
CONVERGENCE AND SUMMABILITY PROPERTIES 
OF SUBSEQUENCES 

R. CREIGHTON BUCK1 AND HARRY POLLARD 

In this paper we shall discuss the relation of the convergence or 
(C, 1) summability of a sequence to that of its subsequences. Some 
analogous questions for subseries have been considered [ö].2 

Let {sn} be an arbitrary sequence. We can obtain a 1-1 map of 
its infinite subsequences on the interval 0 < / ^ l as follows. Let 
/= .a ia 2 a 3 • • • be the infinite dyadic expansion of a point / of the 
interval. Corresponding to this point we select the following subse­
quence: retain sm if the wth place in the expansion, am, is 1, and drop 
it otherwise. The inverse correspondence is evident. 

In terms of the Lebesgue measure of sets of points on (0, 1) we 
are now clearly in a position to speak of "almost all" or "almost 
none" of the subsequences of {sn}. 

The problem we have set ourselves is to determine under what con­
ditions does the convergence or summability of a sequence carry over 
to that of its subsequences, and conversely, whether these properties 
for suitable subsequences imply them for the sequence itself. For sim­
plicity, we restrict ourselves to sequences of real numbers; although 
it is apparent that the results are more generally true. 

In the case of convergence, the answer to our problem is simple: 
a sequence is convergent if and only if almost all of its subsequences are 
convergent. In the case of (C, 1) summability, the problem is more 
difficult. I t has been established that all the subsequences of a se­
quence cannot be summable by a fixed regular matrix method unless 
the sequence is in fact convergent [2]. In §§3, 4 we discuss, for (C, 1) 
summability, the consequences of replacing all by almost all. We show, 
for example, that {sn} is (C, 1) summable if almost all of its subse­
quences are, but not conversely. 

The principal tools are the Rademacher functions, Rn(t)y and the 
properties of homogeneous sets. 

Our results have certain obvious connections with probability; 
these are discussed in §5. 

1. Preliminary results. All sets which occur in the sequel are to 
be taken as subsets of (0, 1); a.e. will mean "almost everywhere in 
(0, ! ) •" 
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We shall call a measurable set S homogeneous if it has the following 
property: let / = .a\a^az • • • be the infinite dyadic expansion of a 
point / of 5 ; then the point obtained by altering a finite number of 
the di also belongs to 5. This definition is more restricted than the 
usual one [7], but is adequate for our purposes. 

LEMMA 1. A homogeneous set has measure 0 or 1. 

This is a well known result [7, p. 145]. The sets with which our theo­
rems deal are homogeneous. In view of this lemma, the frequently 
occurring phrase "almost all the subsequences" can be replaced by 
the seemingly weaker but actually equivalent phrase "the subse­
quences corresponding to a set of positive measure." 

LEMMA 2. If S is of measure 1, then there exists a subset E, also of 
measure 1, with the property that if t belongs to E, so does 1—t. 

This becomes immediately evident if the interval (0, 1/2) is folded 
symmetrically over onto the interval (1/2, 1). The device of sym­
metric points was used to advantage in [ô]. 

LEMMA 3. Let pn be a sequence of positive numbers, increasing mono-
tonically to infinity. If the series ^n^i^n/pn converges, then [5, p. 123] 

1 n 

lim — ]T) ah = 0. 

For the properties of the Rademacher functions, we refer the reader 
to [3]. The principal one is contained in the following lemma. 

LEMMA 4. The series *]>2?akRk(t) converges on a set of measure 1 or 
measure 0, according as ^2,?a2

k converges or diverges. 

LEMMA 5. If^Tsl/k2 converges, then 

1 n 

(1.1) lim — £ SkRk(t) = 0 a.e, 
«—><» n 1 

For the hypothesis implies, by Lemma 4, that ^?($/k2)Rk(t) con­
verges a.e., so that the result follows from Lemma 3, with pn — n. 

LEMMA 6. If 

(1.10 Hm — Jt,SkRk(t) =Z( / ) 
n-»« n 1 

exists a.e,, then L(t) = 0 a.e, (so that (1.1) is true) and 



926 R. C. BUCK AND HARRY POLLARD [December 

(1.2) Urn — X>! = 0. 
n2 i 

(1.1') must hold uniformly on a set A of positive measure. Hence, 
for some M, 

\L(t)\ £M, te A. 

