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UNIVERSITY OF CALIFORNIA

AUTOMORPHISMS OF FIELDS OF FORMAL POWER SERIES

O. F. G. SCHILLING

We propose to discuss in this note on power series fields in one
variable the special automorphisms which do not alter the fields of
coefficients. It will be proved that the pseudo-ramification groups in-
troduced by MacLane are universal ramification groups, in the sense
that a special ramification group must always be a subgroup of a well
determined pseudo-ramification group. Finally we interpret the auto-
morphism group of the field as an automorphism group of an infinite
Lie ring.

Let Q be an arbitrary field of characteristic x. In the sequel we shall
consider the field F of all formal power series a =) ;% _,w;t/ where
the w; are in Q and ¢ is a transcendental element over Q.1 The field F
is complete with respect to the rank one valuation V defined by
Va=m where m is the smallest subscript j for which w;0. Let O
be the valuation ring of all holomorphic series and = (¢) the prin-
cipal prime ideal of .

Suppose that S is an automorphism of F. We show that OF is also
a valuation ring of F. For the proof? let @, b be any two nonzero ele-
ments of F. We must show that at least one of the quotients a/b, b/a
lies in O8. By assumption on S there exist unique elements ¢, d with
c8=a, d®=b. Now observe that at least one of the quotients ¢/d or
d/c lies in O for O is a valuation ring. Therefore at least one of the
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1 For the basic properties of valuations see [1, 4, 5, 10], Numbers in brackets refer
to the bibliography at the end of the paper.

2 See [4, p. 165].
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elements (¢/d)®=a/b or (d/c)¥=b/a lies in O5. Furthermore we ob-
serve that the ideal theory of O is carried over isomorphically to 5.
Thus ¥ defines a rank one valuation V8 on F.

DEFINITION 1.2 An automorphism S of F is called analytic if Va <Vb
is equivalent to VSas = V5bS for each pair of elements a, b in F.

LemmA 1. Each automorphism of F is analytic.

Proor. We shall prove that Fis complete with respect to the valua-
tion VS, Let an=a,—, (mod (B5)") be an infinite consistent system
of congruences with respect to V5. There exist uniquely determined
elements ¢, with ¢S =a, and we have ¢,=c,—; (mod $"). Hence there
exists an element x in F with x=c¢, (mod P*), for F is complete with
respect to V. Applying S to x we have x5=ci=a, (mod (P5)7).
Hence F is complete with respect to V5. Consequently F would be
multiply complete if V and V8 were distinct valuations. Thus it
would follow* that F is algebraically closed, in contradiction to the
construction of F. Hence V and V¥ are equivalent valuations, that
is, S is analytic.

Suppose that s is an automorphism of . If we observe the rules for
the addition and multiplication of elements in F, the correspondence
D @it =D pwiti= (3 % _ w;t?)S defines an automorphism of F.
These automorphisms of F determine a subgroup of the automor-
phism group A of F which is isomorphic with the automorphism
group of Q. A simple computation shows that this subgroup is not
normal if and only if it is not the trivial group consisting of the iden-
tity. Now let T be an arbitrary automorphism of F. The element T
either induces an automorphism on QCF or it maps € into an iso-
morphic subfield QTCF. We shall consider only those automorphisms
of F for which all the elements of Q are invariant. These automorphisms
form a subgroup G of A. This group G corresponds to the inertial

group considered in the theory of normal algebraic extensions of fields
with valuations.

LEMMA 2. A field F which is complete with respect to a rank one valua-
tion has no immediate extensions.

ProOF. Suppose that K is an immediate extension of F. Let 4 be
an element of K. We shall show that 4 must lie in F. By assumption
the value of 4 is the value of an element ¢ in F. Thus 4/a is a unit

* See [5, footnote on p. 373; 12].
4 See [12].
5 See [4, p. 191].
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and therefore 4 /a=w, (mod Px), where Px is the prime ideal of K
and wo is in Q. Next there is at least one element @, in F with
A/a—wo=a, (mod P¥), where n,=V(4/a—ws). By complete induc-

tion there exists a sequence of elements awo, ao+aaiwy, - - -, awe
+ -+ 4aa;- - auw, - such that 4d=awe+ + -+ +aa; * - ‘6,0,
(mod P¥) with m=mn,+ - - - +n,— o for y— . This sequence has

a limit b in Fand 4 —b has value » in K. Hence 4 =b in F.¢

Suppose that S#1 is an automorphism of F with w=w? for all w
in Q. Then 8¢, for t=18 implies ¢ =a* for every a in F. Hence each
S#1 determines by % =¢tu(S) an element %(S) of the unit group U
of F.

