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PROOF. Apply Theorem J for the case w==r. We obtain for gr an 
expression which differs from the one just written only in the fact that 
the terms Brtr+ifr+i+Brtr+2fr+2+ • • • +Br,nfn are missing from its 
numerator. But the coefficients J3r,, = 0 when r<s. Hence the two 
expressions are equal. 

REMARK. The generalization of the method to orthonormalization 
with respect to a general norming or weight function p is obvious. 
One applies the process described to the functions (p)ll2fi and ob­
tains functions g% (=linear combinations of the (p)ll2fi) which are 
orthonormal with respect to the weight function unity. Dividing 
through by the common factor (p)112 one forms functions gi(p)~~lt* 
which are orthonormal with respect to p. 
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VERTICES OF PLANE CURVES 

S. B. JACKSON 

1. Introduction. The Four-Vertex Theorem, proved first by Mukho-
padhyaya [l],1 states that on any oval, not a circle, there are at 
least four vertices, that is, extrema of the curvature. This result was 
extended by Fog [2] and Graustein [3] to any simple closed curve 
with continuous curvature. The discussion by Graustein makes it 
clear that the Four-Vertex Theorem is valid also for a very large 
number of non-simple curves. Indeed the class of curves having only 
two vertices is relatively quite small. The main object of the present 
paper is to characterize geometrically, as far as possible, the curves 
with just two vertices. It is thus a proof of the Four-Vertex Theorem 
by exclusion. 

Since a curve with just two vertices consists of two arcs of mono­
tone curvature, a study is made of such arcs (§2). The most useful 
fact is that this monotone character of an arc is invariant under direct 
circular transformations. The property that a point be a vertex of a 
curve is similarly invariant. This makes it possible to simplify many 
of the discussions by suitably chosen transformations. Monotone arcs 
are found to be essentially simple and possess a spiral character. 

The existence of vertices on certain types of arcs is established (§4) 
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1 Numbers in brackets refer to the Bibliography at the end of the paper. 
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and these results applied to give two new proofs of the theorem of Fog 
and Graustein mentioned above. It is then possible to obtain five re­
sults describing the structural character of curves with just two ver­
tices (Theorem 5.1). 

It is well known that an oval which meets any circle at most four 
times has exactly four vertices [4, 5]. This result is generalized to 
simple closed curves (Theorem 6.1), and two other results are ob­
tained concerning the relation of such a curve to its extreme circles 
of curvature (§6). Another familiar result on ovals, namely that an 
oval which meets a circle 2n times has at least In vertices [6], is also 
extended to simple closed curves (§7). In this case an additional con­
dition on the cyclic character of the points of intersection is necessary 
since the curve need not be convex. 

At several points in the discussion it is convenient to make use of 
the following result (Lemma 3.1), which is of some interest in its 
own right. If a Jordan curve bounding a simply connected region is 
divided in any manner into three arcs, there exists a circle interior to 
the region and having points in common with all three arcs. 

2. Vertices, and arcs of monotone curvature. By a vertex of a 
curve of class C" is meant a point or a circular arc of the curve for 
which the curvature is a relative extremum with respect to the neigh­
boring arcs. The term relative extremum is to be understood in the fol­
lowing sense. If 1/A denotes the curvature at the given point (or arc) 
and 1/R the curvature at an arbitrary point, then in a sufficiently 
small neighborhood of the point (arc) 1/R — l/A^O or ^ 0 . The 
equality sign may be valid at any number of points on the adjacent 
arcs, but is not identically true for either of them. 

An arc on which the curvature is monotone nondecreasing or mono­
tone nonincreasing has no vertices, and conversely, an arc with no 
vertices has this property. For brevity such arcs will be referred to as 
monotone arcs. The term arc in this paper is used to denote a map of a 
line segment which is locally topological but which is not necessarily 
simple in the large. Thus any segment of a curve will be referred to as 
an arc of the curve. An arc without double points is a simple arc. In 
the following discussion all arcs and curves will be understood to be 
of class C" unless the contrary is expressly stated. 

