HERMITIAN QUADRATIC FORMS IN A QUASI-FIELD

GORDON PALL

1. Introduction. E. Witt¹ proved the following theorem concerning quadratic forms in a fairly general field:

THEOREM 1. Let $f_1 = ax_1^2 + \phi_1(x_2, \dots, x_n)$ and $f_2 = ax_1^2 + \phi_2(x_2, \dots, x_n)$ be quadratic forms whose coefficients lie in a given field F in which $2 \neq 0$. Then the equivalence in F of f_1 and f_2 implies that of ϕ_1 and ϕ_2 .

It is our purpose here to generalize this theorem to any quasi-field (a field, except that multiplication may not be commutative) on which is defined a conjugate operation of period 2 with the usual properties

$$\overline{a+b}=\overline{a}+\overline{b}, \quad \overline{ab}=\overline{b}\cdot\overline{a}.$$

Well known examples are any field with $\bar{a}=a$; the field of complex numbers with the usual complex conjugate; the system of quaternions with real coefficients and the usual conjugate. The analogue in a quasi-field of quadratic form in a field is the hermitian quadratic form

$$f = \bar{x}'Ax = \sum_{i,i=2}^{n} \bar{x}_{i}a_{ij}x_{j}$$
, where $\overline{A}' = A$, or $\bar{a}_{ij} = a_{ji}$.

The scalars of a quasi-field are the elements s such that $\bar{s}=s$. The diagonal elements of a hermitian matrix are therefore scalars. The process of completing squares is carried out in much the same way as in a field. Thus if, in f above, $a_{11}\neq 0$,

$$f = \left(\bar{x}_1 + \sum_{i=1}^n \bar{x}_i a_{i1} a_{11}^{-1}\right) a_{11} \left(x_1 + \sum_{i=2}^n a_{11}^{-1} a_{1i} x_i\right)$$
$$+ \sum_{i,k=2}^n \bar{x}_i (a_{jk} - a_{j1} a_{11}^{-1} a_{1k}) x_k.$$

Hence the analogue of a form like f_1 in Witt's theorem can be written

$$\bar{x}_1 a x_1 + \phi$$
, where $\phi = \sum_{i,j=2}^n \bar{x}_i b_{ij} x_j$, $\bar{b}_{ij} = b_{ji}$.

Since determinants do not exist in a quasi-field (except for hermitian matrices), we cannot demonstrate that a matrix T is nonsingular

Presented to the Society, September 17, 1945; received by the editors October 28, 1944.

¹ See bibliography.

by the nonvanishing of a determinant. Instead, we may construct explicitly the reciprocal matrix V, such that VT = TV = I.

We shall, in §3, consider automorphs of f, that is matrices T such that $\overline{T}'AT=A$. If z denotes the first column of T, then $\overline{z}'Az=a_{11}$, that is z is a representation of the leading coefficient a_{11} of f. If $a_{11}\neq 0$, we shall for any given representation z of a_{11} construct a corresponding automorph of f.

2. A generalization of Witt's theorem. The theorem we shall prove is the following.

THEOREM 2. Let F be a quasi-field with a conjugate operation as described above, $2 \neq 0$. Let a be a nonzero scalar, and B_1 , B_2 nonsingular hermitian matrices of order n-1, with elements in F. Let

(1)
$$A_1 = \begin{bmatrix} a & 0' \\ 0 & B_1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} a & 0' \\ 0 & B_2 \end{bmatrix}.$$

where 0 denotes a column, and 0' a row, of n-1 zeros. Let T denote any transformation (with coefficients in F) of A_1 into A_2 , that is let

$$A_2 = \overline{T}' A_1 T.$$

Then we can construct a transformation of B_1 into B_2 .

PROOF. We can write (2) in the form

(3)
$$\begin{bmatrix} a & 0' \\ 0 & B_2 \end{bmatrix} = \begin{bmatrix} \bar{x}_0 & \bar{x}' \\ \bar{y} & \overline{T}_1' \end{bmatrix} \begin{bmatrix} a & 0' \\ 0 & B_1 \end{bmatrix} \begin{bmatrix} x_0 & y' \\ x & T_1 \end{bmatrix},$$

where x_0 is a constant, x and y are column vectors of n-1 components, T_1 a matrix of order n-1. Expanding (3) we get

$$\bar{x}_0 a x_0 + \bar{x}' B_1 x = a,$$

(5)
$$\bar{x}_0 a y' + \bar{x}' B_1 T_1 = 0', \quad \bar{y}_0 a x_0 + \overline{T}_1' B_1 x = 0,$$

$$\bar{y}ay' + \overline{T}_1'B_1T_1 = B_2.$$

Our problem is to derive from (4)–(6) a transformation of B_1 into B_2 . Suppose we could secure $x_0=1$, x=0, to begin with. Then by (5), y'=0', $\bar{y}=0$; and by (6), $\overline{T}_1'B_1T_1=B_2$. What we shall do is construct a nonsingular automorph U of A_1 whose first column is the same as that of T. Having done this, let

$$W = \begin{bmatrix} z_0 & w' \\ z & U_1 \end{bmatrix}$$
 be the reciprocal of $U = \begin{bmatrix} x_0 & \cdot \\ x & \cdot \end{bmatrix}$.