THEOREM 1. The groups G and U are in one-to-one correspondence
as sets.

PRroOOF. As seen above each automorphism .S determines relative to
the prime element ¢ a unit #(S). For the converse we shall show that
the mapping t—¢* = fu determines, for given % in U, an automorphism
of F. We associate to an arbitrary element a =) % _,w;t/ the quantity
a* =2 % _.wi(t*)7. The elements a* form by definition a subfield F*
of F which is isomorphic to F. By construction the valuation V of F
induces a valuation V* on the complete field F* with V**=Vi*= Vi
so that F and F* have the same residue class field. Therefore F is
an immediate extension of F* and hence F= F* by Lemma 2. Conse-
quently the mapping a—a* is an automorphism of F. We remark that
the identity elements of G and U correspond to each other.

We next give a definition and a set of formulas which can be used
to compute explicitly the coefficients of a* relative to the prime ele-
ment ¢. We define the derivative D of a=2 wit! as > jwiti~t and
D}=(1/i!)(d/dt)¢. Then”

Di(a + b) = Do + Db, Dit" = Cuit”™, iz 0,
D:(wa) = wDia, win Q,

Di(ab) = X DiaDib; 12 0,022 0, i+ is = i.

As in the calculus the inversion formula of Lagrange holds,
t=> 2 Ni(#*)7 with Nj= [D}{D#*- (#/t*)7} Jemo, M5%0. Hence ¢ lies in
F* and thus F*=F. Using the Taylor developments of the elements
a*=2 w;i(t*)i=) Di{a*}et’ it follows that each unit # deter-
mines by #—t*={u an automorphism of F. Letting b* => pi(t*)
= DJ(b*) et we have, by the rules on the derivatives D},

¢ For another proof see [S, pp. 379-380].
7 See [2].
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@+0*=2 {Di(a* + b*)}c-oti
=2 {D‘ia*}l-oti"‘l" 2 {thb*}t-oti = a* 4 b¥,
(ab)* = Z {Di(a*b*)},_oti
= 2; = {Dtha*}t-o{D:’b*}:..otﬁﬂ’ = g*b*,

where /120, /.20, ji+j2=7, and similarly (aw)* =a*w.

Now let S, T be two automorphisms of G. On applying ST to the
prime element ¢ we find 37 = (¢T)8 = (tu(T))S =t5u(T) S =tu(S)u(T)*
=tu(ST) where the #’s are the units corresponding to the automor-
phisms. Thus the mapping S—u(S) gives rise to a crossed representa-
tion8 of the automorphism group G in the unit group U, for «(ST)
=u(S)u(T)S5. The latter relation may be viewed as a new multiplica-
tion X between the elements of U. We define %, X%, to be #,u” where
W =S(u,) is the automorphism which corresponds to #; by virtue of
Theorem 1. The associativity of the group G implies that U is a group
with respect to the operation X.

We now proceed to a different interpretation of this operation. Let
Q. be the set of all formal power series D ¢ wi*, where x is an inde-
terminate over Q.

DEFINITION 2. If A=) ax' and B=Pux' then define AQB as
S B:(Xjeeixi)t if and only if cp=0.

From the definition of Q, we observe that Q, may be considered
as an infinite vector space over Q with restricted multiplication.? The
element x plays the role of a left and right unit on the subset U of
all elements without constant terms. The set U is a group, as may be
verified by using Taylor expansions with respect to x. Obviously the
product of elements corresponds to the operation of taking the func-
tion of a function. It is now easy to set up a relation between U with
X as operation and U. If = 5 w;t/, wes0, is given then we take
for the corresponding element u= ;2 w1 The product #%; X%z of
two elements u;, %2 in U is then determined as { (%1 ®ug)x~1} 5= where
the factor x~! is to indicate a scalar division of %;®@us by x. In the
sequel it will be useful to use the representation of the elements S
in G by means of the elements in U; Se2u(S)=2u(S). We shall use the
symbol S ambiguously for the automorphism .S and the representa-
tion u(S).