But the set of points for which this inequality holds is homogeneous, 
so that, by Lemma 1, L(t) is bounded a.e. Since it is obviously in­
t e g r a t e , 

(1.3) f L(t)dt = a 
J o 

exists. 
Now, choose an e > 0 and consider the sets Ji, I2 and h for which 

L(t) - a > e, 

Lit) - a < - e, 

\Ut) -o\ge, 

respectively. These sets are homogeneous; since their union is of meas­
ure 1, a t least one of them must be of measure 1. If either Ji or h has 
measure 1, (1.3) is contradicted. Hence |L(/)— a\ ^ e a.e., so that 
L(t) —a on a set B of measure 1. 

By Lemma 2, we can pick two points /0 and 1—/0 in B. By (1.1') 

1 n 

lim — X SkRk(h) = 0, 
»->» ft 1 

1 n 

lim — X) s*U*(l ~ *o) = a, 
n-*oo n 1 

Adding these, we see that a = 0; this establishes (1.1). 
To prove (1.2) we employ a device due to Kolmogoroff [4, p. 127]. 

Let Sm,n (t) = X > A ( * ) . Then 

n 

•Sm.nOO = Z SfitRfâRkit) 
(1.4) 

n 

= E ** + 2 Z sfiJtMRtit). 

If (1.1) holds for almost all /, it must hold uniformly on a set E of 
positive measure | E | . By (1.4) 
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(1.5) f Si,n(t)dt = \ E\ £>* + M 
J E m 

where 

M = 2 ]£ Si** f Ri(t)Rk(t)dt. 
m£ i<k£n J E 

From the Schwarz inequality 

(i.6) \M\£I( E s)si)m( 2: 4Y'2 

where bjk=fERj(t)Rk(t)dt. 
The functions Rj(t)Rk(t), for l£j<k<<x>, are orthonormal on 

(0, 1). If X(t) is the characteristic function of £, it follows from Bes-
sel's inequality that 

E **k£ f [X(t)]*dt = \E\. 
3<k<oo * 0 1 ^ ƒ<&<< 

For a large enough value of m 

( £ 4)1/2^|£|/4. 

By (1.6) 

I M\ £ ( ± syX'\\E\ 12) *(\E\ /2)£s), 

Then, by (1.5) we have 

(1.7) f Sl.n<t)d$è ( | £ | /2 ) I>- . 

But for this fixed value of m, 

1 2 
lim— Sm,n(t) = 0 
n-*oo W 

boundedly on E. (1.7) then implies that 

1 n 2 
lim — 2>/ « 0 

and the proof is complete. 
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2. Convergence of subsequences. If a sequence {sn} of real num­
bers is convergent to 5, then every subsequence is likewise convergent 
to S. What may be said if {sn} is divergent? 

THEOREM 1. If {sn} is divergent, so are almost all of its subsequences» 

Let C be the set of points corresponding to convergent subse­
quences. I t is homogeneous, and hence of measure 0 or 1. Suppose 
it is of measure 1. By Lemma 2, we can pick a number to not of the 
form K/2n, such that both /0 and 1 — to belong to C. The corresponding 
subsequences can have no terms in common, for the dyadic expan­
sions of to and 1 — to cannot agree anywhere. Furthermore, every term 
of \sn} is present in one or the other of the subsequences. Thus we 
have split {sn} into two subsequences, and since /oGC, 1 — /o£C, each 
is convergent. Let their limit points be S' and S". 

Every convergent subsequence of {sn} must then have either S' 
or S" as its limit. Let C' (C") be the set of points corresponding to 
subsequences convergent to S' {S"). Then C' and C" are homogene­
ous and, since C==C/VJC//, one of them—say C'—must be of meas­
ure 1. This means that the to above could have been chosen from C', 
so that {sn} can be split into two convergent subsequences, each of 
which converges to the same limit. Every subsequence is then con­
vergent, and hence {sn} is itself convergent; this contradicts the hy­
pothesis of our theorem, and C therefore has measure 0. 

COROLLARY. If the series ^T,?ak converges for almost every bracketing 
of terms, it is convergent. 

For if {sn} is the sequence of partial sums, and we bracket the 
series in blocks of length n\, n2, • • • , then the partial sums of the 
resulting series are snv sni+n2, • • • , a subsequence of {sn}. By the 
theorem, if almost all of these converge, the sequence itself does. 

