SUMMABILITY OF SUBSEQUENCES

RALPH PALMER AGNEW

1. Introduction. Let a_{nk} $(n, k=1, 2, \cdots)$ be a matrix of real or complex constants for which

(1.1)
$$\lim_{n\to\infty} a_{nk} = 0, \qquad k = 1, 2, 3, \cdots,$$

(1.2)
$$\lim_{n\to\infty} \sum_{k=1}^{\infty} a_{nk} = 1;$$
 $\sum_{k=1}^{\infty} |a_{nk}| < M,$ $n = 1, 2, 3, \cdots,$

M being a constant. This matrix defines a regular method of summability by means of which a sequence x_n of real or complex numbers is summable to X if $X_n = \sum_{k=1}^{\infty} a_{nk}x_k$, $n=1, 2, 3, \cdots$, exists and $\lim X_n = X$. It has recently been shown by R. C. Buck¹ that if the sequence x_n is real, bounded, and divergent, then the sequence has a subsequence not summable A. This note proves the following more general theorem.

THEOREM. Let A be regular and let x_n be a bounded complex sequence. Then there exists a subsequence y_n of x_n such that the set L_Y of limit points of the transform Y_n of y_n includes the set L_X of limit points of the sequence x_n .

If x_n is a bounded divergent sequence, then L_x and hence also L_Y must contain at least two distinct points and accordingly the subsequence y_n is not summable A. Applying the theorem to the divergent sequence $0, 1, 0, 1, \cdots$, we obtain the result of Steinhaus² that there is a sequence of 0's and 1's not summable A.

2. Proof of the theorem. Let L_x be the set of limit points of the bounded complex sequence x_n . Since the complex plane is separable and L_x is a closed set, there is a countable (finite or infinite) subset E of L_x such that the closure \overline{E} of E is the set L_x itself. Let u_1, u_2, u_3, \cdots be a sequence containing all of the points of E; in case E is a finite set, the points u_1, u_2, u_3, \cdots are not distinct. Let the elements of the sequence

$$(2.1) u_1; u_1, u_2; u_1, u_2, u_3; \cdots; u_1, u_2, \cdots, u_n; \cdots$$

Presented to the Society, April 28, 1944; received by the editors February 5, 1944.

¹ R. C. Buck, A note on subsequences, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 898-899.

² H. Steinhaus, Some remarks on the generalization of limit (in Polish), Prace Matematyczno-fizyczne vol. 22 (1911) pp. 121-134.

be denoted by v_1, v_2, v_3, \cdots . The sequence v_n is a sequence of points in L_x , and the set of limit points of the sequence is the set L_x . For each $p=1, 2, 3, \cdots$, let

$$(2.2) x(n_{p1}), x(n_{p2}), x(n_{p3}), \cdots$$

be a subsequence of x_n having the limit v_p .

To simplify typography, we write a(n, k) for a_{nk} . Since A is regular, (1.1) and (1.2) hold. Hence sequences $n_1 < n_2 < n_3 < \cdots$ and $k_1 < k_2 < k_3 < \cdots$ of indices exist such that for each $p = 1, 2, 3, \cdots$

(2.3)
$$\sum_{k=1}^{k_p} |a(n_p, k)| < \frac{1}{p}, \qquad \sum_{k=k_{p+1}}^{\infty} |a(n_p, k)| < \frac{1}{p}.$$

It follows that

(2.4)
$$\sum_{k=k_p+1}^{k_p+1} a(n_p, k) = \sum_{k=1}^{\infty} a(n_p, k) - \sum_{k=1}^{k_p} a(n_p, k) - \sum_{k=k_p+1+1}^{\infty} a(n_p, k) = 1 + \epsilon_p$$

where, here and hereafter, ϵ_p denotes generically a sequence for which $\epsilon_p \rightarrow 0$ as $p \rightarrow \infty$.

The subsequence y(n) of the given sequence x_n is now selected as follows. Assuming that, for a fixed index p, y(k) has been selected for each $k \le k_p$, let $y(k_p+1)$, \cdots , $y(k_{p+1})$ be selected from the sequence (2.2) in such a way that y(j) is a predecessor of y(k) in the sequence x_n when j < k and

(2.5)
$$|y(k) - v_p| < 1/p, \qquad k_p < k \le k_{p+1}.$$

Since x_n is bounded, say $|x_n| \le B$, the subsequence y(n) thus defined by induction is bounded and accordingly possesses a transform

$$(2.6) Y_n = \sum_{k=1}^{\infty} a_{n,k} y_k.$$

For each $p=1, 2, 3, \cdots$

$$(2.7) Y(n_p) = \sum_{k=1}^{k_p} a(n_p, k) y_k + \sum_{k=k_p+1+1}^{\infty} a(n_p, k) y_k + \sum_{k=k_p+1}^{k_p+1} a(n_p, k) y_k$$

$$= \epsilon_p + \sum_{k=k_p+1}^{k_p+1} a(n_p, k) y_k,$$

since each of the first two terms of the second member of (2.7) is dominated by B/p. Moreover

(2.8)
$$\sum_{k=k_p+1}^{k_p+1} a(n_p, k) y_k = v_p \sum_{k=k_p+1}^{k_p+1} a(n_p, k) + \sum_{k=k_p+1}^{k_p+1} a(n_p, k) (y_k - v_p) = v_p (1 + \epsilon_p) + \epsilon_p = v_p + \epsilon_p.$$

Therefore the sequences $Y(n_p)$ and v_p have the same limit points and accordingly the set of limit points of the sequence $Y(n_p)$ is identical with the set L_x of limit points of the sequence x_n . The set L_Y of limit points of the complete sequence Y_n therefore includes the set L_x and the theorem is proved.

3. Conclusion. It is apparent from the proof of the theorem that if x_n is a bounded divergent sequence, then it is possible to construct many subsequences y_n not summable A. However, the class of such subsequences y_n thus constructed seems to be a "small" subclass of the class of all subsequences of x_n . This observation is in agreement with the fact, recently proved by Buck and Pollard, that if A is either convergence or the Cesàro method of order 1 and s_n is a real bounded sequence summable A, then there is a sense in which "almost all" of the subsequences of x_n are summable A.

The theorem states that the set L_T of limit points of the transform Y_n of the subsequence y_n of x_n includes the set L_x of limit points of x_n . In some cases, L_T is identical with L_x . This is so when A is convergence. In some cases, L_T is more extensive than L_x . This is so when A is a Cesàro method of positive order and the set L_x is not connected since, as was shown by Barone, the set of limit points of the transform of each bounded sequence must be connected. The same is true for methods of Hölder, Riesz, de la Vallee Poussin, and Euler.

CORNELL UNIVERSITY

⁸ R. C. Buck and Harry Pollard, Convergence and summability properties of subsequences, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 924-931.

⁴ H. G. Barone, Limit points of subsequences and their transforms by methods of summability, Duke Math. J. vol. 5 (1939) pp. 740-752.