
THE CHARACTERISTICS OF ASYMPTOTIC OSCULATING 
QUADRICS OF A CURVE ON A SURFACE 

BUCHIN SU1 

1. Introduction. Lane2 has derived the equations of asymptotic os­
culating quadrics of a curve C on a surface S, employing Wilczynski's 
notation and deducing some of their fundamental properties. We 
shall now investigate the characteristics of these quadrics along C. 
For the sake of convenience the normal tetrahedron of Cartan3 is 
utilized throughout this note. In terms of the local coordinates with 
respect to this tetrahedron we have expressed simply the equations 
of asymptotic osculating quadrics and their characteristics and there­
from obtained new configurations projectively connected with a surface. 

2. The normal tetrahedron of Cartan. Let us consider the direc­
trices of Wilczynski at a generic point i f of a non-ruled surface S; 
the first of them intersects the quadric of Lie at another point Mz 
and the second meets the asymptotic tangents at the points Mi and 
M2. The tetrahedron {MM\MiMz} is known as the normal tetra­
hedron of Cartan. If we denote, for simplicity, the corresponding 
projective coordinates of these points M, Mi, M2, Mz by the same 
notations, then they are solutions of the following system of differ­
ential equations:4 

dM 1 d 
T ~ * = — M — logy + Mh 

du 2 du 

dMi 1 d 
= B2M Mi — log y + /Mf *, 

du 2 du 
(1) 

dM2 1 d 
= KM + — M2 — log y + Mz, 

du 2 du 
dMz 1 d 

A2pM + KMi + B2M2 Mz — log 7; 
du 2 du 
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dM 1 d 
= — M — log fi + Mit 

(1) 

dv 2 dv 

dMi _ 1 d 
= KM + — Mi— log j8 + M3, 

dv 2 dv 
dM2 1 d 

= A*M + yMi M2 — log 0, 
dz> 2 dp 

BMz __ 1 a 
= £27M + i W i + I ¥ 2 Mz — log 0, 

dz> 2 dz> 
where the components of displacements of the tetrahedron /8, 7,-4, 5 , 
JK", X* satisfy the integrability conditions 

d2 _ d2 

2 # = 0 7 - ~ log j8, 2K = 0y - — - log 7, 
dwdi> dwdz> 

d(^2) d d{B2) __ d _ 
(2) - - — = if — log (JTjS), — — = K— log (tf7), 

du dv dv du 
d(A0) d(By) 

A — J5 
dv du 

Any point P in space can now be represented by the local coordi­
nates (yh y2, yzf yÀ) with respect to the tetrahedron {MM\M2MZ}, 

(3) P = yiM + y2Mi + yzM2 + y*Mz* 

From (1) we easily show that the conditions of immovability for P are 

du 2 \du / 
dy* 1 / d \ 

I T -y>+TWoeVy* * -Kyt' 

dyi= * * -» +y(£ I o g T ) y 4 ; 

ay, 1 / d \ 
*T\*;h*ti)*-K» ~Aiy° ~Biyyi> 
dy2 1 / d \ 
1 7 ° * -j(-logp)yi-yy, -A>y<, 
dy, 1 /d \ _ 

- yi * + y ( - log 0) yi -Kyt, 

-» * + y ( i I o g / 3 ) > 

(4) * 

dv 
dy4 

dv 
tyj_ * 
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3. Equations. Suppose that a curve C on S is given by the equation 

(5) u = u(v). 

The asymptotic ruled surface Ru generated by the asymptotic u-
tangents of S along C is given by 

(6) P = M + pMi, 

where p and v are independent parameters, the variable uin M and Mi 
being given by (5). 

In virtue of (1) there is no difficulty in calculating the partial de­
rivatives of P with respect to p and v. Denoting du/dv,d2u/dv2, dzu/dvz 

by u', u'\ utn respectively we have 

PP = Mlf 

( I d Id _ ) 
Pv = \ — u' — log y + — — log |S + P(B V + JO } M 

12 du 2 dv ) 

+ \u' +—P(-U'—logy+ —log P)\MI 
K 2 \ du dv f) 

+ (1 + pfiu')M* + pMBt 
(7) 

Pvp = (UV + X)Jf + i Y - «' A fog 7 + £ fog /A If 1 
2 \ dw dv / 

+ pu'M* + Mt9 

Pw = (*)lf + (*)lf 1 

+ { vt — log y + 0«'2 + p(2J5 V + 23t 

+ 2L' + p(~u'^l°8y + PU'*\\M*, 

so that the differential equation of the curved asymptotics of5 RUf 

2(PPpPvPvp)dp + (PPpPvPvv)dv = 0, 

becomes 

(8) ^ = öp2 + bp - «', 

6 The parenthesis denotes a determinant of the four points there inclosed. 
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where we have placed 

_ l i d 
a == K + B2u' + — j8«" + — pu'2 — log (|8y) 

2 2 du 

,9) + l*/- i log „-i-SV, 

h •= u' — log 7 — /3w'2. 
du 

The osculating quadric Qw or Ru along its generator MM\ is the 
asymptotic osculating quadric of one family, and a second asymptotic 
osculating quadric Qv of C at Af is obtained by using the other family 
of asymptotics of S. I t is clear, therefore, that a generic point Z on 
Qu must be represented by 

dP / dp\ 
(10) Z= P + a —-^M + pMx + alP. + P, — - ) , 

az> \ dv / 
a being another parameter. 