Suppose now that uy, ue are two nonzero elements of . These ele-
ments determine, by t—#u;, automorphisms S(u:) in G, ¢=1, 2. The

8 See [7, p. 313].

9 See [8, 9].
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multiplication rule of U shows S(u1)S(uz) = (xu1®@xus) =S (urps)
= S(popr) = (xps @xp1) = S(us)S(u1). Hence the multiplicative group
Q* of @ has an isomorphic image in G.

The group G contains an infinite series of subsets G; defined by the
elements S; =%+ ;108"

THEOREM 2. The sets G; are invariant subgroups of G, their intersec-
tion :G; is the identity and each factor group Gi/Giya is isomorphic to
the additive group Q. The factor group G/G is isomorphic to the multi-
plicative group Q*.

Proor. Let S=x+wixi+ -+, T'=x+wxi+ - .-+ be two ele-

ments of Gy. Then, by definition of the product in U,
ST =2+ (w1t w)ai+ -,
™ T®S=ox+4 (ot w)zit+---,
Stl=x+ (—w)xt+4 -

Thus Gy is a group. To show that G; is an invariant subgroup of G
let W=ae+ox?+ - - - be an arbitrary element of G. The inversion
formula for power series implies W-!=as%+(—ay/ad)x*+ - - -.
Consequently, by direct computation, W®S® W-l=x+af 'wix’
+ - - - lies also in G;. Definition of the G; implies GDGD - - -+ and
N:Gi=x, the identity of G. The relations (*) imply that G:/Gi1 is
isomorphic to the additive group 2. Now let S(ao) be determined by
the element W=am+owx?+ - - - . Then S(a) '@ W=ailai!)x
+ ay(agV)x? + - - - = x + (/ag)x? + - -+ lies in Gy Hence
G =2 .coS(a)G1 and therefore G/G,==Q*.

COROLLARY 1. The group G is a group extension of Gy by Q¥ with fac-
tor set unity.

PROOF. As seen before the elements S(u), p in Q*, form a sub-
group of G. The elements S(u) =ux induce automorphisms on the
group Gi= {x+ww?+ - - - +wx*t4 - - - }. The associated com-
binations are determined by

ap® (xtwa?+ - Fortt ) = ap At dlow -
+ x»+lw”#n+l+ e,

(+ w4 - ot + - ) @ ap = ap+ o+ - -
+ ot e,

ap ® (¢ + wa?+ - Foparttt-) @ (aw)?
=+ tfow + -+ 2ot -0

whence
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Since {S(u), uEQ*} is a subgroup the factor set of Q* with respect
to G is the unit factor set.

COROLLARY 2. The group Gy is a complete metric group; if the field
Q is finite then Gy is compact.

Proor. The system of normal subgroups G; defines a topology in
Gi. The group G, is complete with respect to this topology for Gy
contains all elements x4 wx?+ - + + +wux*14 . - - with arbitrary
coefficients w,. We next define a metric in G, which is consistent with
the system of defining neighborhoods G;, ¢=1, 2, - - - . Suppose
S=x+oax?t+ - +op1x" + x4 - T =5+ B+ - - -
+Ba—1x"+Bux"t14 - . . are two arbitrary elements of Gi. We define
8(S, T) to be e—* if and only if a;=p; for all 4 <# and a,5%B.. Then
8(S, T)=8(T, S), 8(S, T)>0 for S=T, 8(S, T)=<max[s(S, R),
8(T, R)]. Moreover G, consists of all elements S in G; which have
distance 8(1, S) <e~*. Thus G, is a 0-dimensional metric group. The
factor groups G1/G- contain nontrivial elements of finite order if and
only if x < « holds for the characteristic of Q. If x < « the elements
of G1/G» have at most order x*1. Hence lim,., gx"=1 for each ele-
ment g of Gy, thus G, is a generalized x-adic group.® In particular,
G is compact if Q is finite. In this case G»/Gni1222, and thus G, is
isomorphic to the inverse limit lim,.., G1/G» where the factor groups
G1/G, are all finite.

DEFINITION 3. The totality of elements S in Gy with a®=a (mod P*)
for each a in O s called the nth pseudo-ramification group R, of F,!

THEOREM 3. The groups G, and R, coincide.

