main aim of the present article to emphasize the 
importance, for the global study of manifolds with a geometric being, 
of drawing into consideration new topological spaces associated with 
the manifold. In fact, this idea is important for both local and global 
aspects of differential geometry. For local problems it is certainly 
very familiar to Elie Cartan, who introduced the notion of tangent 
space ("espace tangent") for his general theory of geometric beings 
(affine connections, projective connections, conformai connections, 
and so on). The tangent space in the sense of Cartan is not always 
the space of tangent vectors and therefore constitutes one of the 
sources of difficulty for the understanding of his work. On the other 
hand, recent works on fibre bundles in topology (Stiefel, Whitney, 
Feldbau, Ehresmann, Pontrjagin, Steenrod, and so on) seem to lay 
the foundation for a global theory of the ideas of Cartan. It is a con­
viction of the author that a mingling of these two streams of thought 
will give the ideas and tools better adaptable to the study of differ­
ential geometry in the large than hitherto achieved. The present 
article will be devoted to a discussion of different aspects of the 
problem arising from this viewpoint. 

Before going into details, we shall give a brief summary of the 
main points of our discussion. Our problem will be the study, on a 
differentiate manifold, of a geometric being given in terms of each 
local coordinate system by components which obey a definite trans­
formation law under change of the local coordinates. We emphasize 
that for each such problem it is in general possible to define in a 
certain sense a natural fibre bundle associated with the manifold. 
The geometric being then defines in a unique way a set of linear 
differential forms in the fibre bundle, which gives all the local proper­
ties of the geometric being. For Riemannian manifolds the natural 
fibre bundle is the space of all frames on the manifold and the corre­
sponding linear differential forms give what is essentially known as 
the parallelism of Levi-Civita. The nature of the fibre bundle to be 
associated is best decided by the solution of the so-called problem of 
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equivalence, which is the form problem in the case of Riemannian 
geometry. With the set of linear differential forms in the fibre bundle, 
differential forms of higher degree can be obtained by operations of 
Grassmann analysis. Such differential forms define cochains and also 
cocycles, when they are exact. A study of the interrelations between 
the cochains and cocycles in the given manifold and the associated 
fibre bundles, which arise from the projection of the latter into the 
former, will give a deeper understanding of the global theory of the 
geometric being. An attempt is made in the following to illustrate in 
the simplest cases the results that can be derived from this idea. 
Although this will be our main concern in the present paper, it does 
not imply that this is the only service that the theory of fibre bundles 
could render to differential geometry. In fact, there are indications 
that other possible applications could be fruitfully made. The whole 
field seems therefore to deserve a more thorough exploitation. 

2. Grassmann algebra. At the fore of the Car tan scheme is the 
so-called Grassmann algebra. In a formal algebraic way this can be 
defined as follows: Let K be a field of characteristic zero and let 
V(n, K) be a vector space of n dimensions over K. The Grassmann 
algebra H over V(n, K) is a hypercomplex system over K satisfying 
the following conditions: 

(1) i? contains a unit element 1 and all elements of V(n, K) and 
is generated by these elements (by operations of the hypercomplex 
system). 

(2) If x, y belong to V(n, K), their multiplication satisfies the 
alternating rule: 

(3) xy = — yx. 

(3) The elements of H satisfy no other relations than those de­
rived from (1) and (2). 

Let 6i, • • • , £n be a set of basis elements of V(n, K). From the 
above conditions the following conclusion can be drawn: Every ele­
ment of H can be expressed in one and only one way as a linear 
combination, with coefficients in K, of the elements 1, e^ • • • eim, 
ii< • • • <im* iit • • • , im = l, * • • , n. In symbols we write, if x be­
longs to iJ, 

(4) * - Ü *(m\ 
where 

n 

(5) *Cm) - Z ««,—«.*.•••«*.• 
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The element x is said to be of degree w, if 

#(»»> j& o, x{m+l) = • • • = x(n) = 0. 

It is called an exterior form, or simply a form, if x(i) = 0> i^rn. The 
degree of an element is independent of the choice of the set of basis 
elements, and the same is true of the property that an element be a 
form. 

Let W be a vector subspace of dimension m of V(n, R). We take 
a set of basis vectors / i , • • • , fm in W and form the product 
w =/i •••ƒ»». It is easy to prove that w is determined by W up to a 
nonzero factor of K. The form w is called the associated form of W. 
If wi and W2 are the associated forms of two vector subspaces W\ and 
Wz, of degrees m and £ respectively, then W\ and Wz have a nonzero 
intersection when and only when WiW^ — Q. Moreover, if WiW2 9£01 it is 
the associated form of the ambient vector subspace of dimension 
m+p of Wi, Wi. Such are simple instances of ways in which the 
Grassmann algebra can be applied to the study of the geometry in a 
vector space. 

3. The differential calculus of Elie Cartan. The Grassmann algebra 
was applied with success to the Pfaffian problem by Frobenius and 
Darboux. The so-called bilinear covariant is an exterior differential 
form of degree two. But it was Elie Cartan who started the systematic 
use of a calculus closely related to the Grassmann algebra and per­
taining to exterior differential forms of higher degree. 

Let Mn be a differentiate manifold of dimension n and class not 
less than 2. At a point P of Mn the contra variant vectors and the 
covariant vectors constitute two vector spaces (over the real field) 
which are dual to each other in the sense that one is the space of the 
linear forms in the other. The notion of a linear differential form at P 
is identical with that of a covariant vector. For let xl, • • • , xn be 
local coordinates at P. With respect to the coordinates x* a covariant 
vector will have the components X*. The differential form 

n 

(6) co - D Xidxi 

is then intrinsic in the sense that it is independent of the choice of 
the local coordinate system. Conversely, an intrinsic form w has a set 
of components in each local coordinate system, which constitute a 
covariant vector. 

Over the vector space of linear differential forms at a point P of Mn 

we construct the Grassmann algebra. A form of this Grassmann 
algebra is called an exterior differential form or simply a differential 
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form. In a local coordinate system xi an exterior differential form can 
be written 

n 

(7) a) - £ ^V'-tmC*1» ' * * ,"**)<*** • • • <te*», 

where we can assume the coefficients a t l . . . ,m to be skew-symmetric 
in their indices. In the terminology of tensor analysis the com­
ponents a^..,im are the components of an alternating covariant ten­
sor of order m. 

In a neighborhood of P in which the local coordinates xl are valid 
let a^.. wm be of class not less than 2. We define a differential form of 
degree tn + 1, called the exterior derivative of co, by means of the 
relation 

n 

(8) do) = X) dail...imd%ii • • « dx**», 

where da^...^ is an ordinary differential. This process of exterior 
differentiation has the following properties, which can be easily 
verified : 

(1) If co, 0 are two differential forms of degrees m and p respec­
tively, then 

(9) d(ù>6) - dco-0 + ( - 1)"W0. 

(2) For any co: 

(10) d(du) - 0. 

