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1. Introduction, If p(x) is a non-negative function integrable on 
the finite interval (a, b) and positive on a set of positive meas­
ure, there exists a unique set of polynomials {pn(pt x)} of degree n, 
PniPi x)—c„pcn+ • • • , cn>0, which are orthonormal on (a, b) rela­
tive to the weight function p(x); that is 

/
'* / N / N / N (0 il n^tn, 

p(%)pn(p> %)pm(p, x)dx = < 
a (1 if » • » . 

In the sequel the abbreviation ONP will be used to denote such a set 
of polynomials. 

Given any f unction ƒ (#) for which the integral fap(x)f(x)dx exists, 
the set of ONP associated with p{x) may be used to construct the 
formal expansion 

00 y» b 

(1) ƒ<» ~ £ OnPnip, *). <*. - I p{t)f(t)Pn(p, t)dt. 
n-0 •/ a 

Much attention has been given to the convergence properties of such 
series for particular choices of p(x). In the succeeding pages known 
results on this problem are extended by means of what seems to be a 
new type of proof. 

Let \pn(pu x)} and {pn(pt, x)} be two sets of ONP with different 
weight functions pi(x) and p*(x) and let 

n 

(2) sn(f; pu x) « 23 akipk(pi, x), i « 1„2, 

denote the partial sums of nth. degree for the two corresponding ex­
pansions (1) associated with f(x). In §§S and 6 below certain sufficient 
conditions will be established for the validity of the relation 

(3) lim {sn(f; pu X) - $*(ƒ; P2, x)} » 0; 
n-n© 

that is, conditions under which the two series mentioned are equicon-
vergent. It should be stated that the emphasis of the paper is upon 
method rather than upon specific conditions. The discerning reader 

Presented to the Society, April 24, 1943; received by the editors July 9, 1943. 

358 



EQUICONVERGENCE THEOREMS 359 

will easily see arrangements for the weight functions which yield vari­
ations of the conditions cited. 

The materials from the theory of ONP that are needed in the proofs 
to follow are quite elementary and are collected for reference in §2. 
Two lemmas are the subject matter of §3 ; from them the remainder 
of the paper follows essentially as a series of corollaries. 

Some interesting relations between bounds for related systems of 
ONP are indicated in §4. These are obtained as by-products of the 
method of proof for the equiconvergence theorems. 

2. Notations and formulas* The symbol (a, b) will denote the closed 
interval a^x^b. It will be assumed without further mention that 
any weight function and any function ƒ(x) for which a series of type 
(1) is used will satisfy the conditions set forth for such functions in the 
introduction. The symbol L2(p; a, b) will denote the class of all meas­
urable f unctions ƒ (#) for which the integral Jap(x)[f(x)]2dx exists. 

If ƒ (a) and g(x) are in L2(p; a, 6), it is well known that 

(4) f\(x)U(x)]*dx=ital 

ƒ» b oo ƒ • 6 

p(x)f(x)g(x)dx = X akbk, bk =» I p(t)g(t)pk(p, t)dt, 
a &~0 J a and 

(6) f P(x)[f(x) - sn(f; p, x)\Hx^ f p(x)[f(x) - vMYdi 

for an arbitrary polynomial 7rn(x) of degree n. 
Also 

(7) sn(f; p, x) - ƒ p(t)f(t)Kn(p; x, t)dt 

where 
n 

Kn{p; x, t) = 23 Ph(p, x)Pk(p, t) 

(8) 

_ Cn pn+l(p, t)pn(p, x) — j>n+l(p, x)pn(p, t) 

Cn+1 t — X 

In (8), cn is the leading coefficient of pn(p, x) and one has 

(9) 0 < cn/cn+i ̂  C = max of | a\ and \b\. 
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The reader interested in proofs of the above formulas should con­
sult Jackson [ l ] 1 or Szegö [4]. 

3. Two inequalities. The remaining sections of the paper will be de­
voted to comparisons of the two sets of ONP, {pn(pi, %)} and 
{pn{p2, x)}7 for which the weight functions will be assumed to have 
the forms 

(10) Pi(#) = p(x)[TTm(x)]2 and p2(%) = p(x)wq(x)cr(x) 

or special cases thereof. The following blanket hypotheses will be 
made concerning the individual factors involved in (10). 

(a) The functions wm(x) and wq(x) are polynomials of degrees m and q 
respectively and p(x), irq(x) and a(x) are non-negative on (a, b). 

(b) The polynomial wq(x) and the function <r(x) are such that the 
product Tq(x)<r(x) is measurable and bounded on (a, b) by a constant M%. 

(c) The polynomial wm(x) and the function a(x) are such that the 
quotient Tm(x)/a(x) is measurable and bounded on (a, b) by a con­
stant Mi. 

