
THE ROLE OF INTERNAL FAMILIES IN MEASURE THEORY 

ANTHONY P. MORSE 

1. Introduction. Theorem 4.7 below is an abstract formulation of 
a certain closed subset theorem1 recently established by Randolph 
and myself. I t has a wider range of application than similar abstrac­
tions due to Hahn2 and to Saks.3 

2. Notation and terminology. When H is a family of sets we agree 
that 

*<P) = £ ft f(fl) = I I I». 

A family R is said to be: finitely additive if <r(II)ÇzR whenever H 
is a finite nonvacuous subfamily of R; countably additive if a(H)^R 
whenever H is a countable nonvacuous subfamily of R ; finitely multi­
plicative if ir(H)CiR whenever H is a finite nonvacuous subfamily 
of R; countably multiplicative if TT(F)^R whenever F is a countable 
nonvacuous subfamily of R; ot complemental if R is such a family of 
subsets of a that a —/3£-R whenever j3£i?. 

If i? is a family of sets we also agree tha t : R„ is the family of all 
sets of the form a(H) where H is a countable nonvacuous subfamily 
of R; i?« is the family of all sets of the form ir(H) where H is a count­
able nonvacuous subfamily of R; Ry is the family of all sets of the 
form <r(R)— /? where jSGi?; i?Y is the smallest <r(R) complemental, 
countably additive family which contains R ; R* is the smallest count­
ably multiplicative, countably additive family which contains R. 

DEFINITION 2.1. 2? is internal if and only if i?j is finitely additive 
and RyCRs-

REMARK 2.2 If R is the family of all closed subsets of a metric 
space then R is internal4 and the members of Ry are the Borel subsets 
of the space. 

Received by the editors November 15, 1943. 
1 A. P. Morse and J. F. Randolph, The <f> rectifiable subsets of the plane, Trans. Amer. 

Math. Soc. vol. 55 (1944) pp. 236-305, Theorem 3.7 together with the remarks which 
follow Theorem 3.4. 

2 H. Hahn, Über die Multiplikation total-additiver Mengenfunktionen, Annali della 
R. Scuola Normale Superiore Pisa (2) vol. 2 (1933) p. 437. 

8 S. Saks, Theory of the integral, Warsaw, 1937, p. 85. 
4 Since an open set is an R0. 
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3. Two known results in set theory. 

THEOREM 3.1. R* is countably multiplicative. If R is finitely additive 
then so is R$. 

PROOF. i?$ is clearly countably multiplicative. The remainder of 
the theorem follows from the identity 

II*+ Il y = n IL(* + y). 
XGA VEB XGA VE.B 

THEOREM 3.2.* If RyCR6 then Rv=R8. 

PROOF. Let a=(r(P) — a. Let 

2> = E[(aeR*)(àeR5)]. 
et 

A simple check reveals that P is a <r(R) complemental, countably 
additive subfamily of i?8. Our assumption that Ry is contained in Rs 

assures us, on the other hand, that P contains R. Accordingly 
RyC.PCR*. Now Ry, being <r(R) complemental and countably addi­
tive, is clearly countably multiplicative also. Consequently R*C.Ry 

and the desired conclusion is at hand. 

4. The role of internal families in measure theory. 

DEFINITION 4.1. We say <f> measures S if and only if <j> is such a func­
tion on Ep[$CS) to Et[0g>t£ co ] that: 

I. 0(0) =0 ; 
II. 4>(A)£4>(B) whenever AQBQS; 
III. If J? is any countable family for which crÇH) QS, then 

THEOREM 4.2. If<j> measures S and <j> measures T then S=T. 

Due to Carathéodory6 is 

DEFINITION 4.3. A set A is # measurable if and only if <f> measures 
some superset S of A in such a way that 

#(I) - 4>{TA) + 4>{T - A) 

whenever TQS. 
6 This is a corollary of a theorem proved by W. Sierpinski in his Les ensembles 

boreliens abstraits, Annales de la Société polonaise de mathématique vol. 6 (1927) 
p. SI. 