LEMMA 2.1. Let two curves, & and C2, be tangent in the same direction 
at a point or coincide along an arc, but not coincide along the neighboring 
arcs. If 1/Ri denotes the curvature of d and if 1/Ri *z I/R2 in a neighbor­
hood of the given point or arc, then in a sufficiently small neighborhood 
C\ lies entirely to the left of C2 except for the given point or arc of contact. 
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Let Po be the given point or the last point of the given arc of co­
incidence, and let 5 be the arc length on C% measured from P 0 . I t will 
be sufficient to prove the lemma for positive values of s, for if the 
directions on the d are reversed the same proof will then apply to 
the arcs in that direction. If P 0 is taken as the origin of coordinates 
and the common directed tangent as the x-axis, the curves C% are 
given locally by the equations 

(2.1) Xi = I cos <j>ids, yi = I sin^dfe, 
t/ o J 0 

where fa =Jlds/Ri. 
Since l / JRi^ l / i ? 2 and the equality sign is not identically true, it 

follows that for all values of s greater than zero 

ƒ* a /» a 

ds/Ri > I ds/Ri = *,(*). 
o «Jo 

By (2.1) this implies at once the following relation: 

(2.2) yi = I sin fads > I sin fads = y2. 
•/ o J o 

Thus if P i and P2 denote the points on & and C2 corresponding to 
the same arc length s, then P i ^ P 2 for all sufficiently small positive s. 
The slope of the line P1P2 may be computed from (2.1) and the limit 
of this slope as s approaches zero found by THospital's Rule, 

/o sin fads — /o sin fads sin #1 — sin fa 
lim mp1p2 = lim — = lim • xxxxx IIVjr\r<l xxxxx - _ x u x x 

«-•o s-*o JQ cos fads — Jo c o s fads *->o cos $1 — cos fa 
2 cos 2-\fa + fa) sin 2~1(0i ~ #2) 

= l im -— = 00. 
s-*o — 2 sin 2~1(0i + fa) sin 2""1(<̂ i — fa) 

By taking 5 sufficiently small the lines P iP 2 can be made as nearly 
parallel to the ^-axis as we desire. But since & and Ci are both per­
pendicular to the y-axis at Po, it is clear that for sufficiently small 
5 the lines P1P2 meet each d only once in this neighborhood. Inas­
much as Pi7*P2 , C\ and C2 cannot meet in this neighborhood. Since 
by (2.2), yi>y2, P i lies always above, that is, to the left of C2, and the 
lemma is proved. 

COROLLARY 2.1.1. In a neighborhood of a vertex of a curvef the circle 
of curvature lies entirely to the left or entirely to the right of the curve 
according as the curvature at the vertex is a maximum or a minimum. 
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This is an immediate consequence of the lemma with the curve and 
its circle of curvature taken as the curves &. 

COROLLARY 2.1.2.-4/ every interior point {or circular arc) of a mono-
tone arc, *A, the arc crosses its circle of curvature. The crossing is from 
right to left or from left to right according as the curvature is monotone 
nondecreasing or monotone noninct'easing. 

This also is a direct consequence of the lemma if the curves & are 
taken as follows. Let one of them be the path traced by a moving 
point which follows the circle of curvature as it approaches the con­
tact point (or arc) and follows zA as it leaves this contact, while the 
other is the path traced if the point follows zA as it approaches the 
contact, and the circle as it leaves it. 

LEMMA 2.2. If, at every interior point (or circular arc), an arc, zA, 
crosses its circle of curvature, then zA is a monotone arc. 

For if zA were not monotone it would have vertices, which is im­
possible by Corollary 2.1.1. Since Lemma 2.2 and Corollary 2.1.2 
completely characterize the monotone arcs and since a point not in­
terior to a monotone arc is necessarily either a vertex or a limit point 
of vertices, the following result is established by exclusion. 

LEMMA 2.3. If for a point (or circular arc) interior to an arc, zA, the 
circle of curvature lies locally entirely to one side of zA then this point 
(or arc) is either a vertex or a limit point of vertices. 

LEMMA 2.4. A monotone arc of nondecreasing (nonincteasing) curva­
ture is carried into a monotone arc of nondecreasing (nonincreasing) 
curvature by any direct circular transformation. A vertex of an arc is 
carried by a direct circular transformation either into a vertex of the same 
kind on the transformed arc or into a limit point of such vertices. 

This result follows immediately from the fact that Corollary 2.1.1, 
Corollary 2.1.2, Lemma 2.2, and Lemma 2.3 characterize vertices and 
monotone arcs in terms that are invariant under direct circular trans­
formations. This fact affords a simple proof of the following well 
known result. 