(3) The process of exterior differentiation is invariant under co­
ordinate substitutions, by which we mean the following: Let the 
local coordinates ^ i n a neighborhood of P represent a set of points 
»S in an open set D in a Euclidean space of n dimensions. Let an 
open set £ in a Euclidean space of r dimensions with the coordinates 
y1, • • • , yr be mapped into D by the mapping 

(11) xi = ƒ * ( ƒ , . . . tyr)t j . 1, . . . f *, 

such that S is the image of a set TC.E, the functions ƒ* being sup­
posed to be of class not less than 2. By the definition 

' dx* 
F(x\ • • • , xn) ^F(x1(y)9 • • , xn(y)), «***-*]£ —Jyk\ 

*-i dyk 

this mapping induces in a natural way (that is, with the multiplica­
tion of the Grassmann algebra preserved) a mapping of a differential 
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form Ù) into a form of the space (y\ • • • , yr)f which we denote by c5. 
Then we have 

/>J 
(12) dû « dû) 

In particular, when r = ra, this signifies that the process of exterior 
differentiation is intrinsic, that is, independent of the local coordinate 
system under which it is performed. 

The exterior differential forms are the forms under the integral 
sign in the theory of multiple integrals. In fact, let co be a form of 
degree m defined on the manifold Mn. Let Km be a chain of dimension 
m (in the sense of combinatorial topology) on Mn, which is a sum, 
with integral, rational, or real coefficients, of images of simplexes in 
a Euclidean space by mappings which are differentiable of class not 
less than 2. Then it is possible to define the integral of co over Km. 
If dKm+l denotes the boundary of a chain Km+l of dimension rn + 1, 
the theorem of Stokes can be written 

(13) f <*= f d<a. 

To see the connection between this formulation of the Stokes' Theo­
rem and the usual one, notice that 

/dQ dP\ 
(14a) d(Pdx + Qdy) - ( — ) dxdy, 

\dx by) 
d(Pdx + Qdy + Rdz) 

/OR dQ\ /dP dR\ 
sa [., j dydz + ( ] dzdx 

(14b) \dy b%) \dz fix/ 
^. i j dxdy. 

\dx dy / 
4. Fibre bundles. A simple example of a fibre bundle is the mani­

fold formed by all the nonzero vectors tangent to a sphere of three-
dimensional Euclidean space. It is a topological manifold, but a very 
special one. However, it turns out that manifolds with similar proper­
ties play an important rôle in the application of topology to differ­
ential geometry. In the example of vectors tangent to a sphere the 
following three facts deserve attention : 

(1) The spaces formed by the vectors with the same origin are 
homeomorphic to each other, and therefore to a fixed space which 
we call î o. 

(2) The tangent vectors drawn at all points of a neighborhood U 
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are homeomorphic to a topological product of Ü7and Fo. In particular, 
if P £ £ / , there is a homeomorphism T which carries the tangent 
vectors with the origin P to Fo, T depending on P and U. 

(3) In the notation of (2) let us write T(P, U) for T. If P belongs 
to a second neighborhood V, the mapping T(P, V)T"1(Pf V) is a 
homeomorphism of Fo onto itself. It is possible to show that T can be 
chosen so that T(P, V)T~l(P, U)&G, where G is either the rotation 
group or the affine group in Fo. 

The last statement can be demonstrated as follows : Let the neigh­
borhoods be coordinate neighborhoods, such that U is the set of all 
points whose local coordinates ul, u2 satisfy the inequalities 
|w*| <e, i = l, 2. With respect to the local coordinate system ul

f u2 

a vector j has the components Xl
t X2. The vectors with origins in 

U are thus decomposed into a topological product in an obvious way. 
If a point belongs to a neighborhood V with the local coordinates 
vl, v2 and the vector j has the components F1, F2 in the coordinate 
system v\ v2

9 then it is well known that 

dv1 dv1 

F1 = X1 + X2, 
du1 du2 

dv2 dv2 

F2 = Xl + —~X\ 
du1 du2 

which is an affine transformation. 
Guided by this particular example, we shall give the definition of a 

general fibre bundle. For the terms and notation which will be used 
consistently later the following table of reference is given : 

General case 

Fibre bundle 
Point of fibre 

bundle 
Base space 
Fibre 
Projection 

Transformation 
group in fibre 

Special example 

Manifold of tangent vectors of a sphere 
Tangent vector 

Sphere 
Vectors with same origin 
Mapping of a tangent vector into its 

origin 
Affine or rotation group in space of 

vectors with same origin 

Notation 

g 
p 

M 
F 
ir(P)eM 

G 

We define a fibre bundle 3 as a topological space which has the 
following properties: 

(1) There exists a (continuous) mapping IT of F onto another topo­
logical space M: T(F) — M. The space M is called the base space and 
the mapping IT is called the projection. The complete inverse image 
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ir^ip) of a point pÇzM is called the fibre at p. It will follow from as­
sumptions made later that all the fibres are homeomorphic to each 
other and hence to a definite topological space JFV 

(2) There exists a family of neighborhoods which cover M. If U is 
a neighborhood of the family, the inverse image ir~1(U) is a topologi­
cal product, which means that there exists a homeomorphism fa, 
depending on [/, such that 

M^(U)} - UXFo, 

and that for every £ £ U 

M^(P)} - pXFo. 
(3) Let £/, V be two such neighborhoods of M, and let pGUCW. 

The mapping \l/v{$iTl(pXFo)} is a homeomorphism of pXF0t and 
hence of JPO, into itself. This homeomorphism belongs to a group G 
given in advance in FQ. 

For the cases in which we are interested both M and % will be sup­
posed to be differentiable manifolds of class not less than 1, and the 
group G will be a Lie group. 

In order to show the scope of the notion of a fibre bundle, the fol­
lowing further examples are given—all pertaining to a differentiable 
manifold M of dimension n and class not less than 1 : 

(1) The tangent vectors of M constitute a fibre bundle with M as 
the base space. 

(2) Let Ci, • • • , cp, 1 ^p^nt be tangent vectors of M with the 
common origin P. The elements (P; Ci, • • • , cp) constitute a fibre 
bundle over M. Another fibre bundle is constituted by the elements 
satisfying the condition that d, • • • , ep are linearly independent. 
These fibre bundles have been studied by Stiefel and Whitney [26, 
33 ].« 

(3) We call a scalar density of weight k a geometrical being, which 
has a component in each local coordinate system and whose compo­
nents/and/* in the local coordinate systems x* and x** are connected 
by the relation 

(15) ƒ* = ƒ•/*, 

where 

(15a) / - d(x\ • • • , xn)/d(x*\ • • • , x*n). 

The scalar densities or the nonzero scalar densities in M constitute a 
fibre bundle over M. 

