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The book leaves much to be done but this fact only enhances its 
interest. I t should be productive of many extensions along the lines 
of economic interpretation as well as of mathematical research. In 
fact the authors suggest a number of directions in which research 
might profitably be pursued. 

ARTHUR H. COPELAND 

Principles of stellar dynamics. By S. Chandrasekhar. The University 
of Chicago Press, 1942. 10+251 pp. 

The primary field of this book is astronomy and not mathematics, 
although the latter is used as an essential tool. The readers of this 
review, professional mathematicians almost exclusively, will have a 
normal human interest in the major astronomical aspects of the book, 
but their critical scrutiny is bound to be concentrated on how the 
astronomical problems are formulated mathematically and what sort 
of mathematics has been proposed for their solution. For this reason, 
and partly also in the interest of brevity, this review treats only of the 
mathematical aspects of the book. 

In the first chapter is given a detailed discussion of the kinemati-
cal concepts appropriate to the study of stellar systems. Since these 
systems contain a large number of stars, it becomes necessary to intro­
duce a method similar to that employed in hydrodynamics, where the 
motion of a fluid is described by a vector field, representing at each 
point and for each instant of time the velocity of the fluid. In hydro­
dynamics the velocity of the fluid at a point is conceived as the veloc­
ity of the "fluid particle" a t the point in question. But this notion of a 
"particle" a t the point in question is difficult to make precise, espe­
cially if one assumes the fluid to consist of a large number of small 
atoms with relatively large empty spaces between them. Nevertheless 
such a concept (in which the stars play the role of the atoms) is char­
acteristic of stellar dynamics as distinguished from celestial (particle) 
mechanics, which considers systems containing but a relatively small 
number of bodies. 

The components U0(x, yy z, /), Fo(#, y, z, /), WQ(X, y, s, t) of the vec­
tor field thus introduced do not, of course, necessarily represent the 
components of velocity of a star which might happen to be a t the 
point (x, yy s), but rather the velocity of the centroid of stars in a 
"small volume" about the point (x, y, z). The components of velocity 
of an individual star are written in the form Î7= Uo+u, V= VQ+V, 

W= Wo+w, where the vector (u, v, w) is called the residual velocity. 
The statistical consideration of these residual velocities is a charac­
teristic of stellar dynamics and gas theory as distinguished from 
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classical hydrodynamics. Associated with each point of space is a 
distribution density function F(u, vy w), such that Fdudvdw is re­
garded as approximately measuring the number of stars per unit 
volume, the components of whose residual velocities lie in the inter­
vals (u, u+du), (v, v+dv), and (w, w+dw) respectively. Considerable 
space is devoted to a review of observed astronomical phenomena to 
justify the assumption that such functions £/0, V0, W0> F can be in­
troduced in the manner indicated. Still more space is devoted to the 
study of the exact form of the distribution density F. The fact that 
it can often be assumed to be Gaussian (but not necessarily spheri­
cally symmetric as in the Maxwellian special case) is known as 
Schwarzschild's law. In cases when the distribution is not Gaussian, 
there is a hint that the given stellar system can be considered as the 
superposition of two or more systems each one of which obeys 
Schwarzschild's law. An example of such a situation is that afforded 
by the phenomenon of the so-called high velocity stars in our galaxy. 

The most general form for the distribution density function, 
F(u, v, w) = F[x, y, z, t\ u, v, w] = F[x, y, z, t\ U— U0, V— F0, W—Wo], 
considered in this book is a generalization of the Schwarzschild form, 
namely 

F(u, v, w) = ^ ( Q + cr), 

where Q is a positive definite quadratic form in u> v, w, whose coeffi­
cients together with a are functions of x, y, z, and t. 

