ON UNIFORM CONVERGENCE OF TRIGONOMETRIC SERIES

OTTO SZASZ

1. Introduction. The following theorems have been proved previ-
ously.!

THEOREM 1. If the function ¢(t) is throughout continuous, periodic of
period 2m, (t) =¢(—1t) =¢(2m+1),

1.1) () ~ % + X a, cos nt,
1

and if

(1.2) na, > — K,

for some constant K, and all n, then the series (1.1) is uniformly conver-
gent (on the real axis).

THEOREM I1. If f(¢) is everywhere continuous, periodic of period 2’

f@) =—f(-0),

1.3) (&) ~ > b, sin nt,
1
and if
(1.4) nb, > — K, n=1273"- -,

then the series (1.3) is uniformly convergent.

TuEOREM III (CHAUNDY AND JOLLIFFE). The Fourier series (1.3)
s uniformly convergent, if

1.5) by = byy1> 0, andif #nb,— 0.
Note that here no explicit assumption is made on f(¢).

THEOREM IV. If ¢(t) is continuous at t=0, and if
An
(1.6) lim lim sup Z(la,l—a,) = 0,
Al 70 n

then the series (1.1) is uniformly convergent at t=0. (That is, s.(t,)—s
whenever t,—0.)

Presented to the Society, April 29, 1944; received by the editors April 18, 1944,
1 Cf. [2] and the references given there; numbers in brackets refer to the literature
cited at the end of this paper.
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THEOREM V. If f(¢) is continuous at ¢t =0, and if
An

(1.7) lim limsup Y (|5, — &) =0,
Al n—o n

then D _"vb,=o0(n), and the series (1.3) is uniformly convergent at ¢=0.

Some more general results are given in the present paper. In par-
ticular:

THEOREM 1. Under the assumptions of Theorem 1V the series (1.1)
converges uniformly at each point of continuity of ¢(t).

THEOREM 2. Under the assumptions of Theorem V the series (1.3) con-
verges uniformly at each point of continuity of f(£).

Clearly Theorems 1 and 2 include Theorems I and II respectively.
Either of the following two theorems includes Theorem III.

THEOREM 3. Suppose that

2n
(1.8) E| b, — by1| =O0(n™Y) as n—w,
and that
1.9) A=9D nbs*—0 as rti;
1

then the trigonometric series Y b, sin nt is uniformly convergent.
Note that the assumptions refer solely to the coefficients b,.

THEOREM 4. Suppose, for some constants p =0, ¢=0,

(1.10) nb, + p = B, 0,
that
(1.11) Buy1 = (1 4 w'q)B,, for all large n,

and that (1.9) holds. Then nb,—0 and the trigonometric series Y b, sin nt
is uniformly convergent.

We also give (in §§5 and 6) analogous theorems for cosine series;
here the partial sums Y _%a,=s, play a similar role as the sequence
{nb,} for the sine series. However convergence of the series >_a, does
not carry as far as existence of the limit lim #b,. It is for this reason
that no such theorems have been established hitherto for cosine se-
ries. For details see §§5, 6 and 7.
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2. Proof of Theorems 1 and 2. We have proved [2] that under the
assumptions of Theorem IV

An
2.1 lim limsup Y| a| = 0.
M1 7> 00 n

If ¢(2) is continuous at ¢y, then the Fourier series
é(to + 0) + ¢(% — 6)
2

&(to + 0) — ¢(t0 — 6)
2

~ > @, cos niy cos nf,

~ Y a, sin nt, sin #nf

satisfy the assumptions of Theorems IV and V respectively, hence are
uniformly convergent at 6 =0. This proves Theorem 1. The proof of
Theorem 2 follows on quite similar lines, since it has been proved [2]
that

An
(2.2) lim limsup |5 = 0.
A1 n—o n

It is clear from our proof that the assumptions of our theorems can be
replaced by the sole assumptions (2.1) and (2.2) respectively.

