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UNIVERSITY OF CALIFORNIA 

AUTOMORPHISMS OF FIELDS OF FORMAL POWER SERIES 

O. F. G. SCHILLING 

We propose to discuss in this note on power series fields in one 
variable the special automorphisms which do not alter the fields of 
coefficients. It will be proved that the pseudo-ramification groups in­
troduced by MacLane are universal ramification groups, in the sense 
that a special ramification group must always be a subgroup of a well 
determined pseudo-ramification group. Finally we interpret the auto­
morphism group of the field as an automorphism group of an infinite 
Lie ring. 

Let O be an arbitrary field of characteristic x» In the sequel we shall 
consider the field F of all formal power series a^^^^^œ^ where 
the co,- are in fl and H s a transcendental element over Q.1 The field F 
is complete with respect to the rank one valuation V defined by 
Va —m where m is the smallest subscript j for which co3^0. Let D 
be the valuation ring of all holomorphic series and $ = (t) the prin­
cipal prime ideal of £). 

Suppose that S is an automorphism of F. We show that &8 is also 
a valuation ring of F. For the proof2 let a, b be any two nonzero ele­
ments of F. We must show that at least one of the quotients a/è, b/a 
lies in O8. By assumption on S there exist unique elements c, d with 
c8=a, d8 = b. Now observe that at least one of the quotients c/d or 
d/c lies in £) for O is a valuation ring. Therefore at least one of the 

Presented to the Society, August 14,1944; received by the editors May 29, 1944. 
1 For the basic properties of valuations see [l, 4, 5,10]. Numbers in brackets refer 

to the bibliography at the end of the paper. 
«See [4, p. 165]. 
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elements (c/d)8 — a/b or (d/c)8~b/a lies in O8. Furthermore we ob­
serve that the ideal theory of £) is carried over isomorphically to £)8. 
Thus O8 defines a rank one valuation V8 on F. 

DEFINITION l.8 An automorphism S of Fis called analytic if Va < Vb 
is equivalent to V8a8 ^ V8b8for each pair of elements a, b in F. 

LEMMA 1. Each automorphism of F is analytic. 

PROOF. We shall prove that J^is complete with respect to the valua­
tion Vs. Let o„sa„_i (mod (ty8)n) be an infinite consistent system 
of congruences with respect to Vs. There exist uniquely determined 
elements cn with cf=an and we have Cn^^n-i (mod $n). Hence there 
exists an element x in F with x^cn (mod ^Jw), for F is complete with 
respect to V. Applying 5 to x we have x8^Cn=an (mod ($s)w). 
Hence F is complete with respect to V8. Consequently F would be 
multiply complete if V and Vs were distinct valuations. Thus it 
would follow4 that F is algebraically closed, in contradiction to the 
construction of F. Hence V and V8 are equivalent valuations, that 
is, S is analytic. 

Suppose that s is an automorphism of Q. If we observe the rules for 
the addition and multiplication of elements in F, the correspondence 
2î>--«ow^'~,*2^-»w/^'' — (Z)j>-«>w^05 defines an automorphism of F. 
These automorphisms of F determine a subgroup of the automor­
phism group A of F which is isomorphic with the automorphism 
group of Q. A simple computation shows that this subgroup is not 
normal if and only if it is not the trivial group consisting of the iden­
tity. Now let T be an arbitrary automorphism of F. The element T 
either induces an automorphism on Q.C.F or it maps 0 into an iso­
morphic subfield QTC.F. We shall consider only those automorphisms 
of F for which all the elements of Ö are invariant. These automorphisms 
form a subgroup G of A. This group G corresponds to the inertial 
group considered in the theory of normal algebraic extensions of fields 
with valuations. 