The motion of a single star is assumed to be governed to a high 
degree of approximation by equations of the familiar type, 

(1) f = grad $ (r = ix + jy + kz) 
m 

Here $>, a function of x, y> z, and /, is a so-called "smoothed-out" po­
tential function, depending upon the general distribution of the other 
stars of the system. This assumption is evidently justified as long 
as the star in question is relatively far from the other stars, but it 
loses its significance if the star has a near encounter with another 
star. To indicate that the approximation (1) is indeed likely to be 
valid over extraordinarily long periods of time is the fundamental ob­
ject of the work on the "relaxation time" of Chapter II , a subject to 
which we shall presently return. 

Since ^(Q+cr), considered as a function of x, y} s, U, V, W, may be 
interpreted as a distribution density function of the star in six-dimen­
sional phase space, it is a t once obvious that 

f f f f f f *(Q + *)dxdydzdUdVdW 
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is an integral invariant of (1). Hence, by Liouville's theorem, 
^(Q+<r), and, in fact, Q+(r itself, is a first integral of (1), the con­
dition for which is the familiar partial differential equation, 

, v d ^ dV d<t d^ 3 $ d<& d $ d& d $ 
(2) — - u H VA W + - - + — _ + _ — = o. 
w dx ^ dy T dz ^ dU dx ^ dV dy ^ dW dz 

From this equation there are two alternative ways of proceeding. 
One method is to derive (with J . H. Jeans) the equations of hydro­

dynamics. But these equations can not carry the full implications of 
the kinematical hypotheses, especially the one regarding the existence 
of a distribution function for the residual velocities. Indeed, the four 
hydrodynamical equations (that is, the equation of continuity plus 
the three equations expressing Newton's second law of motion for a 
fluid) are only the first four of a series of equations obtained by multi­
plying equation (2) by UpVqWr, integrating with respect to U, V, 
and W over all values, and reducing by appropriate partial integra­
tions. If the distribution function has the proper behaviour a t infinity, 
one thus obtains an infinite number of equations by letting p, q, 
and r assume independently of each other the values 0, 1, 2, 3, • • • , 
whereas the four hydrodynamical equations are only those corre­
sponding to (£ = 2 = r = 0), (p = l, £ = r = 0), (g = l, £ = r = 0), (r = l , 
p = g = 0). Accordingly the author, although the hydrodynamical 
equations are mentioned and even briefly applied in Chapter IV, uses 
for the most part a more powerful method which will now be de­
scribed. 

Remembering that ,4 r=^ r(Ç+a-), where Q is a quadratic form in 
U— Uo, V— Vo, W— Wo, one sees that equation (2) after division 
by ty' has the form of a cubic polynomial in U, V, W, equated to 
zero. Since £7, V, Ware independent variables, we can equate to zero 
each one of the coefficients of this polynomial, thus obtaining twenty 
partial differential equations in the eleven unknown functions f/o, Vo, 
Wo, <£, <r, and the six coefficients of Q. The study of these twenty 
equations in Chapter III appears to the reviewer to be the central 
theme of the entire work. The problem is evidently that of deter­
mining the most general conditions under which equations (1) admit 
an integral quadratic in the velocities. Although various special cases 
of this problem are well known in classical dynamics or have been 
considered in an astronomical context by various authors including 
Eddington and Jeans, the completely general problem seems to have 
been first formulated and studied by Chandrasekhar. 

A very interesting and general result of the investigation of the 
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twenty partial differential equations is to the effect that, for stellar 
systems in steady states and possessing some distribution function of 
the form ip(Q+(r), the potential <£ is necessarily characterized by heli­
cal symmetry. If, in addition, the stellar system is of finite extent, 
this helical symmetry reduces to axial symmetry. The case of non-
steady states has not been completely treated except for certain spe­
cial cases. 

In Chapter IV the discussion centers on the case when the residual 
velocities have a spherical distribution. In this way the author is led 
to a theory of the spiral structure of extragalactic nebulae. He is care­
ful to emphasize, however, that the class of spiral orbits predicted is 
so wide that the theory is really too general to give any indication as 
to why certain forms of spiral orbits are preferred to the exclusion of 
others. 

