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ence group G — F(G) which contains properly the difference group 
G'-F'(G) since F'(G) = F(G). Now I'(G) is isomorphic to G'~-F'(G) 
and to 1(G). Hence G — F(G) is an J-group and it follows that 1(G) 
which is isomorphic to G — F(G) is also an J-group. 

It follows from Theorem 7 that the theorems and corollaries of 
§§2 and 3 survey completely all completely reducible groups, G, which 
are /-groups. 
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1. Introduction. A latin square may be interpreted as a representa­
tion of a 3-web or as the multiplication table of a quasi-group. Hence 
the following theorem has application both in the theory of projec­
tive planes and in the theory of quasi-groups. It is derived from a very 
interesting result of P. Hall. 

2. The existence theorem. Is there any combinatorial restriction 
which prevents us from constructing a latin square by adding a row 
at a time? The following theorem shows that such a procedure is 
permissible. 

THEOREM. Given a rectangle of n—r rows and n columns such that 
each of the numbers 1, 2, • • • , n occurs once in every row and no number 
occurs twice in any column, then there exist r rows which may be added to 
the given rectangle to form a latin square. 

PROOF. Let d, i = l, 2, • • • , n be the subset of the numbers 
1, 2, • • • , n which do not occur in the ith column of the given rec­
tangle. Then each d contains r numbers and each number occurs r 
times in all the Cs. For there are n — r numbers in the ith column and 
each number has appeared in n — r columns. It will be shown that the 
subsets satisfy the requirements of P. Hall's theorem:1 

In order that a complete system of distinct representatives of subsets 
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Ti9 • • • , Tm of a set S shall exist, it is sufficient that for each 
& = 1, • • • , m any selection of k of the subsets shall contain between 
them at least k elements of 5. 

The necessity of these requirements is evident. Let us apply thî 
theorem to the subsets C». Any selection of k Cs will contain kr num­
bers and at least k of these must be distinct since each number is 
contained in only r C's. The distinct representatives cu • • • , cn of the 
subsets Cu ' • • y Cn may be added as a row to the given rectangle. 
For Cu ' • • , cn must contain each of the numbers 1, • • • , n once and 
no d has appeared in the ith column of the given w—r rows. Re­
peatedly applying this process, we continue adding rows to the rec­
tangle until it becomes a complete latin square. 
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