LEMMA 2. A field F which is complete with respect to a rank one valua­
tion has no immediate extensions.* 

PROOF. Suppose that K is an immediate extension of F. Let A be 
an element of K. We shall show that A must lie in F. By assumption 
the value of A is the value of an element a in F. Thus A /a is a unit 

8 See [5, footnote on p. 373; 12]. 
4 See [12]. 
6 See [4, p. 191]. 
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and therefore A/azswo (mod $#), where Ç* is the prime ideal of K 
and coo is in Q. Next there is at least one element a\ in F with 
A/a — uoz&ai (mod ffil), where wi= V(A/a — UQ). By complete induc­
tion there exists a sequence of elements awo, ao+aaiWi, • • • , awo 
+ • • • +aai • • • a„co„ • • • such that 4̂ sacoo+ • • • +aax • • -a,ù)P 

(mod $$) with rn = nx+ • • • +w„—»<» for p—•«>. This sequence has 
a limit £ in F and -4 —J has value co in K. Hence A = i in J7.6 

Suppose that 5 ^ 1 is an automorphism of F with u — u8 for all a> 
in Ü. Then /5s^/, for / = /s implies a~a8 for every a in F. Hence each 
55^1 determines by t8~tu(S) an element u(S) of the unit group U 
of F. 

THEOREM 1. The groups G and U are in one-to-one correspondence 
as sets. 

PROOF. AS seen above each automorphism S determines relative to 
the prime element t a unit u(S). For the converse we shall show that 
the mapping /-+/* = tu determines, for given u in Uy an automorphism 
of F. We associate to an arbitrary element a aas2i>-«ow^/ ^he quantity 
0*ŒiCj>-«û,i(**)/' The elements a* form by definition a subfield F* 
of F which is isomorphic to F. By construction the valuation F of F 
induces a valuation V* on the complete field F* with V*t* = Vt* = Vt 
so that F and F* have the same residue class field. Therefore F is 
an immediate extension of F* and hence F—F* by Lemma 2. Conse­
quently the mapping a—>a* is an automorphism of /?. We remark that 
the identity elements of G and U correspond to each other. 

We next give a definition and a set of formulas which can be used 
to compute explicitly the coefficients of a* relative to the prime ele­
ment /. We define the derivative Dta of a=2^co,// as Xl/6^'""1 a n d 
D^il/iDid/dty.Then* 

D\(a + b) = D\a + D]b, D%f « Cw, */~\ i è 0, 

Dt(<aa) = coP*a, o> in S2, 

D\(ab) = 2 D%D%tb\ h gs 0, i2 2* 0, ix + i2 •• *. 

As in the calculus the inversion formula of Lagrange holds, 
* - 2 3 J - I * / ( * * ) ' with X,= [ i ^ jZVM' /^HL-o , Xi^O. Hence t lies in 
F* and thus F* « F. Using the Taylor developments of the elements 
« • « ^ w K O ' - l ^ l 0 * } * - ^ it follows that each unit u deter­
mines by 't—>t*~tu an automorphism of F. Letting &*=!]Cp?(**), 

=£^<(&*)*«o/;' we have, by the rules on the derivatives 2^, 

« For another proof see [5, pp. 379-380]. 
» See [2]. 
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(a+ *)*-£{2>î(a*+ **)}«*' 

- E { !>>}« /+ Z {£>&*}«/ - a* + J*, 

(«*)*- E {i>î(a*&*)},-(/ 

y 

where ji^O, J2^0t ji+J2SBtj9 and similarly (ao>)* = a*co. 
Now let S, T he two automorphisms of G. On applying ST to the 

prime element t we find tST~(tT)3 = (tu(T))8~t8u(T)s~tu(S)u(T)3 

= tu(ST) where the u's are the units corresponding to the automor­
phisms. Thus the mapping 5—>u(S) gives rise to a crossed representa­
tion8 of the automorphism group G in the unit group Z7, for u(ST) 
= u(S)u(T)s. The latter relation may be viewed as a new multiplica­
tion X between the elements of U. We define U1XU2t0 be u\u%w where 
W~S(ui) is the automorphism which corresponds to u\ by virtue of 
Theorem 1. The associativity of the group G implies that U is a group 
with respect to the operation X. 