8 Numbers in brackets refer to the Bibliography at the end of the paper. 
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(4) A general procedure of defining an important class of fibre 
bundles is as follows: Let M be imbedded in a Euclidean space En+N 

of dimension n+N. At a fixed point 0 of En+N let H(n, N) be the 
Grassmann manifold formed by all the oriented linear subspaces of 
dimension n through 0. A mapping T(M)QH(n1 N) defines a fibre 
bundle over M such that the fibre at each point P of M is the w-dimen-
sional linear subspace through P parallel to T(P). 

One of the important results in the theory of fibre bundles is the 
introduction of the so-called characteristic cocycle. To give its defini­
tion we assume M to be a polyhedron, and let K be a simplicial de­
composition of M. Let Kr be the r-dimensional skeleton of K, that is, 
the subcomplex of K consisting of all simplexes of dimension not 
greater than r. We suppose the fibre bundle to be orientable in the 
sense explained by Steenrod [24]. Let F0 be connected and have an 
abelian fundamental group. Under these assumptions the following 
theorems can be established : 

THEOREM 4.1. Let H^Fo) be the ith homology group (with integral 
efficients) of F0. If 

#i(F0) = H'~i(Fo) - 0, 

it is possible to define a continuous mapping <t> of Kr into % such that 
T<l>(p)=p,peK'. 

THEOREM 4.2. With the same notation as in Theorem 4.1, if 

Hi(Fo) - • • • - H'-^Fo) - 0, H*(F0) * 0, 

there exists a cohomology class (with Hr(F0) as the coefficient group) yr+l 

of dimension r + 1 , whose vanishing is a necessary and sufficient condi­
tion that a continuous mapping <f> of Kr+1 into % can be defined such 
that w<l>(p) ~pt pÇzK**1. This cohomology class is a topological invariant 

The cohomology class yr+1 is called the characteristic cohomology 
class and any one of its cocycles a characteristic cocycle. If M is an 
orientable manifold, the dual of yr+l is a homology class of dimension 
w — r — 1 and is called the characteristic homology class. In particular, 
if M is a differentiate manifold and % the fibre bundle of nonzero 
tangent vectors of M, the characteristic cocycle y is of dimension n 
and its value for the fundamental cycle of M is the Euler-Poincaré 
characteristic of M. In this way we see that the theory of character­
istic class generalizes the classical theory of vector fields on a differ-
entiable manifold. 
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5. Riemannian geometry. In the preceding sections are sketched 
the preliminaries for the theory of a geometric being. As an illustra­
tion we shall apply the tools so established to Riemannian geometry, 
the "simplest" and most important among the geometric beings. It 
will be seen that the results are essentially those given by Cartan 
and their relations with the now classical treatment by tensor analysis 
will also be indicated; but we have put ourselves in a more general 
viewpoint, which will lead to further developments. 

Let M be a differentiate manifold of dimension n and class not 
less than 4. In M suppose a Riemannian metric be given, which, in 
terms of a local coordinate system #*, is defined by a positive definite 
quadratic differential form4 

(16) ds2 « X) gaWXdx'dxO, ga Œ g a-
ij 

The manifold M is then called a Riemannian manifold. 
Consider a point P of M and the contravariant tangent vectors of 

M having the origin P . With the differential form (16) (or the tensor 
ga) the scalar product of two vectors e, f can be defined, which we 
denote by e»f. A vector c is called a unit vector if e2 = l. An ordered 
set of n vectors d, • • • , en is said to constitute a frame (ennuple), if 

(1 i = j 
(17) e<ey « Sti = < ' / s\ j - 1, • • • , ». 

10, % T± j , 
A differentiate curve through P is defined by the equations 

(18) *« - *<(*), 

where 5 is the arc length of the curve and the functions are of class 
not less than 1. We denote by dP/ds the unit tangent vector of the 
curve at P. It is easy to show, by referring to a local coordinate sys­
tem, that there exists a vector (which we shall denote by dP) whose 
components with respect to a frame are linear differential forms and 
which is equal to the product of ds and the unit tangent vector along 
a curve. This vector is intrinsic, that is, independent of the choice of 
coordinates. Referred to a frame ei, • • • , en, we can write 

(19) dP « Wiei H + ù)ntn, 

where coi, • • • , w» are linear differential forms. Then we have, along 
a curve, (dP/ds)2 — l or 

4 The differential form in question is an ordinary and not an exterior differential 
form. As a means of distinction, we insert a parenthesis about the differentials when 
the former is the case. 
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(20) ds* - (Wl)
f + • • • + W 2 . 

The forms coi, i==l, • • •, nf are therefore the forms the sum of whose 
squares is equal to the given (ordinary) quadratic differential form. 

As the origin P runs over ikf, the frames ei, • • • , cn constitute a 
fibre bundle with M as the base space. Each fibre is topologically 
the space of all frames having the same origin. The fibre bundle is 
of dimension n(n+l)/2 and each fibre is of dimension n(n — l)/2. 
The group which operates in each fibre is the group of orthogonal 
transformations. 

There is yet no intrinsic meaning attached to the vectors du. We 
want to see whether it is possible to define intrinsically certain differ­
ential forms cot/ such that 

(21) dti =* 23 «<y** 
i 

From (17) it follows that cot,- has to be skew-symmetric in its indices: 

(22) a»; + a»* « 0. 

The answer to our question is given by the following theorem : 

THEOREM 5.1. There exists onef and only onet set of linear differential 
forms (an in the fibre bundle such that the equation (21) and the equation 

(23) d(dP) = 0 

hold. 

In fact, the condition (23) gives, when expanded, 

(24) do)i — 23 wi«y< = 0. 
i 

To calculate dcoi we make use of a local coordinate system xi and take 
a definite decomposition of ds2 as a sum of squares: 

(25) ds2 - (fiù* + • • • + (Pn)\ 

where 

(25a) Oi = 23 aij(x)dxK 

Since (20) and (25) give two decompositions of the same ordinary 
quadratic differential form as sums of squares, we have 

(26) co, = 23 Uifih 

where un are the elements of an orthogonal matrix: 
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(26a) U = (uu), UU' - I « identity matrix. 

Forming the exterior derivative of the equation (26), we get 

dwi « 23 <frfcj*/ + 2 ) tiijddjy 

which shows that dcoi is of the form 

(27) dm « 22 w;0i*> 

where #,•»• are linear differential forms in the variables #*', w</ and can 
be explicitly calculated. Substitution into (24) gives 

23 »/(»/< ~ *y<) = 0, 

which gives in turn 

(28) «# — 0y»- » 23 ^jikUfo hjik *=• Xwy. 

In this equation the forms #yt- are known and the quantities X#* will 
be determined in order that co,-,- be determined. Since «*y is skew-sym­
metric in its indices, we have 

~~ (4>ij + 4>ji) — 23 (Xt;fc + Xyi*)c0*. 

This equation shows that $<y+0y< is of the form 

(29) 0</ + 0/« = ~ 23^*7&w*> i4<y* » i4y<*f 

and that then 

(30) Xijk + \jik = A ijk» 

The quantities X<y*, being symmetric in the first and third indices, 
are then uniquely determined and are given by 

(31) X*y» « ( - Aikj + A,-ki + Aiik)/2. 