LEMMA 2.5. If P 0 is any point of a monotone arc zA and P is any 
point further along zA in the positive direction, the circle of curvature 
at P lies to the left or to the right of the circle of curvature at Po according 
as the curvature onzAis nondecreasing or nonincr easing. The circles have 
no point in common unless they are identical and zA contains the circu­
lar arc from P0 to P. 
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I t is clearly sufficient to prove the lemma for points P in an arbi­
trarily small neighborhood of Po. Suppose the circles of curvature at P 
and Po have a point Q in common. By a direct circular transformation 
let Q be carried into the point a t infinity. The transformed arc, zA', 
then has zero curvature at the transforms of P 0 and P , which, by the 
monotone character of zA', can occur only if the curvature is zero on 
the entire arc between the two points. The lemma follows by trans­
forming back to aA. This argument is valid even if Q coincides with Po. 
The fact that the circle of curvature at P lies to the left or right of 
that at Po according as the curvature is nondecreasing or nonincreas-
ing is a consequence of Corollary 2.1.2. 

COROLLARY 2.5.1. A monotone arc QA is simple unless it contains a 
complete circle traced one or more times. In this latter case it is tangent 
to itself without crossing at a single point or along a single arc of this 
circle. 

COROLLARY 2.5.2. If a monotone arc, QA, has positive curvature, it is 
an inwinding or an outwinding spiral according as the curvature is non-
decreasing or nonincreasing. It is simple except for any complete circles 
it may contain. 

Both corollaries are immediate consequences of the lemma. For 
Corollary 2.5.2 the spiral character follows from the fact that for a 
point of positive curvature the inside of the circle of curvature lies 
to the left of the arc. 

3. A lemma on circles. At several points in the remainder of the 
paper it will be convenient to make use of the following lemma. 

LEMMA 3.1. Let %be a closed simply connected region of the plane 
bounded by a Jordan curve, and let the Jordan curve be divided into three 
arcs, QAI, OAZ, QAZ. Then there exists a circle contained in ^ and having 
points in common with all three arcs. 

The following simple proof is due to Paul Erdös and is given in 
preference to the more complicated proof originally given by the au­
thor. 

Let Ai be the set of points of î ( whose distances from arc oAi do 
not exceed their distances from the other aA's. The sets A i are clearly 
closed. Moreover they are connected, for if X, YÇ£Ai and if P , Q are 
the corresponding nearest points of aAi, then the line segments XP 
and YQ and the arc PQ of zAi all belong to Ai. Now A1\JA2

]UA3 = CE{ 
and since each of the arcs has an end point in common with the other 
two, AiC^Aj^O. Thus A1KJA2 is a closed connected set. 
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Suppose Air\A2r\Az = 0. Then the intersection of Az with A\\JA2 
consists of the two disjoint non vacuous closed sets A\C\Az and 
A%r\Az, and is therefore not connected. This is impossible since it 
contradicts the unicoherence of î^.2 Thus there is some point Po in 
AiC^A^Az. By definition, the distances from P 0 to the three <tAi 
have the same value, say r. The circle with center a t Po and radius r 
is the required circle. 

COROLLARY 3.1.1. If a simply connected region is bounded by n differ-
entiable arcs (n^3)f and if the angles formed by the arcs interior to the 
region are all less than or equal to w, then there exists a circle contained 
in the region and tangent to at least three of the arcs. 

If two consecutive arcs are taken as the arcs zAi and <tAî of Lemma 
3.1 and all the other arcs together taken as oAz, then by the lemma 
there is a circle interior to the region and having points in common 
with at least three of the arcs. If, at their common point, two con­
secutive arcs make an angle less than w interior to the region, there is 
no circle through this point which lies interior to the region. Such a 
point thus cannot be on the given circle. But if a circle meets a differ-
entiable arc at an interior point without crossing it, they are tangent, 
whence all the points common to the circle and the arcs are tan-
gencies. Two of the contact points may coincide, for if two consecu­
tive arcs make an angle of w a t their common point, the circle may 
be tangent to them both at this point. 

4. Location of vertices on a curve. The following lemma estab­
lishes the existence of vertices on certain types of arcs, and is of 
fundamental importance in the succeeding work. 