Proor. We first remark that the first pseudo-ramification group R;
coincides with Gy, for the general element x+wix?+ - - - of Gy in-
duces the identity mapping on the residue class field Q of F. Suppose
now that g=x+42 .2..w&” is an arbitrary element of Gn Let
a=oaptoai+ - - - fant* 1taid+ - - - . Then

© © n—1
= o+ o (t+ Ew»t")+--- +a,._1(t+ Zw.t')

Ve V==n

+ o (t + iw.t')"+ e

Vemnt

10 A topological group G is called x-adic, if limp..gXx"=1 for each gin G, x< =, in
a sense of the topology of G. Examples of x-adic groups are the additive subgroup of
the x-adic number field and multiplicative groups in x-adic algebras.

1 See [6, p. 438].
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=ao+ at + 12, 0 + - -+ + st + anoa(n — 1)trw,

yemn

+'°'+ant"+"°+annt"+y‘”n+"'
=+ ot + :++ + a2t (mod P7),

whence G,CR,. Conversely, let gER,, and t¢/ =¢t+12+ -+ « - +Lpat®
+Butrtt4 - - - . We compute

o’ =ag+ ai(t + B + + -+ + Bast® + Bat™t + -+ - )
Fot+ Bttt ) F B )
=act ot afi?+ -+ at+ 208+ -

+ aptmt A - -
=a+ o+ a?+ -+ - + @p1t*! (mod P*).

Reducing this congruence successively mod B2, P83, - « -, P~ we ob-
tain B1= - - - =F,2=0, whence G,2DR,.

REMARRK. As in the ordinary Hilbert theory it follows that R, is an
invariant subgroup of Gi. This furnishes a new proof for the invari-
ance of the groups G.

THEOREM 4. Suppose that H is a finite subgroup of G1 and let K be
the associated subfield of F. The ramification groups H; of F/K are
equal to Gy H.

Proor. Let Vk be the valuation which is induced by V on the sub-
field K. Suppose that I'(F) and I'(K) are the value groups associated
to V and Vk, respectively. We first observe that Q is contained in K
for HCGi. Let K be the completion of K with respect to Vk, then
K CKCF for the fundamental sequences in K are special fundamen-
tal sequences in F by the definition of Vx. Next observe that Vx has
only V for its prolongation to F. Remark that all prolongations of Vx
are given as V%, hin H; thus, by Lemma 1, V*= V. Combining these
facts, we find [F:K]=[I'(F):T(K)]=[T'(F):T(K)}=[F:K]. Con-
sequently K=K, that is, K is a complete field and H is the decom-
position and inertial group for F/K. Now let H; be the 7th ramifica-
tion group of F/K. Then H;CR;=G; by the proof of Theorem 3.
Thus H;C RN H. Conversely, let S be an element of R;\H. Then
af=a (mod P¢) by definition of R;. Hence S lies in H;. Therefore
H;=R,NH as asserted.

Let K be an arbitrary subfield of F such that QCK and [F:K]
< o, The field K is then complete with respect to the valuation Vg
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induced by V. For the proof we observe that the valuation V has a
unique prolongation to the normal closure of F over K, for the latter
is complete since it is a finite extension of F. The ramification theory
implies, as at the beginning of the proof for Theorem 4, that K is
complete. Now let w(F) be any prime element of F, thatis Vr(F) =1,
F= Q{‘II'(F) }. Then Ng&w(F) is a prime element 7(K) for K because
Va(K)=[F:K] and @{w(K)} =K by Lemma 2 applied to the chain
2{r(K)} CKCF. We have 7(K) =2_suowm(F)*+, where [F:K]=n
and wo7#0. Applying an automorphism S of G to m(F) we obtain a
field K8=Q {r(K)S} which is isomorphic to K and K =K¥ if and only
if S is an automorphism of #/K. The group SHS-! is the full auto-
morphism group of F/K# if H is the automorphism group of F/K.
We apply these results to prove the following theorem.

THEOREM 5. The automorphism group G of F contains elements of
finite order.