This proves our theorem. 
The equation (21) may be interpreted as giving a means of trans­

porting a vector at an infinitesimally near point of P to a vector at P. 
It is essentially the notion known as the parallelism of Levi-Civita. 

By forming the exterior derivative of (24) and making use of these 
equations themselves, we get 

22 wi( 23 »«*»*y ~* da>iA « 0. 

It follows easily from this that we can write 

(32) dm; = 23 «>ik<*kj + 0<y, 
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where Î217- are of the form 

Qij + tin = 0. 

We shall call the forms Q</ the curvature forms. 
In a slightly different version our results may be summarized in 

the theorem : 

THEOREM 5.2. Let M be a Riemannian manifold of dimension n and 
let % be the fibre bundle of all frames of M. There is a unique way to 
define in % {of dimension n(n+l)/2) a set of n(n+l)/2 linearly inde­
pendent linear differential forms co»-, «»•/, which satisfy the equations (19), 
(21), (24). 

Let us indicate briefly the relations of these considerations to the 
ordinary treatment by means of tensor analysis. In tensor analysis 
emphasis is laid particularly on the local coordinate system. The pro­
cedure is as follows: With respect to the local coordinates xl let f* be 
the velocity vector of the coordinate curve #* = const., i^k, with xk 

as the time. Then we have 

(34) frfjb-gtt, 

and 

(35) dP = J^-fi + • • • + <**»•ƒ». 

The components X* of a vector £ with respect to the vectors f* are 
defined by the equation 

(36) ç - £ X% 

By an argument analogous to the proof of Theorem 5.1 it can be 
shown that there exists a set of linear differential forms such that 

(37) <*f<=£<4, 
and 

d(dP) - 0. 

The vector %-\-d% is called parallel to f if d% = 0, which can be written, 
by using equations (36) and (37), 

(38) dX* + 2) *W - 0. 
These equations are easily recognized to be the well known equations 
which define the parallelism of Levi-Civita. 
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The important fact in Riemannian geometry is the necessity of 
taking into consideration not only the Riemannian manifold itself but 
the fibre bundle over it. In our approach we consider directly the fibre 
bundle. The usual tensor approach avoids it by laying emphasis on 
the local coordinate system. Quantities of geometrical interest are 
those which obey a simple transformation law under changes of the 
local coordinate systems. For Riemannian geometry the two methods 
are essentially the same, so far as local problems are concerned. It 
is, however, to be remarked that even for local problems their gen­
eralizations to other geometric beings will lead to different formula­
tions. We shall give in the next section a systematic way of treating 
the local theory of a geometric being. 

6. Method of equivalence. So far the introduction given in the 
above section of the fibre bundle over a Riemannian manifold M 
seems to be accidental. The underlying reason will be most clear, if 
we start with the following problem : 

Let two Riemannian metrics be given by the positive definite quad­
ratic differential forms 

(39) ds2 » ] £ gii{x){dxidx3')% g{j = giU 

(40) ds*2 - £ g*;(tf*)(<2tf*y**0, gif - gif, 
ij 

in two coordinate neighborhoods U, U* respectively. We determine 
the conditions that a neighborhood VQ U can be mapped by a differ-
entiable mapping (of sufficiently large class) with nonvanishing func­
tional determinant into U* such that 

ds*2 = ds2. 

This so-called form problem was solved by Christoffel and Lip-
schitz. It is clear that if the problem has a solution, the local theories 
of the two Riemannian metrics are essentially the same. 

To give a different formulation of our problem we determine two 
sets of linear differential forms Oi(x, dx) and 0?(x*f dx*) such that 

ds2 = (0x)2 + • • • + (0n)
2, ds*2 - (S?)2 + • • • + (6*)2. 

Our problem will have a solution if and only if the differentiable 
mapping in question and the functions Uu(x) can be determined in a 
neighborhood VC.U such that 

(41) 6?(x*t dx*) = £ «<y(*)0y(*t dx), 
i 

where the matrix 
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(42) U - (utà 

is an orthogonal matrix. 
In this way our problem, originally formulated in terms of quad­

ratic differential forms, is reduced to one in linear differential forms. 
In this formulation the problem is a particular case of a more general 
problem, which was first stated and solved by Elie Cartan. Cartan's 
problem is as follows: 

Let Oi(xf dx) and 0i*(#*, dx*) be two sets of n linearly independent 
linear differential forms in the coordinate neighborhoods U> U* of the 
coordinates x*9 x*\ i = 1, • • • , n. Let T be a linear group in the vector 
space of n dimensions. We wish to determine the conditions that there 
exists a differentiable mapping with a nonvanishing functional de­
terminant of a neighborhood VQU into U* such that 

(43) 6? = Z ua(x)eh 
i 

where the linear transformation belongs to the given linear group I\ 
In our case T is the orthogonal group. 
The discussion of this local problem requires Cartan's theory of 

Pfaffian systems in involution and is not simple. For details we refer 
to [3]. 

We only remark that if V consists of the identity only, the solution 
of this problem is relatively simple. The general procedure is to reduce 
the problem to this particular case by the introduction of new varia­
bles. We shall illustrate this method by considering our form prob­
lem. Let uu and Uif be two sets of new variables which are elements 
of the orthogonal matrices 

U - (m,), U* ~ fa?), 

and let us put 

(44) m = X) Uifii% cof = 23 Ui?$f. 

Our form problem will have a solution if and only if there exists a 
differentiable mapping of a neighborhood VQ U into Z7* and an or­
thogonal matrix X, whose elements are functions in F, such that 
under this mapping and the mapping between («</) and (u^*) defined 
by 

(45) U*X = U, 

we have 

(46) CO? = CO»*. 
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From the last equation we derive 

(47) d<a? = dm. 

By an argument exactly identical to one used in the last section it can 
be shown that there exists one and only one set of linear differential 
forms con in x\ Ui^ which are skew-symmetric in their indices and 
which satisfy the equations 

do){ = 22 (*)](*) ji. 

Similarly, we find a set w*/* (= —cô *) of linear differential forms such 
that 

When (46) and (47) hold, it is easy to derive 

(48) «<ƒ* = o>ij. 

Let F be a sufficiently small neighborhood of U and let 0(n) be 
the group manifold of the orthogonal group. We consider the topo­
logical product VXO(n). Similarly, we have the topological product 
F*XO*(«). In order that our form problem possess a solution it is 
necessary and sufficient that there exist a differentiable mapping be­
tween VXO(n) and V*XO*(n) such that under this mapping the 
equations (46) and (48) hold. It is easy to see that the forms co»-, w»,-, 
whose number n(n+l)/2 is equal to the dimension of VXO(n), are 
linearly independent. Thus our problem is reduced to Cartan's general 
problem with T consisting of the identity only. 