We now proceed to a different interpretation of this operation. Let 
Ö* be the set of all formal power series XXow»#% where x is an inde­
terminate over 0. 

DEFINITION 2. If A^Jjot^ and B-fax* then define A®B as 
S A G C i ^ O * if and only if a0 = 0. 

From the definition of Q* we observe that Q» may be considered 
as an infinite vector space over fl with restricted multiplication.9 The 
element x plays the role of a left and right unit on the subset U of 
all elements without constant terms. The set U is a group, as may be 
verified by using Taylor expansions with respect to x. Obviously the 
product of elements corresponds to the operation of taking the func­
tion of a function. It is now easy to set up a relation between U with 
X as operation and U. If u*=*^£.0u)jt', o>o5̂ 0, is given then we take 
for the corresponding element tt«23jL0«i*/+1- The product uxXu* of 
two elements u\, u* in £7is then determined as {{u\®u%)xr1\ %-t where 
the factor x~l is to indicate a scalar division of U\®ti2 by x. In the 
sequel it will be useful to use the representation of the elements S 
in G by means of the elements in U; S+±u(S)?=±u(S). We shall use the 
symbol S ambiguously for the automorphism S and the representa­
tion u (5). 

Suppose now that /xi, jU2 are two nonzero elements of 0. These ele­
ments determine, by /—*//*<> automorphisms 5(JU<) in G, **»!, 2. The 

«See [7, p. 313]. 
• See [8, 9]. 
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multiplication rule of XJ shows 5(MI)S(M2) = (*MI®#M2)~ S(MIM2) 
= 5(/i2Mi)sss (̂ M2®^Mi)8SS S(fji2)S(jXi). Hence the multiplicative group 
i2* of Q has an isomorphic image in G. 

The group G contains an infinite series of subsets Gi defined by the 
elements S%=x +E/ÏLi+i<avx

9. 

THEOREM 2. The sets Gi are invariant subgroups of G, their intersec­
tion Ç]iGi is the identity and each factor group Gi/Gi+% is isomorphic to 
the additive group Q. The factor group G/Gi is isomorphic to the multi­
plicative group Q*. 

PROOF. Let Sssx+<a&i+ • • • , T**%+&&*+ • • • be two ele­
ments of Gi. Then, by definition of the product in £7, 

5 ® T « x + (wi + œ2)x
i + • • • , 

(*) T ® 5 - « + fa + «i)«* + • ' • . 
5-1 „ jU + ( - Wl)xi -] . 

Thus Gi is a group. To show that G» is an invariant subgroup of G 
let W—atfc+aix2+ • • • be an arbitrary element of G. The inversion 
formula for power series implies W~lssaîTlx+( —oc1/al)x2+ • • • . 
Consequently, by direct computation, W®5 ® TF"""1=x +<*o~^I** 
+ • • • lies also in Gi. Definition of the Gi implies GDGxD • • • and 
CiiGi—x, the identity of G. The relations (*) imply that Gi/Gt+x is 
isomorphic to the additive group Û. Now let 5(ao) be determined by 
the element W-aox+aix2+ • • . Then S(ao)~l®W**ao(ao'l)x 
+ aiia^x2 + • • • = x + (Wao)*8 + • • • lies in G%. Hence 
G=2«eö*5(o:)G1 and therefore G/GiSSO*. 

COROLLARY 1. rfo gnw£ G is a group extension of Gi by Q* with fac­
tor set unity. 

P.ROOF. As seen before the elements 5(/t), /i in Q*, form a sub­
group of G. The elements 50*) =/x# induce automorphisms on the 
group Qx**{x+cô&*+ • • • +wnffn+1+ • • • }. The associated com­
binations are determined by 

XIX ® (x + WiX2 + • • • + COwffn+1 + • * • ) = XIX + #2Wi/i2 + • • • 

(* + wi#2 + • • • + o>n#w+1 + • * * ) ® ocix = g/t + ff2a>ijit + • • • 

+ Xn+1 WnM + • • • , 
whence 

xix® (x + uix2 + • • • + w„^n+1 + • • • ) ® (tf/*)""*1 

== X + ff2«ijlt + • • • + Xn+10)nIXn + • • • . 
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Since {5(/i), /x£Q*} is a subgroup the factor set of 0* with respect 
to G is the unit factor set. 