Substitution of (7) and (8) in (10) gives the local coordinates of the 
point Z, namely, 

( 1 d Id _ 1 
y i = 1 + o- < — «' — log 7 + — — log j8 + p(B V + X) > , 

\2 du 2 dv ) 

( l d l d \ 
(11) y2 = p + PO'S — *' — log 7 + — — log P - jfo*'2 > + apV, 

V 2 dp 2 dîi ; 

yz = (1 + pjSfO*, 

^4 = per. 

Thus we obtain /Ae equation of the first asymptotic osculating quadric 
Qu of C at M: 

yiy* - y*y* + $u'yiy± - $unyzy± 

(12) I f d d ) 2 
+ —pU" + pu'* + u'2—log(t3y) + u' — logP}yi = 0. 

2 \ du dv ) 

The equation of 'the second asymptotic osculating quadric Qv of C at M is 

u'*(yiyi — y2yz) — yu'y^y^ + yuny%y± 

(13) I f à d \ a 
+ —y< — u" + y + u' — log (fiy) + un — log y >yé = 0. 

2 1 dv du ) 
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4. Characteristics. The asymptotic osculating quadrics Qu {orQv) 
dit M and its consecutive point M' on the curve C intersect each other 
at the asymptotic tangent u (or v) and two other lines, which are 
called the characteristic of Qu (or Qv) along C. In order to derive the 
equations of the characteristics of Qu we have to set the derivative 
along C of the left-hand member of (12) equal to zero, remembering 
that the derivatives of y s should be determined by (4). A simple cal­
culation, which we shall omit here, suffices to demonstrate that the 
equations of the characteristic in consideration are (12) and 

2 2 

(14) Czsy$ — Cuysy* + Cuy* = 0, 

where we have placed 
(15) C33 = /3«'3 + 7, 

C3i = pu'{3u" + /3M'8 + ( — log (/32<y) V 2 

(16) \ W } 

+ 3(— log A*' + y\, 

Cu = - AW - B2y + 0un(B*u + T) - fiu'(Ku' + A") 

+ - 0 j«" + /3«'3 + ( £ log (0-y))«'2 

+ (— log p\ u'\ iu' — log 7 + — log p\ 

+ — fiiiS" + (y log (/3372))«V 

+ 2 (— log /3) w" + 3/3 V V 

— log ^ ^ 4 + ( 2 — log j8 + -— log (fiy) 
au / \ dv au2 

+ — log(/37) — log/SU'8 

d« 5« / 

+ ( — - log QPy) + 2 — log 0»y) 

(17) 

3 \ 
- l o g / 3 ) « ' 2 

2̂ / A \2\ 
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From (14) it follows that the characteristic of Qu along C consists 
of two straight lines intersecting the asymptotic w-tangent and the 
latter counted twice. 

In a similar way we obtain another pair of lines intersecting the 
asymptotic tangent MMi as the second quadric moves along C. These 
four lines furnish obviously a generalization of the well known quad­
rilateral of Demoulin. 

By means of (14) we can deduce some remarkable results.6 

(I) If the asymptotic tangent MM% is a part of the characteristic of 
the asymptotic osculating quadric Qu of C at M, then C must be tangent 
to a Darboux curve at M, and conversely. 

The necessary and sufficient condition for this is C33 = 0, namely, 

(18) $uf* + 7 = 0, 

which represents the Darboux directions of the surface at M. 

(II) In order that the characteristic of the first and second asymptotic 
osculating quadrics along every Darboux curve of a surface S should 
decompose into two asymptotic tangents, each being counted twice, the 
necessary and sufficient condition is that S be a surface of coincidence. 

In fact, we have C33 = 0, C34 = 0, so that (14) becomes ^4 = 0. In 
consequence, the characteristic is given by the equations 

2 

y* = 0, y2ys = 0. 

For a Darboux curve we have 
(19) j8«'« + 7 = 0, «" - - — u'*~- log (y/fi) - — «' — log (y/fi). 

3 du 3 dv 

Substituting these in the condition C34 = 0, namely, 

(20) 3u" + Pu'z + un — log (027) + Ivl — log 0 + 7 = 0, 
du dv 

and taking account of the fact that this equation must hold for the 
three Darboux curves, we arrive at 

— log fi = 0, — log 7 = 0, 
dv dv 

that is, both j8 and y are functions of u alone. 
6 Cf. S. C. Chang, On the surfaces of coincidence, Bull. Amer. Math. Soc. vol. 49 

(1943) pp. 900-903. 
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Since the same condition also holds for the second asymptotic oscu­
lating quadrics, we have that /? and y must be functions of v alone, and 
therefore that they are constants. Hence the surface in question is a 
surface of coincidence. 