It can therefore be seen that the discussions of the last section are 
nothing else than a geometrical treatment of the above analytic con­
siderations. We summarize these results as follows: 

Given a Riemannian manifold M of dimension n with a positive 
definite quadratic differential form ds2. To M is associated the fibre 
bundle, with M as its base space, of all sets of linear differential forms 
(that is, covariant vectors) the sum of whose squares is equal to ds2. 
The fibre bundle is of dimension n(n+l)/2 and there exists in it a 
set of n(n+l)/2 linearly independent linear differential forms a?»-, w»-/ 
which are invariant. There exists locally a differentiable mapping 
which carries one ds2 into another when and only when such a map­
ping exists in the corresponding fibre bundles under which the forms 
o)i, o)ij are respectively equal. 

We may say that the deep reason that this very fibre bundle 
(namely, the one whose fibres are topologically the manifolds 0{n)) 
is attached to a Riemannian manifold comes as a result of the solution 
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of the form problem. From the case of the Riemannian manifold it 
is clear that, for the theory of other kinds of geometric beings, the 
solution of a corresponding local "equivalence problem" is a natural 
preliminary step for the establishment of a proper theory in the large. 
In fact, from the solution of the equivalence problem the nature of 
the fibre bundle to be attached to the manifold can be determined. 

There is a great variety of geometric beings which are of interest 
in differential geometry. In order to illustrate our method we shall 
take as a further example the so-called geometry of paths. Let M be 
a differentiable manifold of dimension n. In a neighborhood with the 
local coordinates xi let there be given a system of differential equa­
tions of the second order: 

, v d2x* _ i t v dx1' dxk , N dx* 
m I? + £ T'k(x) -77-77= F(x'l) -77' 

dfi dt dt dt 
where the functions T*k1 F are supposed to be differentiable of class 
not less than 3. The integral curves of the differential system (49) are 
called the paths. They have the property that through every point 
of M and tangent to every vector through that point there passes one 
and only one path. The independent variable tis a parameter on the 
path. It is irrelevant in the sense that a change of parameter /=#(r), 
where </>(T) is differentiable, gives the same path. In short, our mani­
fold M carries a system of paths which is defined in each local coordi­
nate system by a differential system of the form (49) and our problem 
is to study the geometrical properties in M arising from the paths. 
An important particular case of this problem is the case that M is 
the projective space of n dimensions and the paths are the straight 
lines in M, which, in a suitable local coordinate system, are defined 
by the system (49), with Tjt = 0. 

Following the spirit of our solution of the form problem we start 
by considering the following problem of equivalence: In another co­
ordinate neighborhood with the local coordinates x*{ let a system of 
paths be given by a differential system analogous to (49). Determine 
the conditions under which a differentiable mapping between the co­
ordinates x* and #**', which carries one system of paths into another, 
exists. 

To apply the method of equivalence we shall write the system (49) 
in a system of total differential equations. For simplicity let us sup­
pose that, for the integral curves of (49) under consideration, xn is 
not a constant. We can then take xn to be the parameter along the 
curves, and the system (49) can be written 
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dB" a dy« — * S k a „ j k 

— - y > — + 2u ry*y y =Py f £ , Tjky y - F, 

where the index ce runs from 1 to w — 1 and y w = 1. This system can be 
written as a system of total differential equations as follows: 

et et et n 

0 = dx — y dx = 0, 
(50) a j « , ( , T T i a ^ * a V ^ - n n ^ f c ) j n r* 

7T == jy + {2-j r #y y — y 2J ry*y y }<** = °-
We introduce also the form dxn, so that 0", d#n constitute a set of 
linearly independent linear differential forms in the coordinates x*. 
On the other manifold with the local coordinates x** we shall intro­
duce in a similar way the new variables y*a and the forms 0*", dx*n, 
7r*a. Let us write 

'dx1 

(51) 0 = I 0« ), 0* = ( axn\ 

0" V 
7T« / 

and let us introduce the matrix 

/il(1,1) B ( l , » - 1 ) 0 v 

(52) U = ( 0 C(» - 1, n - 1) 0 ), 

\ 0 JD(n - 1, » - 1) £(» — l t » — 1) / 

whose nonzero elements are independent variables, and where the 
numbers in the parentheses denote the numbers of rows and columns 
of the sub-matrices in question. It is easy to show that our problem 
of equivalence possesses a solution when and only when there is a 
differentiate mapping between two neighborhoods (x\ ya) and 
(#**, y*a) and the elements of U can be determined as functions of 
x\ ya, such that under this mapping the matrix equation 

(53) ©* - U® 

holds. Now in the linear vector space of 2w —1 dimensions all the 
matrices U form a group. Hence in this formulation our problem of 
equivalence is a particular case of the problem of equivalence of 
Cartan stated above. 

The problem can be solved by applying Cartan's general procedure. 
We shall not give the details here. The solution of a problem which 
contains this problem as a particular case was given in [12]. 

Our final result can be stated in the theorem : 

THEOREM 6.1. In a differentiable manifold M of dimension n and 
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class not less than 3 let a system of paths be given, defined locally by the 
differential equations (49). It is possible to introduce in a neighbor­
hood of M with the local coordinates xi, n(n+l) other variables UA, 
-4=1, • • • ,n(n+l), and to define n(n+2) linearly independent linear 
differential forms O)B, 3 = 1, • • • , n(n+2), in the variables x{, uA, hav­
ing the following property: A necessary and sufficient condition that a 
local differentiable mappings exists, which carries one system of paths 
into another with the local coordinates #** and the new variables UA*, and 
so on, is that there exists a differ entiable mapping between two neighbor-
hoods of the spaces (#*, UA) and (x*\ UA*) under which the forms COB and 
o)B* are mapped into each other. 

With respect to a local coordinate system xl the variables x{, UA, 
A=l, • • • , n(n+l), determine a topological product. We are thus 
led to consider the fibre bundle over M, which is of dimension n(n+2) 
and is locally given by the coordinates x*, UA- In the fibre bundle 
there are defined exactly n(n+2) intrinsic linearly independent linear 
differential forms. The significance of this fibre bundle to the differ­
ential geometry of paths is evident. It is important to point out that 
in the geometry of paths it is, in view of our Theorem 6.1, this fibre 
bundle, and not the fibre bundle of tangent vectors of M, which plays 
the fundamental rôle. 

From the above discussions of Riemannian geometry and the ge­
ometry of paths it can be seen that the method of equivalence offers 
the best weapon for a frontal attack on the problem of a geometric 
being. Only from the outcome of the solution of the problem of equiv­
alence can it be decided the most important kind of fibre bundle to 
be defined over the manifold. It is of course possible to define, in a 
more or less intuitive way, other kinds of fibre bundles over the mani­
fold, but they will play a minor rôle. We wish also to remark that the 
solution of this local problem of equivalence is not always simple. So 
far as the writer is aware, the problem of equivalence for a skew-sym­
metric covariant tensor of order two, for instance, has not been ex­
plicitly solved (although the solution is theoretically always possible). 