COROLLARY 2. The group Gx is a complete metric group; if the field 
Q is finite then Gx is compact. 

PROOF. The system of normal subgroups Gi defines a topology in 
Gi. The group Gx is complete with respect to this topology for Gi 
contains all elements x+o>xx2+ • • • +con#n+1+ • • • with arbitrary 
coefficients cow. We next define a metric in Gx which is consistent with 
the system of defining neighborhoods G», i~l, 2, • • • . Suppose 
S = x + aix2+ • • • + an-i*

M + anx
n+1+ • • • , T « x + 0i**+ • • • 

+j8n_i#w+j3w#n+1+ • • • are two arbitrary elements of G%. We define 
5(5, T) to be e~n if and only if ar*=j3» for all i<w and anj£$n. Then 
5(5, T) = 5(r, 5), 5(5, r ) > 0 for S?*r, 5(5, r )^max[5(5, R), 
5(r, i?)]. Moreover Gn consists of all elements S in G% which have 
distance 5(1, 5) ^e~n . Thus Gi is a O-dimensional metric group. The 
factor groups Gi/Gn contain nontrivial elements of finite order if and 
only if % < °° holds for the characteristic of Ö. If x < °° the elements 
of Gi/Gn have at most order xn~x- Hence lim^* gxn = l for each ele­
ment g of Gi, thus Gi is a generalized x-adic group.10 In particular, 
Gi is compact if Ö is finite. In this case Gw/G»+i=Q, and thus Gx is 
isomorphic to the inverse limit l im ,^ Gi/G» where the factor groups 
Gi/Gn are all finite. 

DEFINITION 3. The totality of elements 5 in Gi with a8&sa (mod $n) 
for each a in O is called the nth pseudo-ramification group Rn of F,n 

THEOREM 3. The groups G« and Rn coincide. 

PROOF. We first remark that the first pseudo-ramification group Ri 
coincides with Gi, for the general element x+coxX2+ • • • of Gi in­
duces the identity mapping on the residue class field £1 of F. Suppose 
now that g—x+^Ztn+xUvX" is an arbitrary element of Gn. Let 
a=a0+<xit+ • • • +an-.it

n~1+ant
n+ • • . Then 

( oo \ / oo \n~-l 

t + T, o>,t>) + • • • + «»-i f t + 23 «''"J 

( oo \ n 

t+ X>><') + ••• 10 A topological group G is called x-adic, if lim»^**» 1 for each g in G, %< °°» in 
a sense of the topology of G. Examples of x-adic groups are the additive subgroup of 
the x-adic number field and multiplicative groups in x-adic algebras. 

11 See [6, p. 438]. 

file:///n~-l
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= a0 + ait + ai22 « ƒ + • • • + ««-ï*»"""1 + an„i(n - l)tnœn 

+ • • • + <*Jn + • • • + anntn+>un + • • • 

« «o + arf H + ctir-it»-1 (mod $»), 

whence G«Ci?n. Conversely, let g€:-Rn and f*t+fJxP+ • • • +/3*_i*n 

+j3»*n+1+ • • • . We compute 

a< = ao + «i(/ + ft*2 + • • • + / W + PJn+1 + • • • ) 
+ ai(* + jSi/2 + • • • )2 + • • • + a^xit + (Sit* . . . )»-i + . . . 

s a0 + aif + atfit2 + • • • + arf* + 2a2/3i/8 H + • • • 

s a0 + ai* + a2^ + . . , + a*-!**-1 (mod $n). 

