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does not contain any point of E, other than p. C,(n) is defined as in
(5). From this it can be shown that E, has finite (# —1)-dimensional
measure. Let us not assume now that 7 is large. We then write
E=UpE® where the E*'s are closed and their diameter is less than
e. Then, by what has been shown before, if € is small enough E®
has finite (#—1)-dimensional measure. Clearly E,CUp ,E®. But E,
is closed, therefore its (#—1)-dimensional measure exists, and it
clearly can not be 0, since it separates the space. Thus E, must have
finite (# —1)-dimensional measure.

Added in proof. The author has recently discovered that the follow-
ing two theorems have been stated by C. Pauc, Revue Scientifique
vol. 77 (1939) no. 8: Let the set E be in the plane then M, is contained
in the sum of countably many Jordan curves and Mj; is countable.
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Taylor’s formula

n—1
(1) f@) = 2 fP0e*/k! + fP@a/nl,  0<E<ua
=0
is usually proved under the assumptions that

(I) f(x) is continuous on the closed interval [0, a];

(IT) f(x) possesses n—1 derivatives on the half closed interval
[0, a);

(III) f»=Y(x) is continuous at x=0; and

(IV) f(x) has an nth derivative on the open interval (0, a).

In the case #n=1, the assumption (III) that f©®(x)=f(x) be con-
tinuous at x =0 is essential but is contained in condition (I). In the
case n>1, it will be shown below that the assumption (III) is en-
tirely superfluous, so that (1) ¢s valid whenever (1), (II) and (IV) hold.

The proof of (1) is usually reduced to an application of the mean
value theorem to the (# —1)th derivative of f(x) on an interval [0, ¢],
0<c<a. Thus, to prove the italicized statement, it is sufficient to
show that if f(x), defined on the interval [0, a], is the derivative of a
function and f(x) itself possesses a derivative on the open interval
(0, @), then there exists a number £ such that
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f(a) — f(0) = af'(!) and 0 < ¢ < a.

Without loss of generality, it may be supposed that f(a) =£(0) =0.
It must then be proved that there exists a number £, 0 <£<a, such
that f/(£) =0. Now if f(x) is identically zero, nothing remains to be
proved. Suppose, therefore, that for some 7, 0 <7 <a, f(1) #0. Since
the function f(x) is a derivative and, consequently, assumes every
value between 0 =f(0) and f(n) #0 at least once on the interval (0, 1),
there exists a number x4, such that

f(x) = f()/2 and 0 < x; <.
Similarly, there exists a number x; such that
f(wa) = f(n)/2 and 7 < 2 <.

Since f(x) possesses a derivative on (0, a), it is continuous on the in-
terval [xy, x2], and so by the mean value theorem, there exists a num-
ber £ such that

0= f(x1) — f(x2) = (%2 — 2)f'(§) and & <& < 2.
This completes the proof.
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