We remark that in Theorems IV and V the assumptions (1.6) and
(1.7) cannot be replaced by

2n
> |a|=001) and Y a, converges,

2n n
|5 =01) and Y b, = o(n),
n 1

respectively. We give an example, suggested by a construction due
to Fejér [1].

Let P,(2) =2 _"=a2"/(n - = %az"/(v+1), then | P.(2) | <6 for
|2] <1. Let p,=2"", ka=27+D, =1, 2, 3, - - -, and consider the
polynomial series D, °n—2z#nP, (ze¥/7). This series is clearly uniformly
convergent for | zl =1, the degree of the nth term is 2k, +pn—1 <pny1,
hence writing out the polynomials successively we get a power series,
convergent for I zl <1:) 2™ =F(z), and F(e'?) is the Fourier power
series of a continuous function. The structure of P, easily yields

n c,l =0(1). It can be proved, as in Fejér's example, that the se-
ries )_cneint converges for each ¢, uniformly in eS¢t <27 —e¢, €>0; but
neither component converges uniformly at £=0. The same is true for
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the series ) @y, COS nt, ) @y, sin nt, where a, = R(c,); X_a, converges, so
that ) _mva,=o0(n). Again, using Fejér’s device, and replacing e¥/* by
etts, where the sequence {t,.} is everywhere dense in (0, 27), we get a
continuous function with a Fourier series and its conjugate nonuni-
formly convergent everywhere, while Ic,,l is the same as before.

3. Proof of Theorem 3. It follows from (1.8) that lim b, exists, and
now from (1.9) that lim b, =0. Furthermore

ontl

2K x—1 1
2| b= b = % 2 [ = bua| = 22 - 01) = 0(1),
1 Tl

hence
(3-1) Zlbr"‘bv+1‘<°°.
1
Moreover
) 0 ne2kHl
El bv - br+1| é Z Z‘ lbv - bv+l|
(3.2) n k=0 n-2
1 1 1
co(trt)-o(2)
n 2+ n
hence
(3.3 nby, = ny, (b, — byy1) = O(1).

It was proved by Littlewood that boundedness of a sequence and
Abel summability imply (C, 1) summability; if we apply this to the
sequence {nb,.} it follows from (1.9) and (3.3) that

3.4) z”: vb, = o(m).

Next, from Abel’s formula

m—1

(3.5) i b, sin vt = Z (by - bv+1)Ty(t) + mem(t) - bnTn-l(t),

where
cos /2 — cos (n + 1/2)¢

T, () =
@ 2 sin £/2 ’

hence in any interval eSS 2w —e
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mn
> b, sin vt
n

< e 3| b = by + 26w (| ba| + | B | ).

Thus the series )_b, sin nt is uniformly convergent in e<{< 2w —e,
€>0. Let

f: by sin nt = f(8);

we shall prove next that f(£)—0 as ¢ | 0. We write

16 = (2 + Zosinw = 020 + 000,
say, where n=[e~1t-1]. Now, employing (3.2), (3.3) and (3.5)
| 00| < £x (16~ bl 4] b

n+1l
= 10(n1) = 0(1).
As to Uy(t), we have

3.6)

d sin »¢ nol sin #t
Uy= D, b, = 24, + v, ’
1 v 1
where
id sinnt sinnt  sin (n 4 1)¢
vn=Zwa An=A = —_ ( ) .
1 n ” n-+1
We have
t t
A, = f (A cos nx)dx = Rf 2*(1 — z)dx, z = %%,
0 0
hence
t
|m|<f 11— 2| dx <2,
0
and
|| <2 X 0| + 5| v
(3.7) !

<e‘2n—1iv—1|v,| + nt| 0, >0
1

ast ] 0, by (3.4).
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Now (3.6) and (3.7) yield

lim sup | /() | < ¢;
-0

¢ being arbitrary, we get f(£)—0 as {—0. In view of (3.3) uniform con-
vergence now follows from Theorem II.