Reducing this congruence successively mod ty2, tyz, • • • , P̂n""x we ob­
tain 01= • • • =j3n-.2 = 0, whence Gn2i?n. 

REMARK. As in the ordinary Hubert theory it follows that i?« is an 
invariant subgroup of G\. This furnishes a new proof for the invari­
ance of the groups Gn. 

THEOREM 4. Suppose that H is a finite subgroup of Gi and let K be 
the associated subfield of F. The ramification groups Hi of F/K are 
equal to GiC\H. 

PROOF. Let VK be the valuation which is induced by V on the sub-
field K. Suppose that T{F) and T(K) are the value groups associated 
to V and VK, respectively. We first observe that Î2 is contained in K 
for HCZGh Let "K be the completion of K with respect to VK, then 
KQKQF for the fundamental sequences in K are special fundamen­
tal sequences in F by the definition of VK* Next observe that VK has 
only V for its prolongation to F. Remark that all prolongations of VK 
are given as Vh, h in H; thus, by Lemma 1, Vh~ V. Combining these 
facts, we ûnd\j?:K]~[T(F):T(K)]~[T(F):T{T[))~[F:ïï]. Con­
sequently JRT = JST, that is, K is a complete field and H is the decom­
position and inertial group for F/K. Now let Hi be the ith ramifica­
tion group of F/K. Then Hi(ZRi~Gi by the proof of Theorem 3. 
Thus HiQRiC\H. Conversely, let S be an element of Ri(~\H. Then 
a s s ö (mod *P0 by definition of Ri. Hence 5 lies in 25T*. Therefore 
Hi ~ RiC\H as asserted. 

Let K be an arbitrary subfield of F such that QC.K and [F:K] 
< oo. The field K is then complete with respect to the valuation VK 
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induced by V. For the proof we observe that the valuation V has a 
unique prolongation to the normal closure of F over K, for the latter 
is complete since it is a finite extension of F. The ramification theory 
implies, as at the beginning of the proof for Theorem 4, that K is 
complete. Now let ir(F) be any prime element of F, that is VTT(F) « 1, 
F= Q{ir(F)}. Then NF/MF) is a prime element ir(K) for K because 
Vir(K) = [F:K] and Sl{ir(K)} ~K by Lemma 2 applied to the chain 
0{*(iO} QKCF. We have v(K) *=T,?-0o>MF)n+v, where [F:K]-n 
and COOT̂ O. Applying an automorphism S of G to 7T(JF) we obtain a 
field iT5 = Q{ir(K)8} which is isomorphic to K and JKT=iT^ if and only 
if S is an automorphism of F/K. The group SHS~l is the full auto­
morphism group of F/K8 if H is the automorphism group of F/K. 
We apply these results to prove the following theorem. 

THEOREM 5. The automorphism group G of F contains elements of 
finite order. 

PROOF. We first observe that F always has normal completely 
ramified extensions M. The existence of such extensions depends on 
the nature of the residue class field Q.12 In case that n is an integer 
prime to the characteristic x and £2 contains a primitive wth root of 
unity the field F surely has at least one cyclic completely ramified 
extension of degree n. For example, there is surely such a quadratic 
extension if (x, 2) = 1 or x = °°. If X is finite then Û contains some field 
of (xw —l)th roots of unity, w ^ l , and any n\ (xw—l) may be used. 
For finite x there are infinitely many cyclic completely ramified ex­
tensions of degree x over F.lz Hence we know that completely rami­
fied normal extensions M/F exist. Since M is completely ramified, 
say of degree n> we have 7r(F) sss^2^oCovT(M)v+n, co05^0, for a prime 
element T(M) of M. By the structure theory of fields of power series 
the fields M and F are isomorphic.14 Suppose that 0 is a realization 
of the isomorphism M~F, that is, M+ — F. We apply <j> to the equation 
for T(F) and obtain T(F)+~J^?wt0ü)v[rr(M)+]n+v. Then T(F)+ deter­
mines by Q{7T(JF)*} a subfield K of F so that the Galois groups of 
M/F and F/ti{ir(F)+} are isomorphic. Observing that the Galois 
group of M/F is isomorphic to a finite subgroup of G, the assertion 
of the theorem follows.16 