Then $z_0x_0+w'x=1$, $zx_0+U_1x=0$, and so

$$WT = \begin{bmatrix} z_0 & w' \\ z & U_1 \end{bmatrix} \begin{bmatrix} x_0 & y' \\ x & T_1 \end{bmatrix} = \begin{bmatrix} 1 & u' \\ 0 & V \end{bmatrix},$$

say; and WT also replaces A_1 by A_2 . By the preceding remark, $\overline{V}'B_1V=B_2$.

Hence Theorem 2 is a consequence of the following theorem; or see §4.

3. Automorphs with an assigned first column. We now prove:

THEOREM 3. Let $A = (a_{ij})$ be any nonsingular hermitian matrix with coefficients in a quasi-field F of characteristic not 2. Let z be a representation in F of a_{11} , that is $\bar{z}'Az = a_{11}$, and assume $a_{11} \neq 0$. Then there exists in F a nonsingular automorph of A with z as its first column.

We first complete squares, which amounts to applying a transformation

(7)
$$\overline{P}'AP = \begin{bmatrix} a & 0' \\ 0 & B_1 \end{bmatrix} = A_1 \text{ say, where } P = \begin{bmatrix} 1 & v' \\ 0 & I \end{bmatrix},$$

$$P^{-1} = \begin{bmatrix} 1 & -v' \\ 0 & I \end{bmatrix}.$$

Here $a = a_{11}$, and B_1 is hermitian with A. We have $\bar{z}'Az = \bar{u}'A_1u$, where z = Pu; and if we can construct an automorph U of A_1 with u as first column, then PUP^{-1} will be an automorph of A with z as first column. For, the first column of PU is Pu, and multiplication on the right by P^{-1} does not change the first column of PU.

We can therefore use the notations (4)-(6) with $B_2=B_1$. Here x_0 and x are given as satisfying (4), and it is required to find y and T_1 to satisfy (5) and (6).

The cases $x_0 = 0$ and $x_0 \neq 0$ must be distinguished.

Let $x_0 = 0$. Then $\bar{x}'B_1x = a$, and we must choose y and T_1 to satisfy

(8)
$$\bar{x}'B_1T_1 = 0', \quad \bar{y}ay' + \overline{T}_1'B_1T_1 = B_1.$$

The last equation can be replaced by $(\overline{xy'})'B_1(xy') + \overline{T}_1'B_1T_1 = B_1$, hence by

(9)
$$(\overline{xy'+T_1})'B_1(xy'+T_1) = B_1,$$

in view of (8_1) . Then all of (8) will hold if we put

(10)
$$T_1 = I - xy', \quad \bar{x}'B_1 - ay' = 0;$$

the last is satisfied if $y' = a^{-1}\bar{x}'B_1$. It will be found that y'x = 1, and

(11)
$$\begin{bmatrix} 0 & y' \\ x & T_1 \end{bmatrix} \begin{bmatrix} 0 & y' \\ x & T_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix}.$$

Let $x_0 \neq 0$. Then (5) will hold if

(12)
$$\bar{y} = -\overline{T}_1'B_1xx_0^{-1}a^{-1}, \quad ay' = -\bar{x}_0^{-1}\bar{x}'B_1T_1,$$

and then (6) becomes

$$\overline{T}_1'(B_1 + B_1 x(\bar{x}_0 a x_0)^{-1} \bar{x}' B_1) T_1 = B_1.$$

We therefore try to choose a number k in F to satisfy

$$(14) (I + B_1 x k \bar{x}') B_1 (I + x \bar{k} \bar{x}' B_1) = B_1 + B_1 x (\bar{x}_0 a x_0)^{-1} \bar{x}' B_1.$$

In virtue of (4) this will be satisfied if

$$(15) k + \bar{k} + k(a - \bar{x}_0 a x_0) \bar{k} = (\bar{x}_0 a x_0)^{-1}.$$

Here we try the substitution $k = t^{-1}$, and multiply left and right by t and \bar{t} to obtain

(16)
$$\bar{t} + t + a - \bar{x}_0 a x_0 = t(\bar{x}_0 a x_0)^{-1} \bar{t}.$$

To satisfy this we put $t = h + \bar{x}_0 a x_0$, and find

(17)
$$h(\bar{x}_0 a x_0)^{-1} \bar{h} = a$$
, which holds if $h = \pm a x_0$, $t = (\bar{x}_0 \pm 1) a x_0$.