7. Relations between the fibre bundle and its base manifold. We 
have attempted to show in the above, in the cases of Riemannian 
geometry and the geometry of paths, how the local theory of a ge­
ometric being leads naturally to the fibre bundle to be associated to 
the manifold on which the geometric being is defined. The fact re­
mains true of any geometric being, but its proof requires the funda­
mental theorem on partial differential equations to the effect that 
every system of partial differential equations can be "prolonged" to 
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a system in involution, and we shall not enter into its discussion. It 
is to be remarked that for problems of this sort, as for any problem 
concerned with both pure and applied mathematics, the general re­
sult and the particular cases offer entirely different problems, one 
being an existence theorem and the other being an explicit solution. 
In our examples we solve the problems explicitly, thereby insuring 
the existence of the solution. 

After defining over the given manifold M a fibre bundle §, the 
next step is to study their relationship. Before proceeding farther, let 
us remark that the fibre bundle $ will give rise to new fibre bundles 
over M by identification. Consider, for instance, the case that M is 
a Riemannian manifold. Let Pt\ • • • e» be a frame in M. For any 
integer p, 1 SpSn, we shall define a class of frames to be all frames 
Pci • • • en such that the point P and the vectors d, • • • , cp are iden­
tical. These classes of frames constitute, with a natural topology, a 
fibre bundle over M, which we denote by $(p). %(p) is the fibre bundle 
of all ordered sets of p mutually perpendicular unit vectors of M. In 
particular, g(1) is the fibre bundle of unit vectors of M and $(w) is 
the fibre bundle g itself. For distinction we shall call § the principal 
fibre bundle of M and all others obtained by identification the asso­
ciated fibre bundles. We shall consistently assume that the identifica­
tion is made only in each fibre, so that the projection of the associated 
bundle onto the base manifold is the one induced by that of the prin­
cipal bundle. It is seen that this process is very general. 

Let fÇ be the principal fibre bundle over M and ® an associated 
fibre bundle over M. There is a projection TT($)C.M and a projection 
iri(®)<ZM9 and also a projection 7r2(§)C®, defined by assigning to a 
point of % the class to which it belongs during the identification. From 
the remark made at the end of the last paragraph it is clear that 
7T=7Ti7T2. We also remember that a set of intrinsic linearly independent 
linear differential forms is defined in § by the geometric being, whose 
number is equal to the dimension of §. Our main aim will be to see 
how these differential forms behave under the projections 7r, 7TI, 7T2. 

In order to understand this relationship more clearly we shall make 
a digression to recall some elementary facts in combinatorial topol­
ogy. Let K be a finite complex of dimension w, whose simplexes we 
denote by <fu O^r^gw, l^i^ar. Let R be a commutative ring. A 
chain of dimension r or an r-chain is a sum 

(54) C - Ü X*r* A* G R. 

To the chains Cr we introduce a boundary operator d, which is linear: 



1946] DIFFERENTIAL GEOMETRY IN THE LARGE 21 

(55) d(p[ + Cl) « del + del d(\c) - \dC\ \ER, 

and is defined for the simplexes crj by the so-called incidence relations: 

(56) dai = jT) w'i * ƒ • 

The relations (55) and (56) completely determine the boundary oper­
ator d and the chain dCr of dimension r — 1 is called the boundary of 
Cr. It is easy to verify that 

(57) ddC' - 0. 

A chain whose boundary is zero is called a cycle. Equation (57) shows 
that a chain which is the boundary of another chain is a cycle, called 
a bounding cycle. The cycles form an abelian group and the bounding 
cycles a subgroup of it. Their quotient group is called the r-dimen-
sional homology group of K (with the additive group of R as its co­
efficient group). 

A cochain yr of dimension r is a linear function of the r-chains. We 
shall denote the function by the notation yr- Cr, which has therefore 
the properties: 

(58) y. (C[ + Cl) = 7r-C[ + yrd y-(XCr) - \yC\ X G R. 

From a cochain yr of dimension r we define a cochain Syr of dimension 
r + 1 , called its coboundary, by means of the relation 

(59) ôy-C*1 « y*-(dCr+1). 

It then follows from (57) and (59) that 

(60) Ôôyr = 0. 

A cochain whose coboundary is zero is called a cocycle. All the cocycles 
of dimension r form an abelian group, which contains as subgroup the 
group of all cocycles which are coboundaries. Their quotient group is 
called the r-dimensional cohomology group of K. 

Now, let AT be a differentiable manifold of dimension n and class 
not less than 2. Let co be a differential form of degree r in M, whose 
coefficients are of class not less than 2. As we have remarked in §3, 
it is possible to define in a rigorous manner the integral of co over an 
r-simplex and also the integral of co over an r-chain. Moreover, the 
functional fcro> is linear in the r-chains Cr. Hence it defines an r-co-
chain with the ring of real numbers as the coefficient ring. When there 
is no confusion, we shall speak of o> as an r-cochain. 

From (13) the Theorem of Stokes can be written in the form 
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(61) f dec = f co. 

Comparison with (59) shows that if co defines an r-cochain, then dœ 
defines its coboundary. It follows that the r-cochain co is a cocycle if 
and only if dœ = 0 (in which case co is called exact), and that co is a 
coboundary if there exists a form 6 whose exterior derivative dd is 
equal to co (in which case co is called derived). 

It was de Rham [22] who proved the important theorem that to 
every r-cochain y (with real or rational coefficient group) there exists 
a differential form co of degree r which defines y according to the above 
process* We see from §4 that from the fibre bundles over M there are 
the characteristic cocycles in M which are invariants of the fibre 
bundles. A theorem in the differential geometry in the large will be 
obtained, whenever it is possible to define a characteristic cocycle by 
means of a differential form constructed locally from the geometric 
being. 

Suppose now that a simplicial mapping/exists, which maps a com­
plex K into a complex K*. The mapping ƒ induces a mapping 0 of 
the chains of K into the chains of K*. From <f> a mapping \[/ of the 
cochains of K* into the cochains of K can be defined. In fact, if 7* 
is a cochain of dimension r of K*, we define ^y*-crr=7*-0crr for every 
simplex <rr of K. This so-called inverse mapping \[/ maps cocycles of 
j£* into cocycles of K and cocycles of the same cohomology class into 
cocycles of the same cohomology class. Therefore it induces a map­
ping of each cohomology group of K* into the cohomology group of 
the same dimension of K and it can be proved that it is a homomor-
phism. It can also be proved that the homomorphism remains un­
changed, if ƒ is replaced by a mapping homotopic t o / . The result is 
that we can define from a continuous mapping of a polyhedron P into 
a polyhedron P* a homomorphism of a cohomology group of P* into 
one of the same dimension of P . 