In the fifth and last chapter there seems to be a departure from the 
central theme of the work as described above. The subject here is the 
classical n body problem. After a standard discussion of the elemen­
tary first integrals and of Lagrange's identity, statistical considera­
tions are introduced for the purpose of obtaining information on the 
dispersion of velocities in clusters, the rate of disintegration of clusters 
by the escape of stars, and the time of relaxation of a cluster. 

Although a cluster is usually regarded as a much smaller and more 
compact group of stars than a stellar system in the sense of the pre­
ceding chapters, a formula from Chapter II for the relaxation time of 
a stellar system is applied in Chapter V in the determination of the 
relaxation time of a cluster. The method used in Chapter II is to esti­
mate the effect of two body encounters in the long history of a repre­
sentative star. 

Since a cluster may be a small part of a much larger stellar system, 
a generalization of the n body problem is also considered, in which 
superimposed on the potential of the cluster itself is the general 
"tidal" potential of the rest of the stellar system; but the only in­
stance of such a situation considered in any detail is a case in which 
the tidal potential has both a plane and axis of symmetry and in 
which the center of gravity of the cluster describes a circular orbit. 

I t is statistically impossible in a work of such scope and originality 
to avoid a certain number of blemishes. Some which have attracted 
the attention of the reviewer are the following : 

In concluding Chapter I, the author states, as if it were an impor­
tant principle, that due to the considerations of this chapter "we are 
able to express the distribution function ty(x, y, z\ £7, V, W\ t) in the 
form ¥(x,y, z; U~U0, V-V0, W-W0; t), where U0, V0, W0 are 
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functions of position, and time only." Clearly this is not what the 
author really means, since the principle stated is trivially true with 

In Chapter II it would be well to insert an explanation of the term 
"impact parameter," as this term is not used in any of a half dozen 
standard treatises on dynamics which a reader might consult. Al­
though what may be taken as a strictly mathematical definition is 
given in Appendix I, equation 26, there is no explanation of the word 
"impact" nor is it clear without further discussion why the integrated 
average over the impact parameter must be weighted proportionally 
to the parameter (cf. the factor DdD in the formula (2.313) instead 
of simply dD). 

The remarks inserted in the bibliography at the end of Chapter III 
(pp. 133, 134) involving the expansion of the potential function in a 
Taylor's series give a deceiving sense of generality. Evidently the re­
sults to be obtained by choosing the origin so that the linear terms 
disappear would be valid only in the neighborhoods of the presumably 
rather rare critical points, unless it were possible to prove that the 
Taylor's series had a large domain of convergence. 

In Chapter IV (pp. 185, 186) it would be desirable to note that 
17, T, and W are identical respectively with Uo, Vo, and W0; it would 
be equally desirable to indicate the well known relation existing be­
tween U2, UV', and so on, Uo, UoV0, and so on, and the strain tensor. 

In spite of these criticisms, the reviewer found the book to be ex­
tremely interesting, and he feels that it has reached the highest level 
of scientific merit. 

DANIEL C. LEWIS 

The mathematics of physics and chemistry. By H. Margenau and G. M. 
Murphy. New York, Van Nostrand, 1943. 12+581 pp. $6.50. 

In this textbook Professor Margenau and Murphy have assembled 
a very useful collection of mathematical principles as applied in pre­
war fundamental research in physics and chemistry. Mathematicians 
may not, in general, be in sympathy with the authors' deliberate 
compromising of rigor of derivation to maintain an emphasis on ap­
plications. I t is doubtful tha t the book will prove successful as a 
textbook without prerequisites including the conventional course in 
advanced calculus. On the other hand, it does fulfill a long standing 
need, particularly evident in smaller universities, for a textbook suit­
able as the basis for a mathematics course at this level for graduate 
students of physics and chemistry. 