6 C. Carathéodory, Über das lineare mass von Punktmengen, Nachr. Ges. Wiss. 
Göttingen (1914) p. 406. 
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THEOREM 4.4. If R is a family of <j> measurable sets, <i> measures 
cr(R), then R* and Ry are families of<j> measurable sets. 

PROOF. Let M be the family of all <j> measurable sets. Clearly M is 
<r(R) complemental and countably additive.7 Consequently i?ôC^?r 

CM. 

LEMMA 4.5. If Rt is a finitely additive family of <f> measurable sets, 
0 measures <r(R), <j>[<r(R)]< oo, BÇzR*, €>0, then B contains such a 
member C of R8 that <j>(B — C)<e. 

PROOF. Let K be so defined that j3Ei£ if and only if corresponding 
to each positive number t) there is such a member C of R$ that 

C C f t *08 ~ C) < rj. 

We shall complete the proof by showing in Part III below that 
B<EK. 

Part I. If His a countable nonvacuous subfamily of K then a(H) £JT 
andir(H)EK. 

PROOF. Let rj>0. Let Aif A*, As, • • • be a sequence whose range 
is H. Let &, C2, Cz, • • • be such members of i?« that 

Cn C An, <t>(An -Cn) <^~ 

for each positive integer n. 
Now 

*l"«r(fl) - E Cn] = <*>[ i > n - f: Cnl ^ 4" £ (ii. - cS\ 
L n-l J L n-1 n»l J L »-l J 

^ £ *(*„ - c„)< £ £ = 9. 

Accordingly if iV is a sufficiently large integer we are sure that 

Z Cn G Rt, è Cn C <r(fl), 0 [<r(fl) - E Cnl < 17. 

On the other hand 

n - l 

7 Those measure theoretic results of which we assume a previous knowledge are 
in H. Hahn, Theorie der reellen Funktionen, vol. 1, Berlin, 1921, pp. 424-427. 
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and H*-.iCn is s u c ^ a member (see 3.1) of i?« that 

IlCnCir(H)t 
n«l 

<t> \T(H) - fi Cn] = 4> \ £ {r(H) - C„} 1 £ J" £ (4. - C„)l 
L n=»l J L n«l J L n»l J 

n»l n-1 2 n 

Par/II . i ? C £ . 
PROOF. RQRSCK. 

Part III. BEK. 
PROOF. Parts I and II assure us that K is a countably multiplica­

tive, countably additive family which contains R. Consequently 
R*C.K and the conclusion that BEK follows from our hypothesis 
t h a t B G i ? 5 . 

THEOREM 4.6. If Rs is a finitely additive family of</> measurable sets, 
</> measures o-(R), B(£R*, <1>(B) < oo, e > 0 , then B contains such a mem­
ber C of Rs that <f>(B - C) < e. 

PROOF. Let * be such a function on the subsets of <r(R) that 

$(<*) = <t>{Ba) whenever a C cr(R). 

Check that $ measures cr(R) and that 4.5 may be applied to yield the 
desired conclusion. 

THEOREM 4.7. If Ris an internal family of<f> measurable sets, <j> meas­
ures a(R), BERy, <f>(B) < oo, €>0, then B contains such a member C 
ofRsthat<j>(B-C)<€. 

PROOF. Use 4.6, 2.1, and 3.2. 

DEFINITION 4.8. We say # is a Borelian measure with respect to R 
if and only if : R is an internal family of <j> measurable sets; <j> measures 
<T(R) ; corresponding to each subset A of cr(i?) there is a set j3 for which 

VER\ ACfr *{A) = <K/3). 

THEOREM 4.9. If <f> is a Borelian measure with respect to 2?, A is a<f> 
measurable sett <j>(A) < oo, e > 0 , then A contains such a member C of i?« 
that<t>(A-C)<<-. 