LEMMA 1. Let (a), (b) and (c) be satisfied. If, at a point £ in (a, 6), 
there exist two positive numbers e(£) and y(£) such that when x is in the 
common part of the intervals (a, b) and (£ —e, %+e) the condition 

(ID 
7rm(£) Tm(x) 

<r(Ö a(x) 

holdsj then at the point £ 

< 7 ( Ö - | * - { | 

U b r lT (A }2 -12 \ 1/2 

p(t)Tq(t)a(i) |^( * * i W P i ï *, t) - Tq(Z)Kk(p*; {, t) J dtj 
1/2 ( U+q } 1 / 2 

(i2) ^MIMA D [pApi^m 

+ M1
/cU-r + yA E [piiPLün 

for all k and n such that m^k^n. The constant C is the bound indicated 
in (9). 

PROOF. Since Tq(£)pi(p2, £) is a polynomial of degree j+q in £, one 
has 

1 The numbers in brackets refer to the bibliography. 
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*q(&Pi(j>*> Ö = I PiW^«W^/(P2, t)KnJr<l{pi\ £, t)dt 
J a 

(O 

^ rb r U (t)}2 i 
= J P2(0 1 m Kn+q(Pl; £, /) J Pi(P2, t)dt 

for all j ^n. This implies 
2 

7T3(£)j£fc(p2; f, Ö 33 Sk f J^n+fl(Pl) h P2, H -

In view of (6), the left member of (12) is dominated by 

eu) ^ {MXM\ f P1(o r E #/(PI, ?)#/(pi, oi *} 
V J a L ?=*;—m+1 -J / 

The first term in (14) is clearly bounded by the first term in (12) on 
the right. In the second term of (14) the range of integration must be 
broken into the three intervals (a, £ — e)t (£ — e, £+e) and (£+e, b). 
Using (8), (9), condition (c), and the inequality |£ —#| £*€(£), the 
contribution to the integral in that term from the first and third sub-
intervals is found to be dominated by 

4M1M2C2 rb 

/ Pl(t)[pk-m+l(ph £)i>fc-m(pi, t) — ^fc-m+l(Pb t)pk-m(ph Ö ] 2 ^ 
a 

4MiMlc2
 r( , , , . 

é : [{Pk-m(pi, Ö}2 + {^-m+l(pi, Ö}2]. 
€ 2 

Use of (8), (9) and (11) shows that the contribution to the integral 
under consideration from (£ — e, £+e) is dominated by 

M I C V [ { # * - * ( P I , Ö}2 + {^-m+i(pi, Ö}2]. 

Combining all these results one has (12). 
The following special case of Lemma 1 is of special importance in 

the applications. 

LEMMA 2. Let the hypotheses (a) and (b) be satisfied. If the quotient 
Tm(x)/(x(x) satisfies the Lipschitz condition 
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(15) 
TTm(x) Tm(t) 

<\\ X- t\ 
<J{X) <r{t) 

for ail x and t in (a, b), then, for every point £ in (a, b), 

Wm(t)} U
b T ) Tï (t) \ 2 -12 \ 1/2 

P.W [ ' " ' K^(pi; S, t) - *u(IUKk(p2; S, t)J dtj 
(i6) ^M^MA E [piiputm 

\ ƒ«•&—m+l / 
1/2 C h~m+l \ I/2 

/or all k and n such that m^k^n. The constant C is the bound indicated 
in (9). 

PROOF. The hypothesis (c) is automatically satisfied. The proof 
proceeds like that for Lemma 1 except that (8), (9) and the Lipschitz 
condition are to be applied directly to the second term in (14) to ob­
tain the second term in (16). 

4. Bounds for ONP. Lemmas 1 and 2 are powerful tools for estab­
lishing bounds for ONP. Since the most interesting bounds are uni­
form in x on some subset of {a, b), attention will be focused upon the 
application of Lemma 2 ; extensions of the results which are obtain­
able from Lemma 1 are left to the reader. 

THEOREM 1. Suppose the hypotheses (a) and (b) and the Lipschitz 
condition (15) are satisfied. If at a point £ in (a, b) for which wq(£) is dif­
ferent from zero there is a number H%(^) such that \pn(pu £)| èHi for 
all n, then there exists a number H2(Q such that \ pn(p2, ê) \ ûH^for all n. 
Moreover, if for every point of some closed subset of (a, b) on which 
wq(x) is different from zero the bound Hi exists and is independent of x, 
then H2 exists and is independent of x on that set. 

PROOF. Obviously 

0 = f P2(f)pn(p2,t)Tq(!;)Kn-l(p2;!;,t)dt. 