LEMMA 4.1. If a simple, noncircular arc, AB, is tangent to a circle 
(or line) in the same direction at A and B, and never crosses this circle 
(line)j there is a maximum or a minimum of curvature interior to AB 
according as AB lies to the right or left of the given directed circle (line). 

I t is sufficient to prove the lemma for the case when AB meets the 
circle only at A and 5 , since otherwise AB may be replaced by a sub-
arc which does have this property. Suppose AB lies to the left of the 
directed circle. Let a point P 0 of the directed circular arc BA be car­
ried into the point at infinity by a direct circular transformation. The 
circle goes into a straight line and the arc AB into an arc A'B' tan-

2 A continuum, that is, a closed connected set, is said to be unicoherent if, when it 
is written in any manner as the sum of two continua, C\ and C2, the set G Ç\C% is also a 
continuum. This is a well known property of closed simply connected regions of the 
plane. 
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gent to this directed line at A ' and Bf and lying to its left. The points 
A', B' appear in that order on the directed line. It is clear, from the 
Gauss-Bonnet formula, that the angular measure of the arc A'B' is 
zero. Since at A' and B' the arc lies to the left of the line there are 
points of positive curvature arbitrarily near A1 and B', but since the 
angular measure is zero there must be points of negative curvature 
on A'B'. Thus there is at least one minimum of curvature interior 
to A'B'. By Lemma 2.4 this implies that there is a minimum interior 
to AB. This completes the proof of the lemma when AB lies to the 
left of the circle. The other case reduces to this by reversing the direc­
tion on the arc. 

COROLLARY 4.1.1. If a simple, noncircular arc, AB, is tangent to a 
circle {or line) in the same direction at A and B and lies to the left of 
the circle {line) near A and B there is at least one minimum of curvature 
interior to AB. If AB lies to the right of the circle near A and B there is 
at least one maximum of curvature interior to AB. 

Let AB lie locally to the left of the given circle at A and B. By 
adjoining the directed circle arc, BA, to AB a closed curve C of class 
C' is obtained. Since, by a direct circular transformation, this can be 
transformed into a curve where BA is a line segment, the proof will 
be confined to this case. 

If there are points of negative curvature the result is trivial, since 
there are points of positive curvature arbitrarily close to A and B. 
Suppose then that the curvature is positive and consider the smallest 
circle containing C. There is a smallest such circle since C is a closed 
set, and there must be at least two distinct contact points of C with 
this circle, P and Q. Neither of the contact points can be on the line 
segment BA for there would then be points of C outside the circle. 
Arc AB is simple so the tangencies are in the same direction at P 
and Q. Since AB has positive curvature and is interior to the circle, it 
lies to the left of the directed circle. The arc PQ therefore has a mini­
mum of curvature by Lemma 4.1, or if PQ is a circular arc it is a 
minimum of curvature itself. This proves the first part of the corol­
lary. The second part may be reduced to this by reversing the direc­
tion on AB. 

An arc AB for which A = B will be called a closed arc. If it contains 
no other double points it is a simple closed arc. 

LEMMA 4.2.-4 closed arc, not a circle, contains at least one vertex in­
terior to the arc. 

For if an arc has no vertices it is monotone, and by Lemma 2.5 the 
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first and last points can coincide only if the entire arc is a circle traced 
one or more times. 

LEMMA 4.3. Let AB be a simple closed arc, not a circle, bounding a 
region %, and let 0 be the angle interior to ^ between the two tangents 
at the double point. If d^w, there is a maximum or a minimum of 
curvature interior to AB according as %, lies to the left or the right of 
the arc. If O^w, there is a maximum or a minimum of the curvature in­
terior to AB according as 5^ lies to the right or left of the arc. 

First let 6 be less than or equal to w. Let AB be divided into three 
arcs, AP, PQ, QB, so that PQ is not an arc of a circle. This can be 
done since AB is not a circle. By Corollary 3.1.1 there is a circle en­
tirely in 5^ and tangent to all three of these arcs. The subarc of AB 
from the contact point on A P to the contact point on QB satisfies 
the conditions of Lemma 4.1, whence the lemma follows at once since 
the arc is to the right or left of the circle according as î^ is to the 
left or right of the arc. The case when 6 ^w may be reduced at once to 
the above by a direct circular transformation taking a point of ^ into 
the point a t infinity. I t should be noted that under this transforma­
tion ^ corresponds to the exterior, not the interior of the transformed 
arc. 