Since $2 \neq 0$ in F we can choose the sign to make $t \neq 0$, so that k exists. We can now solve for T_1 the equations

(18)
$$(I + x\bar{k}\bar{x}'B_1)T_1 = I = T_1(I + x\bar{k}\bar{x}'B_1).$$

For if we put $T_1 = I + xm\bar{x}'B_1$, where m is a constant to be determined, then (18) will hold if

(19)
$$\bar{k} + m + \bar{k}(a - \bar{x}_0 a x_0) m = 0 = m + \bar{k} + m(a - \bar{x}_0 a x_0) \bar{k}$$

Noting that $\bar{k}\bar{t} = \bar{t}\bar{k} = 1$ (since $k = t^{-1}$), we replace (19) by

$$(20) m^{-1} + \bar{t} + a - \bar{x}_0 a x_0 = 0 = \bar{t} + m^{-1} + a - \bar{x}_0 a x_0,$$

which holds if $m^{-1} = -\bar{t} - a + \bar{x}_0 a x_0 = -(1 \pm \bar{x}_0)a$. Thus m exists, and

$$(21) T_1 = I + xm\bar{x}'B_1.$$

Finally we verify that the automorph so constructed is nonsingular. By (3),

(22)
$$\begin{bmatrix} a^{-1}\bar{x}_0a & a^{-1}\bar{x}'B_1 \\ B_1^{-1}\bar{y}a & B_1^{-1}\overline{T}_1'B_1 \end{bmatrix} \begin{bmatrix} x_0 & y' \\ x & T_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix}.$$

Hence we have only to prove that2

² The referee remarked that (23) need not be proved since it is known that if $(\alpha)(\beta) = 1$, where (α) , (β) are matrices with elements in a division ring, then also $(\beta)(\alpha) = 1$.

(23)
$$\begin{bmatrix} x_0 & y' \\ x & T_1 \end{bmatrix} \begin{bmatrix} a^{-1}\bar{x}_0 a & a^{-1}\bar{x}'B_1 \\ B_1^{-1}\bar{y}a & B_1^{-1}\overline{T}_1'B_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix}.$$

Put $r = \bar{x}_0 a x_0$. Using $\bar{x}' B_1 x = a - r$, and verifying that $m + \bar{m} + m(a - r)\bar{m} = -a^{-1}$, the proof of (23) is easy. For example, $x_0 a^{-1} \bar{x}_0 a + y' B_1^{-1} \bar{y} a = 1$ if and only if $ra^{-1}r + \bar{x}' B_1 (I + xm\bar{x}' B_1) B_1^{-1} (I + B_1 x\bar{m}\bar{x}') B_1 x = r$, or $ra^{-1}r + a - r + (a - r)(-a^{-1})(a - r) = r$, or r = r.

One additional remark is worth making for the case where F is a (commutative) field. If K is any square matrix of rank 1, it can of course be expressed as xy', where x and y are column vectors. The determinant of I+K is readily found, since as is easily seen,

$$|I + xy'| = 1 + x'y = 1 + y'x = 1 + \sum x_i y_i$$

The reciprocal of a matrix of the type I+hxy' (where h is a constant) can be found by noting that

$$(I + hxy')(I + kxy') = I + \{h + k + hky'x\}xy',$$

and choosing k to make h+k+hky'x=0.

4. An alternative construction for Theorem 2. For some purposes, it is more advantageous not to construct an automorph of A_1 , but to continue the argument from (4)–(6) as follows. If $x_0 = 0$, $xy' + T_1$ replaces B_1 by B_2 . Let $x_0 \neq 0$. Then (5) is equivalent to (12), and (6) reduces to (13) with B_2 instead of B_1 on the right. We have (14)–(17) as before, and so $T_1 + x\bar{k}\bar{x}'B_1T_1$ is a transformation replacing B_1 by B_2 . This transformation may in certain cases be integral (in a sense which we need not discuss here) even though no integral automorph of A_1 exists with x_0 and x as first column.

It should be mentioned that the preceding methods can be extended to the case where the element a is replaced by a nonsingular hermitian matrix of order greater than 1.

BIBLIOGRAPHY

- 1. N. Jacobson, A note on Hermitian forms, Bull. Amer. Math. Soc. vol. 46 (1940) pp. 264-268.
- 2. ——, Simple Lie algebras over a field of characteristic zero, Duke Math. J. vol. 3 (1938) pp. 534-551.
- 3. B. W. Jones, An extension of a theorem of Witt, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 133-142.
- 4. C. L. Siegel, Equivalence of quadratic forms, Amer. J. Math. vol. 63 (1941) pp. 658-680.
- 5. E. Witt, Theorie der quadratischen Formen in beliebigen Körper, Journal für Mathematik vol. 176 (1937) pp. 31-44.

McGill University