As a special case we consider cyclic subgroups H of order n in G 
for which (w, x ) s 1. Let K be the field of invariants for H. We have 

12,See [11, 14]. 
18 See [14]. 
M See [l, 6, 13, 14]. 
15 See [3, p. 890]. 
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K~Çl{utn} where u is a unit of F. Then u=*o)V where co^O lies in Î2 
and î»sl (modP). We have K = Q{ïtf n } , for K is an immediate exten­
sion of Q{îtfn}. Since («, x) 3*! there exists16 a unit y oî F with 
:y = l (modP),yw = z;.ThereforeX«fi{(^)n}.Sinceö{^}=fl{^}«P 
we obtain H~SH0S~l where S is the automorphism of Gi with t8*=yt 
and Ho is the finite subgroup of G generated by the element Çx, f a 
primitive wth root of unity. Finally K = Q{/n} if and only if SHoS~l 

= Ho, that is, 5 induces an automorphism on H0. Expressing X = 0 {t*} 
in terms of the prime elements we have (yt)n/tn~yn lies in 0{*n}. 
Consequently yn must be a power series l+^T,fLiaj(tn)J\ Conversely 
each unit y with yn in tl{tn} gives rise to jK" = fi{/n}. Since there 
are always elements y for which yn does not lie in £2 {tn} and yn = 1 +c*)t 
+ • • • i o)?^0, we have the existence of automorphisms 5 with 
SHoS"""15̂  Ho and Q {tn} H 0 {(y/)n} = Q, as can be shown by comparing 
the series of the fields. This shows that the set of normal subfields K 
with [F:K]< co, ([F:K], x) = l is not a lattice. We remark that 
conditions on y may be derived to describe fl{ (yt)*} = Q{t'} for s\ n. 

The group G can be interpreted as a group of automorphisms of 
an infinite Lie ring Oz, over fl. We define OL as the ring D, considered 
as an infinite vector space over 0, in which a product [ƒ, g] is defined 
as follows. We set [ƒ, g] ~ (dg/dt)f— (df/dt)g> The rules of differentia­
tion imply that [ƒ, g] obeys the rules of the Jacobi bracket. For a 
basis of OL we may take the elements e<«/<+1, i = — 1, 0, 1, • • • and 
[d, ej] = (j—i)ei+j. By actual computation it can be shown that the 
mapping 

(**) f®-+W/(dfi/dt) 

is an automorphism of Dz,,17 Moreover, distinct elements of G give 
rise to distinct automorphisms in the automorphism group A(OL) 
ofDz, 

THEOREM 6. The groups G and A(DL) coincide if % = co. 

PROOF. Suppose that S is an automorphism of £>L» Lett*** <§>(/). We 
shall show that there exists an automorphism 5 in G so that 2 is 
determined by the formula (**) applied to t, that is, F = t8/(dt8/dt). 
Such an element S determines then the automorphism 2 on all of 
Dz, because the elements J£+1 form a basis of Oz,. TO determine S it 
suffices to find a unique element <l>(t)—ait+a2t2+ • • • , ai?^0, for 
which tx~<è(t)=f[<t>(t)]/(d<l>/dt). By formal integration we find 

16 See [10, p. 561; 11, p. 441]. 
17 Compare [15, pp. 37-47]. 
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<f>(t) =exp[/$""1(/)rf/] where J^x{t)dt is the formal indefinite integral 
without a constant of integration. We observe that all formal opera­
tions involved can be carried out because they are determined in O. 
The automorphism S is given by (j>(x) using the representation of G 
by U. In concluding we remark that GC.A(OL) for x < °°« The in­
equality may be explained by the fact that tn is never the derivative 
of an element in F if n^O (mod x)« 
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