When 0 = 7T, that is, when the directed tangents at A and B coin­
cide, both parts of Lemma 4.3 apply, and we obtain the following 
special case. 

COROLLARY 4.3.1. If AB is a simple closed arc, not a circle, and the 
directed tangents at A and B coincide, there is both a maximum and a 
minimum of curvature interior to the arc. 

Lemma 4.1 is a direct generalization of the results obtained by 
Graustein [3 ] on arcs of type fi. The material of this section also af­
fords an easy proof of the following result of Graustein [3 ] and Fog [2 ]. 

THEOREM 4.1. Every simple closed curve, C, not a circle, has at least 
four vertices. 

Let C be directed so that its interior is to the left of the curve, and 
let P 0 be the point of absolute minimum curvature. Then C, consid­
ered as a simple closed arc from P 0 to Po, satisfies the conditions of 
Lemma 4.3, and so has a minimum interior to the arc. Thus there 
are two minima of the curvature on C, whence there are two maxima 
and so four vertices. 

An alternative proof can be given as follows. Let C be divided into 
three arcs, none of them merely circular arcs. By Corollary 3.1.1 there 
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is a circle entirely inside C and tangent to each of the three arcs. At 
least two of the contact points are distinct and all tangencies are in 
the same direction. The arcs into which these contact points divide C 
both satisfy Lemma 4.1, whence C has two minima (or two maxima) 
and thus four vertices. 

5. Curves with two vertices. If a curve, C, is to have exactly two 
vertices it must consist of two monotone arcs, whose characteristics 
were discussed in §2. Corollary 2.5.1 leads at once to the following 
result. 

LEMMA 5.1.-4 curve, C, with exactly two vertices may be divided into 
two arcs, each of which is simple unless it contains a full circle. In this 
latter case the arc is tangent to itself, without crossing, either at a single 
point or along a single arc of the circle. 

If, from a curve C with just two vertices, all arcs which are com­
plete circles are deleted, the resulting curve, C, will still be a closed 
curve of class C,f. Moreover the operation neither adds nor takes 
away vertices, whence C consists of two simple monotone arcs. The 
curve C is called a normalized curve. 

A point where a curve meets itself is called a double point. A double 
point is called simple if the curve passes through it exactly twice. 

LEMMA 5.2. A normalized curve, Ü, having exactly two vertices has 
double points, and all the double points are simple. 

If there were no double points C would be a simple closed curve, 
which is impossible by Theorem 4.1. If any double point were not 
simple it would divide C into at least three arcs, none of which are 
circles since C is normalized. But by Lemma 4.2 each arc would then 
contain a vertex, which is impossible. 

Let us consider the circle of curvature at the point of minimum 
curvature on any curve C with two vertices. Since the curve consists 
of two monotone arcs, it follows from Lemma 2.5 that the entire 
curve C lies on or to the left of this circle. By a direct circular trans­
formation, a point to the right of this circle may be taken into the 
point at infinity. C is then carried into a curve C' whose curvature 
is always positive and which is inside the transformed circle. If M 
and m are the points of maximum and minimum curvature on C , 
all the circles of curvature lie inside that a t m and outside that at M, 
by Lemma 2.5. The center of curvature, 0, a t the point M is interior 
to every circle of curvature. If P is a point moving in the positive 
direction on C' the radius vector, OP, always turns in the same direc-
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tion, namely counterclockwise. Thus if C' is tangent to itself at any 
point the directed tangents at this point must coincide. 

LEMMA 5.3. If a curve, C, having exactly two vertices is tangent to it­
self at any point, the directed tangents coincide. 

For otherwise C' would also have oppositely directed tangents a t a 
point, and this has just been shown impossible. 

A simple closed arc of a curve is called a loop. If the remainder of 
the curve never crosses this arc the loop is called a simple loop. 

LEMMA 5.4. A curve, C, having exactly two vertices, has exactly two 
simple loops, one containing each vertex. 