We remark that under the assumptions of Theorem 3 the sequence
{nb.} need not have a limit. This is seen from the example

nbp, =1 for n=2", »=0,1,2,:-++., b, = 0 otherwise.

Moreover in this case b, =0 and _b, is convergent.

On the other hand for the example >_2(—1)" sin (2n—1)t/n log =,
nb,—0, X b, converges, yet the series is divergent for t=m/2. Of
course (1.8) is not satisfied, but Zf,"] b,l =0(1/log n).

4. Proof of Theorem 4. We shall employ the following lemma.
LeMMA 1. Suppose that B, =0, that for some ¢=0
(4.1) Bay1 = (14 ¢/n)B,, n=1,2,3---,
and that the sequence {B,} is Abel summable to B; then B,—B.

This is Lemma 5 of my paper [2]. Note that the inequalities B, 0
and (4.1) need only be satisfied for all large #, # = n,, say. For the se-
quence B, =B,, n=1, 2, - - -, ny, B =B,, n>mn,, satisfies the as-
sumptions of the lemma, hence lim B, =lim B, exists.

Now for nb,+p = B,, from (1.9)

4.2) Q=7> Bar—p as rii;

from (1.10) and (1.11)

(4.3) 0 < Buy1 = (1 + q¢/n)B,, for all large ».
Lemma 1 now yields

4.4 B, — p, thatis unb,— 0.

From (4.3)

(4.5) (Bpt1 — B,) = n'qB,, forn Z ny, say.

Write > 2*(B,,,—B,) =>_.'+>."", where 3.’ is the sum of the positive
terms, and )/ the rest. From (4.4) and (4.5), Y.’ =0(1) ; furthermore

Bopy1 — B, = Z"I'Z" = Z'““‘Z”'?

hence || =B, —Baa1142." =0(1). It now follows that



862 OTTO SZASZ [December

2n
2| Bur—B,| =2 +| X"| =0Q1);

this and (4.4) yield (1.8). Our theorem now follows from Theorem 3.
If we replace (1.9) by the assumption (A) lim #nb, =p, then the trig-
onometric series

> (ba — pn~Y) sin nt = 3 B, sin nt

satisfies the assumptions of Theorem 4, hence it is uniformly conver-
gent, and we get nb,—p, and

(4.6) > b, sin nt— wp/2 as tl0.
Combined with Theorem 3 of our paper [2] we get the theorem.

THEOREM 5. If (4.2) holds then o necessary and sufficient condition
that (4.6) holds is nby,~p.

For b, positive and decreasing, p =0, the result is due to Chaundy
and Jolliffe, for p%0 to Hardy. For references see [2].

5. The cosine series. We shall next prove the theorem:
THEOREM 6. Suppose that

(5.1) z”:' ay — ar-l-ll = 0(”—1)’

and that Y a,is Abel summable, then Y a,, cos nt is uniformly convergent.

Using Abel’s formula

m m—1
(5.2) X acosvt= 2, (0 — au)1(®) + am¥m(®) — GwYn-a(),
where
sin (n + 1/2)¢
2 sin (¢/2)

As in §3 it follows from (5.1) that lim @, exists, and now Abel sum-
mability of Y a, implies that a,—0. Furthermore

Ya(l) =

(5°3) é‘an_awll < =, Zw:lav—mll =O(”-1)v nan=0(1)°

Hence, by a theorem of Littlewood, Za,. converges.
Now (5.2) yields uniform convergence of > a, cos nt in eSt=m,
€>0. Let
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> aa cos nt = ¢(f), 0<t=<m.
1

We write
o cosvt =2, 4+ > = Vi) + Vit),
1 1 n+1

say, where n = [e~}4~1]. Now from (5.2)

Va(®) = Z (a' - a‘H-l)'Yr(t) - an+17vn(t)'
n+1
hence

| Vo | <r’w(la,,+ll + X |a - aml)

n+1

(5.4)
= +10(n~1) = O(1).