Combining this with (13) for j = n, one has 

irq(£)pn(p2i Ö 

- ƒ6 P2«A»(P2, /) [ J ? * W P I ; *> ') - *,(Ö£*-i(pa; €, o ] *. 
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Using Schwarz' inequality, one obtains 

| *q(Qpn(pt, Ö I Û J ƒ Ps(0 fr»(pi, *)]*<» 

/

6 r U ö ) } 2 -j2 \ 1/2 

P2(t) [ ( " ' i^n+fl(piî *, 0 - T f(ÖX-iCp,; «• 0 J <» J> • 
The first factor on the right is unity; the second factor can be treated 
by Lemma 2. This gives, for all n>mt 

«(Ö*.G», Ö I £ Mi/2M2{ E [#,(plf 0]»} 

i/o ( n—m \ 

+ \M\'ic\ E biipu&n 
V j « n - m ~ l / 

1/2 

The theorem follows since the number of terms on the right is inde­
pendent of n. 

Theorem 1 is a generalization of a theorem due to Korous. See 
Jackson [l, p. 205] or Szegö [4, p. 157]. Results of a similar character 
have also been established by Peebles [2]. 

Remark. One or two examples showing the disposition of the factors 
in (10) may be helpful. Setting <r(x)^irm(x)^l in Theorem 1 refers 
the boundedness of the ONP of weight function P(X)TQ(X) to that of 
the ONP of weight function p(x). This result will be used in §5. 

The normalized Jacobi polynomials have the weight function 
(1— x)"(l+x)P where a>—1 and j3>— 1; the interval (a, b) is 
( —1, 1). They can be compared directly with the polynomials 
pn{x)~{2/Tr)in cos 0, x=cos 0, whose weight function is (1— x2)~112 

by the following: 

p(s) = (1 - * ) - l» l - l / l ( l + ^-Imr-l/I, 

<r(x) = (1 - s )«+*«u-«+i /»( l - f x)fi+2™*~Qrtri/2t 

irq{x) = (1 - s)«(l + *)« and vm{%) «= (1 - *)mi(l + x)m\ 

where mi, m* are the smallest integers such that Wiè— a/2 —1/4, 
and m 2è —|8/2 —1/4 and gi, g2 are the smallest integers such that 
g i^a+Wi+3/2 a n ( j g2^j8+m2+3/2. Then in Lemma 2, p7rQ<r 
= ( l -*)«( l+aO' and p[irm]2 = (l-x2)-112 and it is easy to show that 
the hypotheses are satisfied. 

It is fundamental in such applications that the factor p(x) need not 
be integrable for the proofs of Lemmas 1 and 2. One merely makes sure 
of the integrability of the products pi(x), p2(#), Tq(x)a(x)t and the 
quotient Tm(x)/<r(x). 
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5. Equiconvergence theorems. Walsh and Wiener [5] have given 
a necessary and sufficient condition for equiconvergence of two gen­
eral orthogonal series. Their sufficiency condition will be given below 
in a form suited to the study of ONP. 

LEMMA 3. If <J{X) is in £2(p; a, b) and {pn(p, x)} and {pn(pcr, %)} 
are the ONP with weight functions p(x) and p(x)a(x), a sufficient con­
dition for 

(17) Hm {sn(f; p, {) - sn(f; pa, Q} = 0, ag^J, 
n—• «> 

for allf(x) in L2(p; a, b) is that there exist two numbers iV(£) and A(£) 
such that 

(18) f p(t) [Kn(p; & t) - <r(t)Kn(p<r; {, t)]*dt ^ A($ 

for all n^N. Moreover, if N and A are independent of £ on some subset 
S of (a, b)y then (17) holds uniformly on S. 

PROOF. For an arbitrary point £ in (a, b) let 

ak = f p(t)f(t)pk(p, t)dt, 
J a 

bh(Q = f p(t)[Kn(p; {, t) - a(t)Kn(pa; f, t)]pk(p, t)dL 
J a 

Now &*(£) = £*(p, ö -pk(p, Ö = 0 for all £ gw. Thus by (5) 

Sn(J] P, Ö - *n(/i per, Ö = f p(/)/(/) [Kn(p; f, *) - a(t)Kn(pcr; {, * ) ] * 
•J a 

oo 

= X) a*J*(f). 

But then \sn(f; p, (•) — sn(/; pa, £)| is bounded by 

[ oo 9- | l /2r oo -11/2 

Z al] ZiWÖlM 

t » 2i1/2r r& i1/2 

Z f l * PW[*»(P; fc ') - *(t)Kn(p*; «, *)N< , 
A;=n+1 J L */ a J 

where (4) has been used to obtain the inequality. The limit (17) 
follows at once on using (18) and the well known fact that 
lim^oo^JJLn+i afc = 0. The uniformity clause is evident. 
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THEOREM 2. If p(x) and a(x) are non-negative and a(x) is bounded 
and measurable on (a, b) and a polynomial Tm(x) of degree m can be 
found such that the quotient Tm(x)/a(x) satisfies a Lipschitz condition, 
then (17) holds, for all f(x) in L2(p; a, b), at any point £ in (a, b) at 
which 7Tm(f) is different from zero and \pn(p, 0\ SH(£) where H(%) is 
a number independent of n. Moreover, (17) holds uniformly on any closed 
subset of (a, b) on which irm{x) is different from zero and the number H 
is independent of x. 