Let C be transformed into curve Cf as in the last proof. It is suffi­
cient to prove the lemma for C''. We shall proceed to establish the 
existence of a simple loop containing the maximum of curvature. If 
the maximum of curvature occurs on a circular arc which contains a 
full circle, this arc coincides with the circle of maximum curvature. 
In this case the circle itself constitutes the desired simple loop since 
it is completely within all other circles of curvature. 

Suppose then that the maximum curvature occurs at a point or on 
an arc less than a full circle. As before let M and m be points of maxi­
mum and minimum curvature respectively. By Corollary 2.5.2 the 
arcs mM and Mm are inwinding and outwinding spirals respectively, 
each arc being simple except for tangencies without crossing which 
occur whenever a complete circle is contained in the arc. Since by 
Lemma 5.2 even the normalized curve C is not simple it follows that 
arcs mM and Mm intersect. Let A be the first point where Mm, as 
it is traced from M, meets mM. We shall show that arc AM A is the 
required simple loop. If A is a double point of mM, AM will mean 
the arc from A to M which does not pass again through A. 

If A M were not simple it would contain a full circle which would 
have M in its interior and A on its exterior, whence A could not be 
the first point where Mm meets mM. Similarly MA is simple. Thus 
AM A i3 a loop, not a circle, containing the maximum of curvature. 
Since the entire curve C' spirals in the counterclockwise direction 
about the circle of curvature a t M, this circle lies interior to and to the 
left of A MA. The angle formed at A interior to the loop is less than T, 
for otherwise by Lemma 4.3 the arc contains a minimum of curva­
ture, which is false. 

No points of mM lie interior to A MA since by its spiral character 
it never crosses itself and by construction it never crosses MA. Let a 
moving point P trace Mm. At A it definitely passes to the exterior of 
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the loop. Let B be the first point where P meets the loop again. If B 
does not exist the loop is simple. If B lies on MA the arc from B to B 
is a full circle containing the loop in its interior. The outwinding spiral 
character of Mm assures that P can never get to the interior of the 
loop, so again it is simple. Suppose finally B is on AM. The arc 
BMAB is then a simple closed arc bounding a region to its left. More­
over the angle at B interior to this region is clearly greater than or 
equal to w. By Lemma 4.3 this arc would then contain a minimum, 
which is impossible. Thus the loop A MA is simple. This establishes 
the existence of a simple loop containing the vertex of maximum cur­
vature. But since a mere reversal of direction on a curve interchanges 
maximum and minimum curvatures, the same proof applies to the 
other case. 

By Lemma 4.2 every loop, not a circle, contains at least one vertex, 
whence there can be no other loops on the curve which are not circles. 
Moreover since every circle in the curve distinct from the above loops 
is a circle of curvature on a monotone arc, it is crossed by the arc and 
is not a simple loop. This completes the proof of the lemma. 

A closed curve in the plane divides the plane into a certain number 
of regions bounded by arcs of the curve. The definition of a simple 
loop implies that the loop constitutes the entire boundary of one of 
these regions. For the loop containing the maximum point this region 
was shown above to lie to the left of the loop, while for the loop con­
taining the minimum point the region bounded is to the right. It 
should be noted that one of the regions bounded by the curve is al­
ways an infinite one. 

LEMMA 5.5. The region bounded by a simple loop of a curve C with 
exactly two vertices lies to the right or left of the loop according as this 
loop contains the minimum or the maximum of curvature. 

LEMMA 5.6. If C is a curve with exactly two vertices^ the only regions 
determined by C which are bounded in the same sense by all their bound­
ing arcs are those bounded by the two simple loops. 

To prove this, let C be transformed into a curve Cf of positive cur­
vature as before. The regions bounded by the two loops in this case 
are the infinite region and the region containing the center of curva­
ture, 0, at M. Let P be a point of any other region and consider the 
ray OP. By the spiral character of C, ray OP always crosses it in the 
same direction, namely from left to right. Point P is thus to the right 
of one of the arcs bounding its region and to the left of another since 
there is at least one crossing between 0 and P and another between P 
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and the point at infinity. This establishes the lemma for C' and thus 
for C. 

The results of this section may be summarized in the following 
theorem. 