In the case of a fibre bundle % over M in which we are interested, 
there is a continuous mapping of § into M, namely the projection. 
We assume that both % and M are differentiate manifolds. According 
to the above, the projection induces a mapping of a cohomology group 
of M into one of the same dimension of %. In particular, an exact 
differential form of M will be mapped into an exact differential form 
ofg. 

Consider the case that M is a differentiate manifold in which a 
geometric being is given. Let gf be the principal fibre bundle and ® 
an associated fibre bundle over M. It is known that there is a projec­
tion 7r2(80C®. There are also linear differential forms defined in % 
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by the geometric being in M. From the linear differential forms it is 
possible to construct, by operations of the Grassmann algebra and 
the Cartan calculus, differential forms of higher degree. For any such 
differential form it is important to decide whether it is the image of a 
differential form of © under the inverse mapping induced by 7T2. There 
are several criterions for this problem. We shall give a criterion for the 
case that M is a Riemannian manifold, but the process can be readily 
generalized to other geometric beings. 

Let © = $(p) and let the forms œit co*-,-, Q^ be defined in the principal 
fibre bundle $. Let II be constructed from co*, cûi3; Qt-,- by operations of 
the Grassmann algebra. We wish to decide whether II is the image of a 
form in ©. 

For this purpose let us use in this paragraph the following ranges 
of indices: 

l ^ a j ^ , p + 1 ^ r, s S n, 1 £ i, k £ n. 

Let 8 be an operation (not coboundary) under which the figure 
Pci • • • cp remains unchanged, so that 

(62) »<(«) •* 0, »««(«) = 0. 

We also put 

(62a) cofs(ô) =* er8. 

From (24) and (32) we have 

Ôœa = 0 , Scûr = ]T) *r«W«, àu)ap = 0 , ÔO)ar = — ] C ^rC0«„ 

( 6 3 ) V- y -

Then we have the following theorem: 

THEOREM 7.1. A form II is the image of a differential form in $ ( p ) if 
and only if Su = 0. 

This theorem is also true for £ = 0, if we make the convention 
%^ = M. 

If a form in $ is the image of a form in fÇ(p), we shall say simply 
that it is a form of g(î>). 

I t can easily be verified, by means of our criterion, that the follow­
ing forms are forms of M : 

Am = ]C °<1<1°<I<| ' * * QWl» 1 â W ^ V4» 

Ao = JL, €**i • • -in®hh ' ' • Û*n-i*»> u » is even, 

where e f l . . .t-n is the Kronecker index, which is + 1 or — 1, according 
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as ii, • • • , in forms an even or odd permutation of 1, • • • , n, and is 
otherwise zero. 

Important is the case of an exact form of M which is not derived 
in My but has an image in a fibre bundle which is derived. The form 
Ao in (64) has, for instance, an image in $(1), which is derived. It is 
on this fact that the generalized Gauss-Bonnet formula was proved 
in a simple way [lO]. A further example to illustrate this idea will 
be given for Riemannian manifolds of four dimensions. (Compare 
[14].) 

8. Theorem of Pontrjagin, From a topological viewpoint Pontr-
jagin has in two recent notes [20, 21 ] studied a problem related to 
ours. We shall summarize here his results in a slightly more general 
version which will allow its generalization to complex analytic Her-
mitian manifolds. 

Let En+N be a real oriented Euclidean space of dimension n+N. In 
En+N we consider the Grassmann manifold H(n, N), formed by all 
the oriented w-dimensional linear spaces through the origin. To each 
submanifold M' of H(n, N) there is defined in a natural way a sphere 
bundle with M' as the base space, that is, a fibre bundle whose fibres 
consist of spheres cut on the unit hypersphere about the origin of 
En+N by the w-dimensional linear subspaces of M'. Given any mani­
fold M, and a mapping ƒ(M)C.H(nf N), a sphere bundle can be de­
fined over M as base space by taking as the fibre attached to a point 
P of M the unit hypersphere in / (P) . With a proper definition of 
equivalence of sphere bundles, Whitney and Steenrod have proved 
the following theorem [25,33]: 

THEOREM 8.1. To a given bundle of spheres of dimension n — 1 over 
a compact manifold M there exists a mapping f(M)C.H(n, N), which 
defines a sphere bundle over M equivalent to the given one, provided that 
dim M^N. Two sphere bundles over M defined by the mappings 
fi(M)C.H(n, N), i = l, 2, are equivalent, when and only when the 
mappings f i and f2 are homotopic. 

From the mapping f(M) CH(n, N) the cocycles of dimension not 
greater than dim M of H(n, N) are mapped by the inverse mapping 
into cocycles of M. The latter part of Theorem 8.1 asserts that the 
image cocycles of M are cohomologous, if the sphere bundles are 
equivalent. The image of a cohomology class of H(n, N) under the 
inverse mapping is therefore independent of the choice of the mapping 
ƒ, provided that the sphere bundle induced remains equivalent. Such 
a cohomology class in M is called a generalized characteristic class. 
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If M is a differentiate manifold and % the tangent sphere bundle 
over My we can find the mapping ƒ in question by imbedding M in a 
Euclidean space En+N and defining ƒ (P) to be the w-plane of H(n, N) 
parallel to the tangent w-plane of M at P . M has then a Riemannian 
metric induced by the Euclidean metric of En+N. 

In En+N consider the frames Pci • • • en+iv. We use the ranges of 
indices 

1 g i, i â », n+l£r,s£n + N, 1 £A,B,C £n + N, 

and put 

Then we have 

dcoAB = z J <*ACU>CB* 
c 

To each w-plane of H(ny N) we attach the frames Oci • • • enen+i • • • 
tn+N such that Cx, • • • , cn belong to the w-plane. Then the nN linear 
differential forms <oar constitute a set of linearly independent forms 
of H(n, N). To represent an integral cocycle of H(n, N) in the sense 
of §7 we define 

( 6 5 ) Qa = — ] C «irCOjfer. 
r 

It is then a consequence of the first main theorem in the theory of 
vector invariants for orthogonal groups [3l] that every integral co-
cycle of dimension not greater than n of H(n, N) can be represented 
by a differential form which is a linear combination, with constant 
coefficients, of the products of the forms Am, A0 defined by (64), where 
the O»* are here given by (65). 

The forms Qik defined in (65) are forms of H(n, N). But their images 
in M induced by the mapping ƒ are the curvature forms of M derived 
from the Riemannian metric of M induced by En+N. In fact, let us 
attach to each point P of M all frames Pei • • • en+i\r such that 
ei, • • • , cw are tangent vectors. On M we have then 

<ar = 0, 

and 

dcoi = 2 3 <*kO>ki, 

(66) * 

i r j 
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From (66) it is seen that the images of the Ö»& in (65) are the curva­
ture forms of the Riemannian metric induced on M. 

In this way we can prove the following theorem of Pontrjagin: 

THEOREM 8.2. Let M be a compact orientable differentiable manifold 
imbedded in a Euclidean space and let 0»* be the curvature forms derived 
from the induced Riemannian metric. An integral characterisic cocycle 
of M can be represented by a differential form which is a linear com­
bination^ with constant coefficients, of the products of the forms Am, 
O^mSn/4. 