To estimate Vi put Y “a,=r,, then r,=s, and

Vi=5cost— #p41c08 nt+ 2 1, sin (¢/2) sin (v + 1/2)¢,
2
hence
| V1) — s cost| 5| rara| + 222 | n|
(5.5) o
S| ol + et Y| 1| = e20(1)
2
as t—0. From (5.4) and (5.5) lim sup;.o |¢(t)—s| Se¢, € being arbi-
trary, we get ¢(£)—s, as t—0. Our theorem now follows from Theorem
I. The example )2~ cos 27 shows that na, need not have a limit.

Here is an alternative proof for the continuity of ¢(¢) at ¢=0:
From (5.2)

o) = — ar/2 + 2'1i (@n — Gny1) cOS nt
1

sin nt
in (¢/ 2)

clearly Y (@, —an41) cos nt is uniformly convergent. Furthermore

+ 27 cos (/D)3 (an — )

hd had sin nt o sin nt
> (@n = Gpy1) Sin nt = 3 n(ap — Gny1) =2 a
1 1 1

where
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2n
ol = n(@a — Gay), 2 |al| =0(1), by(5.1).

Now X_%) =3 #'g,—(n+1)aa11; 2. a. being convergent, it follows
that n—1>_7va,—0, and Y _a, is (C, 1) summable to s, hence by Theo-
rem 4 of our paper [3]

had sin nt d

> al — > a,=s as t—0.

1 nt 1

Thus ¢(¢) is continuous at £=0.
Theorems 3 and 6 combined yield the theorem:

THEOREM 7. Suppose that

2n
EI ¢ — 0r+1‘ =01 a n— o,
n

and that Y c, is Abel summable; then the power series Y caz™ is umi-
formly convergent in the circle | 3| <1.

It suffices to consider the circle Iz =1; suppose first that the ¢,
are real. The uniform convergence of »_¢, cos #t follows from Theo-
rem 6; it also follows that #—1)»_%vc,—0, and Theorem 3 now yields the
uniform convergence of Y ¢, sin #t. If the ¢, are complex, ¢, =an~+1bn,

then apply the result just obtained to Y a.s*, > bnz". This proves
Theorem 7.

6. Further theorems on cosine series. Our next theorem is:

THEOREM 8. Suppose that for some constants p=0and ¢=0
(6.1) 0= (n+ 1)spy1 — 15+ p = (1 + g/n) [#5n — (0 — 1)s0s + 2],

Sa=2_%a,, and that y_an is Abel summable; then na,—0, and Za,. cos nt
is uniformly convergent.

Put #s,— (n— D)spa+ 2 = 8n =Su+ (# — 1)an+ p, 5o=0, then
> 88, =n(sa+5)20, s, =—p, hence by a well known theorem
of Tauberian type X _a, is (C, 1) summable, thus the sequence {6,.}
is (C, 2) summable. This and 0 < 6,41 = (1+¢/7) 8, imply by Lemma 1
that lim §, exists, 8,—9, say. It follows that #—1D 13, =s,4p—3, or
sp—8—p=s, and now

(6.2) Ny = 8y — Sp+ an — p— 0.
Next from (6.1)
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6.3) dnt1 — 8 = (g/1)0n,
furthermore

2n
(6.4) Dy= 2 (341 = 8) = 8an41 — 8, = O(1).

Write D,=D’+4D’’, where D’ denotes the sum of positive terms,
D""=D,—D’. From (6.3)

2n
0 <D =g, v =0(1),
and now from (6.4), ID"i =(0(1), hence

2n
3| b — 8| = 0QQ).
Also 6,11—6,=(v+1)(ay41—a,)+2a,, thus
2n 2n
Svlam—al=00) +2Xal.

n n

But from (6.2), >_2*|a,| =0(1), hence

2n

> | a1 — a| = O(nY).

n

Our theorem now follows from Theorem 6.
We next prove the following analogue to Lemma 1:

LeMMA 2. Suppose that B, =0 for n>n,, that for some ¢>0
6.5) By = (1 — ¢/n)B,, n > ny,
and that (A) lim B, =B; then B,—B.