PROOF. Let B', B'\ B"' be such sets tha t 

A C B' G S?, 4>{B') = 4>(A), 
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B' - A C B" E R\ <t>(B") = <t>(B' - 4 ) , 

Bm = B' - B". 
Clearly 

Bm E Ry, B'" = B' - B" C B' - ( 5 ' - A) C ^ , 

0(,4 - B'") g 0 ( 5 ' - B'") S <i>(B") = <*>(£') - 4>(A) = 0. 

Application of 4.7 to the set Bnr completes the proof. 

THEOREM 4.10. If R is the family of all closed subsets of a metric 
space 5, <f> measures S in such a way that closed sets are <\> measurable^ 
B is a Borel sett <t>(B) < oo, e>0 , then B contains such a closed set C that 
4>(B-C)<e. 

PROOF. Clearly R is an internal family for which R = Rs, and 
<j(R) = S. Application of 4.7 completes the proof. Using 4.9 we obtain 

THEOREM 4.11. If R is the family of all closed subsets of a metric 
space 5, <f> is a Borelian measure with respect to R, A is <f> measurable^ 
<t>(A) < oo, e > 0 , then A contains such a closed set C that <j>(A — C)< e. 

REMARK 4.12. Theorems 4.9 and 4.11 are generalizations of a result 
due to Hahn.8 For corollaries and special cases of Theorems 4.7, 4.9, 
4.10, and 4.11, see Saks, op. cit., Theorem 6.5 on page 68, Theorem 6.6 
on page 69, the correct portions of Theorem 9.7+ on page 85, the 
proof of Lemma 5.1 on page 114, Lemma 15.1 on page 152. 

Let us now examine, in the light of an example, the just cited Theo­
rem 9.7+ and my own Theorem 4.7. Let 5 be the ordinary real num­
bers metrized in the customary manner. Let F be the family of all 
closed subsets of 5, G the family of all open subsets of 5. Let R = FaGs. 
I t is easily seen, with the aid of 3.1, that R is a finitely additive, 
S complemental, internal family. Furthermore <r(R)—S and Ry is 
precisely the family of all Borel subsets of 5. Let B be the rational 
numbers and let 0 so measure S that 

<t>(0) = the number of numbers in 0B 

whenever j3CS. Note that <t>{B) =<I>(S) = oo but that S is a countable 
sum of Borel sets of finite <j> measure. However, within the Borel 
set B, it is impossible to find a G& set C for which <j>(B — C)<l; if 
this could be done then C would equal B and B itself would be a Gs 
in contradiction to the well known fact that a dense Ga is a residual 
set with the power of the continuum. Since RsQGs it is also impossible 
to find, within the Borel set J5, an i?« set C for which (j>(B — C) < 1 . 

8 H. Hahn, Theorie der reellen Funktionen, vol. 1, Berlin, 1921, p. 447, Theorem IV. 
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This reveals the essential nature of the hypothesis t(<t>(B) < oo " in 4.7 
as well as the erroneous aspects of the "more generally" part of Saks' 
Theorem 9 .7+ . Nevertheless it is easy to verify the statement ob­
tained from Theorem 4.10 by deleting the hypothesis "<t>(B) < oo " and 
replacing it by "each bounded set has finite <j> measure." 

REMARK 4.13. Herein we give a supplementary example which 
serves much the same purpose as the one just discussed in 4.12. Let S 
be the plane metrized in the customary manner. Introduce F, G, and 
J? as in 4.12. Let B be those points in the plane whose first coordinates 
are rational. Let <j> so measure S that 

<t>(0) = the Carathéodory9 linear measure of (3B 

whenever PCS. Note that <j>(B) =0 (5 ) = oo but that 5 is a countable 
sum of Borel sets of finite <j> measure. Note also (cf. 4.12) that each 
countable subset of S has <t> measure zero. However, within the Borel 
set B, it is impossible to find a Gs set C for which cf>(B — C) < oo. To 
see this use the fact that the projection upon the y axis of any subset a 
of B has a Lebesgue measure which does not exceed 0(a) , and then 
recall the reasoning employed in 4.12. 

UNIVERSITY OF CALIFORNIA 

9 C. Carathéodory, op. cit., pp. 420 ff. 