I t is highly probable that the relations asserted in Theorem 8.2 re­
main true, if the fl^ are the curvature forms of a Riemannian metric 
given intrinsically on M. But so far this has only been established for 
the case of the form A0 and for a few other cases. The result will 
follow if it can be proved that a Riemannian manifold can be iso-
metrically imbedded in a Euclidean space. Unfortunately this im­
bedding question is not settled, even for w = 2. 

9. Hermitian geometry. Our results are more satisfactory in thç 
case of Hermitian geometry. By an Hermitian manifold M we shall 
mean a complex analytic manifold in which there is given an Hermit­
ian metric: 

n 

(67) ds2 = ]T) gik{z, z)(dzidzk), gik = gkh 
t,&-i 

where «< are the local complex coordinates and where the bar denotes 
the operation of taking the conjugate complex. 

As in the case of Riemannian manifolds, the principal fibre bundle 
for an Hermitian manifold is one whose fibres consist of a set of com­
plex vectors ei, • • • , en, such that 

(68) u-h = Sih 

where the scalar product is understood in the sense of Hermitian 
geometry. Like the Riemannian case, the fundamental formulas of 
Hermitian geometry can be established to be 

(69) ds2 = X) (wjWt), dwi = X) w;w#, dmk = ]C w^co^ + Û«, 

where 

(70) CO,/ + Wji = 0, Qij + Uji = 0, Qij = X Rij,kP>kÛl. 
ktl 

From Qij we construct the differential forms 
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(71) Am « X) ÛM«°<I<I • • • Qimilt 1 £tn £ n, 

and also the differential forms 

(72) ^ m = X) 50'i> ' • ' i fmî j i , • • • , jm)tiixh • • • 0<m/w, 1 ^ ^ « , 

where h(i\, • • • ) is the Kronecker symbol which is 
equal to + 1 or — 1 according as j i , • • • , j m constitutes, an even or odd 
permutation of i\, • • • , im, and is otherwise zero, and where the sum­
mation is extended to all from 1 to n. I t is easy to see that 
every Skm can be expressed as a polynomial of Ai, • • • , Am with con­
stant coefficients, and conversely. 

Over the compact Hermitian manifold M we can construct the 
fibre bundle %(p) such that the fibre over a point P of M consists of 
ordered sets of vectors ei, • • • , ep, satisfying the relations 

(73) e < - e , « dijt 1 ^ i,j£p. 

Then we can prove the following theorem : 

THEOREM 9.1. The characteristic cocycle of %(p) in M in the sense of 
§4 is of dimension 2n — 2p+2 and can be defined, up to a constant fac­
tor, by the form ^ n « p + i . 

These characteristic cocycles, altogether n of them, corresponding 
to the values £ = 1, • • • , nt we shall call the basic characteristic co-
cycles. On the other hand, the imbedding process of §8 can be carried 
over to the present case, resulting in a correspondence between the 
equivalent fibre bundles over M (in the sense of Steenrod) and the 
homotopy classes of mappings of M into H(n, N, C), where H(n, N, C) 
is the Grassmann manifold of all w-dimensional complex linear spaces 
through the origin in a complex Euclidean space of n+N (complex) 
dimensions. This allows us to define a generalized characteristic co-
homology class of M as the inverse image of a cohomology class of 
dimension not greater than 2n of H(n, N9 C). But in the complex 
case the first main theorem on vector invariants for the unitary group 
is of simpler form than the corresponding theorem for the orthogonal 
group, and we can prove the following theorem: 

THEOREM 9.2. Every cohomology class of H{n, N, C) of dimension 
not greater than 2n can be obtained by operations of the cohomology ring 
from n basic classes, namely, the classes whose inverse images are the 
basic characteristic classes of M. 

I t is in this sense that we can say that for complex analytic 
Hermitian manifolds the characteristic classes arising from the con-
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sideration of the principal fibre bundle are completely determined by 
the Hermitian metric. We also remark that complex analytic Hermit-
ian manifolds play an important rôle in algebraic geometry and in 
the theory of analytic functions of several complex variables. 

The proofs of the results announced in this section will be pub­
lished elsewhere. 

10. The kinematic principal formula in integral geometry. In the 
above sections we have discussed the interrelations between local 
differential-geometric properties and topology. There are, however, 
other geometric properties in the large which are equally of interest 
and which are closely related to the ideas set forth above. Moreover, 
they also illustrate the important rôle played by the fibre bundle in 
the theory of a geometric being. 

Let M be a Riemannian manifold of n dimensions, and let % be its 
principal fibre bundle. We have defined in the space % of dimension 
n(n + l)/2 the forms cot-, co .̂ The differential form of degree n(n + l)/2 : 

(74) Ç-II«r II«** 
i<k 

can serve as a kind of volume element in %. If M is the Euclidean 
space of n dimensions, $ is called the kinematic density, which was 
first introduced by Poincaré for the case w = 2. 

To illustrate how the kinematic density can be utilized in geometri­
cal problems suppose M to be the Euclidean space of n dimensions. 
Then gf is the space of frames in M and is topologically a product. In 
M we consider two closed hypersurfaces Su S% of class not less than 2. 
For each Si let r*}\ • • • , f»Li be the principal curvatures and let 

(75) — — I £ rf'} • • • n'dOi - f f f , i - 1, 2; k - 0, • • • , n - 1, 
C - ƒ £'" 

where the integrand is the feth elementary symmetric function of the 
principal curvatures and dOi is the surface element of Si. Denote by 
V(i) the volume bounded by Si in M. Let Si be fixed in the space and 
let 52 take all possible positions. For each position of S2 denote by 
xiSiSï) the Euler-Poincaré characteristic of the intersection of Su 52. 
Then we have the following so-called kinematic principal formula: 

(2) 

(76) 
ƒ xiSi-sw - JniH™tv

m + vwni 

n *-o ; 
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where Jn is the kinematic measure about a point in M and is given by 

(76a) Jn - On_iO„_2 • • • Ou 

Op-i being the area of the unit sphere in a Euclidean space of p dimen­
sions. 

The formula (76) was proved by Blaschke for w = 2, 3 [2], and was 
established for general n by Yien and the present writer [13]. It has 
numerous interesting consequences. In particular, when w = 2 and 
when both Si and £2 are convex curves, it becomes 

(77) f y = 2r(A1 + A2)+L1L2, 

where Ai is the area bounded by Si and Li is the length of 5t-, i ~ 1, 2. 
Formula (77) was first established by Santalö and can be used to de­
rive a sharpening of the isoperimetric inequality (2) [23]. It is thus 
through all the round-about discussions on differential geometry and 
topology that we arrived at the relation between the theory of fibre 
bundles and the isoperimetric inequality given at the beginning of 
this article. 
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