THEOREM 5.1.-4 curve, C, with exactly two vertices, has the following 
properties : 

(a) The corresponding normalized curve, C, may be divided into two 
simple arcs ; 

(b) The corresponding normalized curve, C, must contain double 
points, and all the double points are simple; 

(c) The curve, C, has exactly two simple loops, one containing the 
maximum of curvature and bounding a region to its left, the other con­
taining the minimum of curvature and bounding a region to its right ; 

(d) No region determined by C, other than those mentioned in (c), is 
bounded in the same sense by all its bounding arcs', 

(e) At any point where C is tangent to itself the directed tangents co­
incide. 

6. Curves with four vertices. It is a well known theorem that an 
oval which has at most four intersections with any circle has exactly 
four vertices [4, 5]. This result may be generalized as follows. 

THEOREM 6.1.-4 simple closed curve, C, which meets any circle or 
straight line at most four times has exactly four vertices. 

Let the curve be directed so the interior lies to its left. First let 
us show that the circle of curvature at any point (or arc) of maximum 
curvature on C can have no further points in common with the curve. 
In a neighborhood of the given vertex the circle is interior to C by 
Corollary 2.1.1. In this neighborhood let points P and Q of the circle 
be chosen on opposite sides of the vertex. Suppose the circle contains 
a point R outside C. Now let the curvature of the circle decrease, 
keeping it tangent to C at the maximum point, M, so that the new 
circle lies to the right of the original one. This deformation may be 
taken so small that the points P, Q, R do not cross C. But by Lemma 
2.1 the new circle lies to the right of C in a neighborhood of M. Thus, 
in addition to M itself, there are crossings on MP, PR, RQ, and QM. 
This contradicts the assumption of at most four intersections. If the 
circle of curvature at M contains no exterior points but does contain 
a point of tangency with C, the curve lies to the right of the directed 
circle at this point, R. The deformation above then takes R to a point 
outside C and the contradiction is obtained as before. 

Suppose Theorem 6.1 is false, that is, suppose C has at least six 
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vertices. If Mi, M2, Mz are three maximum points, let C be divided 
into arcs M\M%, M2Mz, MzMi. By Corollary 3.1.1 there is a circle in­
terior to C and tangent to all three arcs. None of the points Mi can 
be points of contact since we have shown that the largest circles at 
the Mi which are locally interior to C can never meet C again. Thus 
there are three distinct points of contact, Ci, C2, C3. A slightly larger 
concentric circle will then have the Mi outside and the d inside, con­
tradicting the hypothesis of only four intersections. Thus the assump­
tion is false and the theorem is proved. 

THEOREM 6.2. If a simple closed curve, C, has exactly four vertices, the 
circles of curvature at the vertices have no further points in common 
with C. 

Let M be a point of maximum curvature and suppose the circle of 
curvature at M meets C at a point other than this vertex. Consider 
the family of circles tangent to C at M and lying on or to the left of 
the circle of curvature at M. Since the circles of this family which 
have sufficiently small radius meet C only at M, while the circle of 
curvature does meet C at some other point, there is a circle of the 
family lying entirely inside Ç but tangent to it at some point P dis­
tinct from M. Since C is simple, the circle is tangent to C in the same 
direction at P and M, lying to the left of C at both points. The arcs 
MP and PM then each contain a maximum of curvature by Lemma 
4.1. This gives three maximum points and thus at least six vertices. 
This contradicts the hypothesis of only four vertices so the circle of 
curvature cannot meet C again. Since a reversal of direction on C 
interchanges maximum and minimum points, the same proof shows 
that the circles of curvature at the minimum points also do not meet 
the curve again. 

THEOREM 6.3. If a simple closed curve, C, has exactly f our vertices, 
a necessary and sufficient condition that it can be carried into an oval 
by a direct circular transformation is that either the two maximum or the 
two minimum circles of curvature intersect. 

The term oval here means a simple closed curve with nonvanishing 
curvature. If an oval with exactly four vertices is directed so the cur­
vature is positive, the entire curve lies inside the circles of curvature 
at the points of minimum curvature by Theorem 6.2. Thus each such 
circle contains an arc of the other near the opposite minimum point, 
and they must intersect. The condition of the theorem is thus neces­
sary, since the properties in question are preserved by direct circular 
transformations. 
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Consider now a simple closed curve, C, with just four vertices, hav­
ing two of its extreme circles of curvature intersecting. The curve may 
be so directed that these are the circles of curvature a t the minimum 
points. The entire curve then lies to the left of both circles. Since the 
circles intersect, there is a point to the right of both circles. Let this 
point be taken into the point at infinity by a direct circular trans­
formation. The two circles of minimum curvature for the new curve 
now have positive curvature since their interiors lie to their left. But 
since there are only four vertices, and monotone arcs go into mono­
tone arcs, the curvature is positive at all points. The transformed 
curve is therefore an oval, and the proof is complete. 