We may assume that ¢/# <1 for #n>ny; then from (6.5)

n+x [3 nB”
2B, 2B > (1—g/ny= {1 = =g/m™}, n>m,
n Y ()
hence
B, = Z (Brpx — B,',_l){l -1 - q/n)“+‘}‘1, where
n
(6.6)

n

> B,
1

BI
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Choose k= [6n], where § >0; from Abel summability and from B, 20,
it follows that »—'B,;,—B. Now from (6.6)

. ¢éB

lim sup B, £ ——;
1 — exp (— ¢%)
letting 6 | 0, we get

lim sup B, = B.

Similarly for n —k>n,

> B, =8> (1- L )—”

ya=( ye=0 n — kK

— —(xt1)
- (- IG5 T )
q n— n—x
hence

B,z (¢/(n — k = @))(Ba = Buew) {(1 = ¢/(n — k))~+D — 1},
Let now k= [n&], 0<6<1, then

_ g0 g6 -
lim inf B, 2 —— Blexp ——— 1) ,
1-46 1-346
and 8] 0 yields lim inf B, = B. This proves the lemma.
THEOREM 9. Suppose that for some constants p 20, ¢=0,
(n 4 1)sp41 — nsa + 9
2 (1—g/n)[nsa— (n— Dsas + ] 20,

and that (A) lim s, =s exists. Then na,—0 and Y_a. cos nt is uniformly
convergent.

As in the proof of Theorem 8, s,= —p, hence Y a, is (C, 1) sum-
mable; then by Lemma 2, §,—8, na,—0. Next from (6.7)

6.7)

Opt1 — 6n = — qn%,, and

(6.8) 2n
D, = Z Byp1 — &) = dgp1 — 8, = O(1).

Write D,=D’+D"’, where D’ denotes the sum of negative terms,
D""=D,—D’. From (6.8), 0= D’ = —¢>_2"~13,, hence D’ =0(1), and
D""=0(1); hence Z,’;"] 8,+1—6,| =0(1). The remaining part is the
same as in the proof of Theorem 8.
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7. Closing remarks. The assumption of Lemma 1 can be writ-
ten as 0 £ Bayu S (n + ¢)/nBa, or 0 S (I'(n + ¢)/T(%))Bapa
S(T'(n+g+1)/T(n+1))B,, that is, I'(n) B, /T'(n+q) is decreasing. A
similar lemma was proved by Hardy; for reference see [2]. Again in
Lemma 2 the assumption is By = (n—¢q)/nB,=0, or

(T(n — @)/T(n))Bpyr 2 (T(n — ¢+ 1)/T(n + 1)) B, 2 0,

that is, I'(n) B, /T'(n —q) is increasing. The larger ¢ the more general
is the condition.

The differences (n+1)$n41—ns, =Tny1 are the (C, —1) means of the
series Y a,, that is, s, =7~ _%r, (r1=s,). The condition (6.1) may be
written as

— (ma + P) S Tapr— T S (q/”)(fn + P)

If it holds for some p, then it clearly holds for any p’ > p. Similarly
(6.7) becomes

Tat+l — Tn g - (q/n)(T" + P) g - (T‘" + P)?

and here too p may be replaced by any p’>p. Clearly summability
(C, —1) of the series Y _a, is equivalent to convergence together with
na,—0.

We have seen that the first inequality of (6.1) and Abel summabil-
ity of >_a, imply (C, 2) summability of the sequence {-r,.} ; it follows
from a theorem of Tauberian type that >_a, converges. It is an open
question whether this and 7,2 —p, n=1, 2, 3, - - -, imply uniform
convergence of Y _a, cos nt at t=0. Theorem IV asserts that this is
the case if Y_a, cos nt is the Fourier series of a function continuous
at t=0. However it is doubtful whether even (C, —1) summability
of Y_a. itself implies uniform convergence of Y _a, cos #t, or continuity
of the corresponding function at ¢=0.
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