Proor. We first observe that F always has normal completely
ramified extensions M. The existence of such extensions depends on
the nature of the residue class field ©.12 In case that » is an integer
prime to the characteristic x and @ contains a primitive nth root of
unity the field F surely has at least one cyclic completely ramified
extension of degree n. For example, there is surely such a quadratic
extension if (x, 2)=1 or x = «. If x is finite then Q contains some field
of (x™—1)th roots of unity, m=1, and any nl (x™—1) may be used,
For finite x there are infinitely many cyclic completely ramified ex-
tensions of degree x over F.!® Hence we know that completely rami-
fied normal extensions M/F exist. Since M is completely ramified,
say of degree n, we have 7(F) =2 ;uow,m(M)*+", we5£0, for a prime
element 7 (M) of M. By the structure theory of fields of power series
the fields M and F are isomorphic.* Suppose that ¢ is a realization
of the isomorphism M2¢F, that is, M*¢= F. We apply ¢ to the equation
for m(F) and obtain w(F)$¢=) s, [r(M)¢]*+*. Then w(F)¢ deter-
mines by Q{w(F)*} a subfield K of F so that the Galois groups of
M/F and F/Q{w(F)*} are isomorphic. Observing that the Galois
group of M/F is isomorphic to a finite subgroup of G, the assertion
of the theorem follows.

As a special case we consider cyclic subgroups H of order # in G
for which (n, x) =1. Let K be the field of invariants for H. We have

12 See [11, 14].

13 See [14].

1 See [1, 6, 13, 14].
15 See [3, p. 890].
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K =Q{ut*} where u is a unit of F. Then % =wv where w0 lies in Q
and v=1 (mod P). We have K=Q {vt" } , for K is an immediate exten-
sion of Q{vt"}. Since (n, x)=1 there exists!® a unit y of F with
y=1 (mod P), y»=v. Therefore K = Q{ (y#)*}. Since @{yt} =Q{t} =F
we obtain H=SH,S~! where S is the automorphism of G, with 8=yt
and H, is the finite subgroup of G generated by the element {x, { a
primitive nth root of unity. Finally K =Q{¢*} if and only if SH,S—!
= H,, that s, Sinduces an automorphism on Hy. Expressing K = Q{¢"}
in terms of the prime elements we have (yf)»/t»=y" lies in Q{t"}.
Consequently y» must be a power series 1+ = 0;(¢*)7. Conversely
each unit y with y» in Q{¢*} gives rise to K=Q{¢"}. Since there
are always elements y for which y* does not lie in @{¢*} and y» =1-+4wt
+ - -, w#0, we have the existence of automorphisms S with
SH,S-15 Hyand 2{t*}NQ{(yt)*} = Q, as can be shown by comparing
the series of the fields. This shows that the set of normal subfields K
with [F:K]<w, ([F:K], x)=1 is not a lattice. We remark that
conditions on y may be derived to describe @{ (y£)*} =Q{#} for s|n.

The group G can be interpreted as a group of automorphisms of
an infinite Lie ring Oy, over Q. We define Oy, as the ring O, considered
as an infinite vector space over £, in which a product [f, g] is defined
as follows. We set [f, g] = (dg/dt)f — (df/dt)g. The rules of differentia-
tion imply that [f, g] obeys the rules of the Jacobi bracket. For a
basis of O we may take the elements ¢;=¢*!,4=—-1,0,1, - - - and
[ei, e;] = (j —1)eir;. By actual computation it can be shown that the
mapping

** f@& — f(#%)/(de5/dr)

is an automorphism of Or.1” Moreover, distinct elements of G give
rise to distinct automorphisms in the automorphism group A(Oy)
of DL.

THEOREM 6. The groups G and A(OL) coincide if x = .

ProoF. Suppose that 2 isan automorphism of O;. Let £= &(t). We
shall show that there exists an automorphism S in G so that 2 is
determined by the formula (**) applied to ¢, that is, £ =#5/(dt5/dt).
Such an element S determines then the automorphism Z on all of
O, because the elements £#*! form a basis of Or. To determine S it
suffices to find a unique element ¢(¢) =it +anf2+ - - - , @150, for
which #=&() =f[¢(t)]/(dp/dt). By formal integration we find

1 See [10, p. 561; 11, p. 441].
17 Compare [15, pp. 37-47].
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&(t) =exp[[®~1(t)dt] where [®—1(t)dt is the formal indefinite integral
without a constant of integration. We observe that all formal opera-
tions involved can be carried out because they are determined in .
The automorphism S is given by ¢(x) using the representation of G
by U. In concluding we remark that GCA(D1) for x < . The in-
equality may be explained by the fact that ¢» is never the derivative
of an element in F if =0 (mod ¥x).
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