3. (C, 1) summability. In this and the succeeding section, we con­
sider the corresponding problem for (C, 1) summability. As we have 
previously noted, we cannot expect all of the subsequences of a se­
quence to be (C, 1) summable unless the sequence is convergent. 

THEOREM 2. If {sn} is (C, 1) summable to S, and 

(3.1) X>*/*2<«, 
1 

then almost all the subsequences are (C, 1) summable to S. 
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The problem of the convergence of the Cesàro means of almost all 
the subsequences of {sn} reduces to the requirement that 

Z**-y[l + **(')] 
(3.2) lim — = 5 a.e. 

1 ^ 

We can rewrite the expression inside the limit as 

1 A 1 A 

1 + — £**(/) 
» i 

By hypothesis, lim (l/»)2i5jb = 5; then (3.2) follows immediately by 
condition (3.1) and Lemma 4. 

The question arises whether the condition (3.1) can be removed or 
at least weakened. We shall show in the next section that it cannot 
be dropped entirely; on the other hand, this does not preclude the 
possibility that it might be weakened, perhaps to (1.2) which by 
Lemma 3 it implies, and which is necessary for the validity of the con­
clusion (Theorem 3, corollary). 

4. Converse. We now prove the analogue of Theorem 1 for (C, 1) 
summability. We note again that since (C, 1) summability is a method 
that preserves translation, our sets are homogeneous. 

THEOREM 3. If almost all the subsequences of {sn} are (C, 1) sum-
mable, then \sn} is itself summable to a value S, and almost all the sub­
sequences are in turn summable to S. 

As in the preceding section, the hypothesis implies that (3.3) con­
verges a.e. as n—*oo. By Lemma 5, the denominator of (3.3) ap­
proaches the value 1 a.e., so that 

(4.1) <rn(t) = — J2 Sk[l + Rk(t)] 
n i 

converges on a set C of measure 1. By Lemma 2, we can pick t0 and 
1 — to belonging to C\ then 

2 n 

<Tn(/o) + Om(l — to) == X S*> 
n i 
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so that (l/#)]]CiSjfc converges to a value S. From (4.1) we see that 

(4.2) —ibsM) 
n i 

converges a.e. ; by Lemma 6, this last expression then converges a.e. 
toO, and, by (4.1), 

lim <rn(t) = S a.e. 

COROLLARY. Under the hypothesis of the theorem, 

1 A 2 
(4.3) lim — £ s * = 0. 

n-»oo fl2 i 

For (4.2) converges a.e.; (4.3) follows from Lemma 6. 
We are now in a position to answer the question raised in the pre­

ceding section by exhibiting a (C, 1) summable sequence with almost 
none of its subsequences (C, 1) summable. This example is the se­
quence sn = ( — l)nn1/2. It is readily seen to be summable to zero, but 
since it violates (4.3), almost none of its subsequences can be (C, 1) 
summable. 

If the sequence {sn} is bounded, condition (3.1) is satisfied. Com­
bining Theorems 2 and 3, we have the following theorem. 

THEOREM 4. A bounded sequence is (C, 1) summable if and only if 
almost all of its subsequences are (C, 1) summable. 

5. Probability. Lemma 5, on which a large part of our paper de­
pends, can also be obtained from the strong law of large numbers 
[4, p. 59], for we may regard the sequence snRn(t) as a sequence of 
independent random variables of mean value 0 and standard devia­
tion Srf. 

An interesting result that may be obtained as a corollary of Theo­
rem 2 is one of Birnbaum and Zuckerman on the v. Mises collec­
tive [l]. 

THEOREM A. If a sequence of 0's and Vs satisfies the first postulate 
of v. Mises, the second postulate is fulfilled f or almost all selections. 

Here the v. Mises postulates are: 
PI : If no and n\ are the number of Vs and Vs respectively among the 

first n terms of the sequence, then the limits lim no/n and lim ni/n exist. 
P2 : For a suitable selection of an infinite subsequence from the given 

sequence, the same limits exist and their values are unchanged. 
To obtain the theorem we need only observe that lim n\/n is the 
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(C, 1) sum of the given sequence, and that (3.1) is automatically 
satisfied. 
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