PROOF. T O demonstrate the inequality (18) set 

/»(Ö = f p(t)[Kn(p; {, t) - <r(t)Kn(pa; f, t)]Ht. 
J a 

Add and subtract [n,
m(t)]2Kn(p'n%l; £, t) inside the bracket in the inte­

grand. Here Kn{pirll\ £, t) denotes the kernel polynomial (8) for the 
ONP of weight function p(x) [jrm(x) ]2. Applying Minkowski's inequali­
ty and a little obvious manipulation, one has 

[US)]1'2 

g [Mi J P(t)a(t) \j-^T- Kn(pirm; i, 0 - Kn(p<r; {, *)] dt J 

r rb 2 2 2 ~i1/2 

+ I J P(f)[{ **(')} Kn{pirm ; {, t) - Kn{p ; {, *) ] dt J , 

where Mi is the bound on cr(x). To the first term on the right apply 
Lemma 2 with irq(x) = l, k=n; to the second term apply Lemma 2 
with TTQ(X)^<T(X) = 1 and k=n. The result is 

[U&f* £ (MM, + MZ)\ è {ptiprl, O}2]1'' 
L j=*n—m+1 J 

[ n—m+l o"!1/2 

for all n^m. The constants lf2 and ikf3 are bounds on wm/(T and 7rm. 
By the remark following Theorem 1 the system {pn(p^my £)} is 
bounded as to n at any point £ such that 7FW(£) is different from zero 
and at which the system {pn(p, £)} is so bounded. This proves the 
inequality (18) under the stated hypotheses. The uniformity clause 
is evident. 

The following more general theorem is obtained by applying 
Lemma 1 to the integral In(£)» 



366 G. E. ALBERT AND L. H. MILLER [June 

THEOREM 3. Let p(x) and <r(x) be non-negative and <r(x) be bounded 
and measurable on (a, 6). Let £ be a point in (a, ft). If there is a poly­
nomial wm(x) of degree m such that 7rw(£) is different from zero and 
Tm(x)/a(x) satisfies the condition (11) of Lemma 1 and if there is a num­
ber H(Ç) independent of n such that \pn(p, £)| =*#(£) for all nf then 
(17) holds for allf(x) in L2(p; a, b). 

Theorems 2 and 3 furnish no information about equiconvergence 
at a point where the auxiliary polynomial wm(x) vanishes. I t is not 
difficult to construct examples which show that such equiconvergence 
cannot be expected for all functions in i 2 ( p ; a, b). 

6. Applications, Let (a, b) be ( — 1, 1) and let p(x) and <r(x) have 
the forms 

h 

p{x) = (1 - s2)-1 '2 and a(x) « r(x)]J\ x - xk\^ 
*- i 

where — l g # i < X 2 < • • • <Xh^i; XAJ^O, & » 1 , 2, • • • , A, and 0<-4 
Sr(x)^B. Theorem 2 applies if r{x) satisfies a Lipschitz condition 
on ( — 1, 1) and Theorem 3 applies at any point £ in ( — 1, 1) distinct 
from all the points Xk, £ — 1, 2, • • • , h, provided that there is a pair 
of numbers X(£) and e(£, X) such that 

| T ( * ) - T ( Ö | < X | * - « | / 

for all # in ( — 1, 1) such that |# — £| <e . In either case the polynomial 
icm(x) is chosen to beIJjLi (x— Xk)mk

1 where mu is the smallest integer 
such that mu—XjbSrl. These results compare the convergence of the 
series (1) for the ONP of weight function p(x)a(x) with the conver­
gence of the Fourier cosine series on the open intervals Xi<x<Xi+u 
i « 1, 2, • • • , h. Either case includes the Jacobi polynomials of weight 
function (1— x)a(l+x)p where a, j8> —1/2. The cases where a or j3 
or both are less than —1/2 are also easily handled. For example, if 
a s = j 8 « - 3 / 4 , set p(x) = ( l -x 2 )~ 8 / 4 and (T(X) = (1-X2)1IA and choose 
Tm(x) appropriately. 

The case above using Theorem 3 essentially includes a theorem of 
Szegö [4; Theorem 13.1.2, p. 307]. The case using Theorem 2 is com­
parable to results of Peebles [2]. The methods of the present paper 
are certainly more elementary and more direct than those used by 
either of the above authors. 
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