7. Curves with In vertices. I t is a well known fact that an oval 
which crosses a circle 2n times has 2n vertices [6]. This fact may be 
generalized to simple closed curves as follows. 

THEOREM 7.1. Let a simple closed curve, C, be met by a circle C. If, 
among the arcs into which C divides C, there are 2n — l arcs P^i-xPii 
(i = l, 2, • • • , 2n — 1) such that the points P& are in the same cyclic 
order on C and C, then C has at least 2n vertices. 

The point P<a may coincide with P21+V If C is an oval the condition 
on the cyclic order of the points is automatically fulfilled. I t should 
be noted that the theorem does not require that the chosen arcs be all 
the arcs of C. 

Any one of the chosen arcs lies either wholly inside or wholly out­
side of C. There are therefore at least n of these arcs in one place or 
the other. We may suppose the n arcs interior to C since the other case 
can be reduced to this by a direct circular transformation. Let these n 
arcs, in order, be denoted by aAi, their end points by Q%, R%, and the 
arc of C from Ri to Qi+i by d. I t may be assumed without loss of gen­
erality that none of the points Qi, Ri, are points of tangency of C 
and C, for if they are C may be replaced by a slightly smaller con­
centric circle for which this is not true. This implies that no d reduces 
to a point. By hypothesis the region interior to C bounded by the oAi 
and the Ci is bounded in the same sense by all these arcs. By suitably 
directing C the region may be made to lie to the left of these arcs. 

Let zAj and <̂ fy+i be any two consecutive zAi, and consider the re­
gion bounded by oAj, zAj+i, Cj, and the directed arc of C from Rj+i 
to Qj. This is a simply connected region bounded by differentiable 
arcs. Let the boundary be divided into three arcs as follows : <JÎ$, Cj, 
and the remainder of the boundary. By Lemma 3.1 there is a circle 
in the region having points in common with all three arcs, and these 
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are ail points of tângency as in Corollary 3.1.1. Since there is a con­
tact point on Cy, there cannot be one on the rest of C, whence there 
are contact points on QAJ and zAj+i which we shall call Tj and Sj+i re­
spectively. These points are distinct since zAj and e^y+i have no point 
in common and are distinct from Rj and QJ+i since C is not tangent 
to C a t these latter points. The tangencies a t Tj and Sj+i are clearly 
in the same direction on the circle. 

If the same operation is carried out for arcs zAj-i and QAJ we obtain 
points 7V_i and Sj on e/fy_i and QAJ respectively. We shall show that 
the points Sj, Tj occur in that order as <tAj is traced from Qj to Rj. Let 
the circles constructed with contact points on C/_i and Cj be denoted 
by Oj-i and Oj respectively. Suppose that arc QjTj does not con­
tain Sjf and consider the region bounded by QjTj, the arc of Oj from 
Tj to its contact point on Cj, and the arc of C from Qj to this same 
contact point. This region is exterior to Oyand contains the arc TjSjRj 
by hypothesis. The point of contact of Oy_i and C/_i is exterior to this 
region and also exterior to Oj. Thus each of the arcs of 0;-_i from its 
contact point with Cy_i to Sj must cross Oj twice. This is impossible, 
since two distinct circles can meet in only two points. Thus Sj and 
Tj occur in that order on e/fy. The various arcs Tj-iSj of the given 
curve C are therefore distinct arcs with no points in common. But 
each of these n arcs of C satisfies the conditions of Corollary 4.1.1, 
and thus contains a maximum point since it lies locally to the right 
of <9y_i a t Ty-i and Sj. This proves the existence of n maximum points 
and thus 2n vertices. 

I t should be noted that if a simple closed curve intersects a circle 
an infinite number of times any number of arcs may be found satisfy­
ing the conditions of the theorem. The following result then follows 
a t once. 

COROLLARY 7.1.1. If a simple closed curve intersects a circle infinitely 
often, it has an infinite number of vertices. 
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