(Il l) If the characteristics of the quadrics Qu and Qv along every 
Darboux curve of a surface S are indeterminate, that is, the asymptotic 
osculating quadrics along every Darboux curve are stationary, then S must 
be protectively equivalent to the cubic surface xyz=l. 

For we have in this case 

C33 = 0, C34 = 0, Cu = 0. 

We may put j3=7 = l, which gives 

The equation to the surface may easily be found by integrating the 
system (1). 

5. Associate directrices. We come now to demonstrate that a cer­
tain pair of covariant lines can be constructed by means of the 
asymptotic osculating quadrics. Consider, for instance, the first quad-
ric Qu given by (12). As was shown before, there exists an element 
of the second order, E2, corresponding to each Darboux tangent, such 
that the characteristic of Qu a t the point M decomposes into the two 
asymptotic tangents M Mi and M M2, each being counted twice. We 
have therefore a plane containing this E% In order to find the equa­
tion of this plane we merely have to substitute the value of u" given 
by (20) in the equation of the osculating plane of C at M: 

lu'ix — u'y) 
(21) 

- ( u" + un — log (0y) +y - *' — log O87) - Pu'*)z = 0, 
\ du dv / 

where x, y, z denote the nonhomogeneneous coordinates of a point 
with respect to the tetrahedron of Fubini at M. The result of carrying 
out the computation is 

(22) 2u\x - u'y) - {<l>u'2/3 - fu' + 2y}z = 0, 

where 

(23) u' = - <y/$)llz (c * 1, €3 = 1) , 

(24) * = — log ( /V), f - — log (/82T). 

au dv 
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The three planes (22) corresponding to the Darboux tangents at M 
form a trihedron, and the polar of the tangent plane of the surface at 
M with respect to this is 

(25) x + f*/2 = 0, y + 4>z/6 = 0. 

If the second quadric Qv is used instead of Qu, a second covariant 
line is found to be 

(26) x + ipz/6 = 0, y + <t>z/2 = 0. 

These lines are analogous to the directrices of Sullivan7 and will be 
called the associate directrices of the surface at M. The first of them, 
given by (25), is the intersection of the plane containing the asymp­
totic u-tangent and the first directrix of Wilczynski and the plane con­
taining the asymptotic w-tangent and the first principal ray c( —1/6) 
of Fubini. A similar construction is obtained for the second associate 
directrix. I t shall be noted that the asymptotic w-tangent, the first 
directrix of Sullivan, the first associate directrix and the first directrix 
of Wilczynski are coplanar and the double ratio of them in this order 
is equal to —3. 

There are two planes through each Darboux tangent at M, one 
being (22) and the other for Qv: 

(27) x - u'y + (1/2){^ - <l>u'/3 + 2fiu'2}z = 0. 

The harmonic conjugate of the tangent plane of the surface with re­
spect to them osculates the corresponding Darboux curve at M, as 
we can easily show from the equations (19) and (21). 

6. Associate cones. As was shown by Lane,8 the directrices of 
Sullivan are related to a certain pair of cones of the third class en­
veloped by the osculating planes at M of the extremals of certain in­
tegrals. We shall here prove that analogous cones also exist in the case 
of associate directrices. 

Let us consider again the characteristic of the first quadric Qu along 
a curve C on the surface S. For a given non-Darboux direction equa­
tion (14) shows that we can always adjust an element of the second 
order, E2, to the curve C of the given direction at M, such that the 
planes through the asymptotic w-tangent and the characteristic lines 
are harmonic conjugate to the tangent plane and the plane through 
the first directrix of Wilczynski. The plane containing this £2 cor-

7 C. T. Sullivan, Scroll directrix curvest Trans. Amer. Math. Soc. vol. 16 (1915) 
pp. 199-214. 

8 E. P. Lane, Le direttrici di Sullivan, Bollettino della Unione Matematica Italiana 
vol. 5 (1926) pp. 214-215. 
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responding to every non-Darboux direction at M envelopes a cone 
of the third class 

(28) yui + 20U2 + 3(\pux/2 + $1*2/6 — u%)u\Ui = 0, 

where u\t u% u% denote the coordinates of a plane through M. The 
three cuspidal planes of this cone evidently pass through the first 
associate directrix. 

In a similar way a second cone of the third class 

(29) 2yul + Qui + 3(\pui/6 + <t>u2/2 - uz)uiU2 = 0 

is obtained. 
In virtue of these cones we can further construct a third cone of the 

third class and a new canonical ray at the point M of the surface. 
For this purpose, we draw the tangent planes of the cones (28) and 

(29) through a non-Darboux tangent at M and construct the har­
monic conjugate of the tangent plane of the surface with respect to 
them. The equation of this plane is found to be 

(30) lu\% - u'y) + (pufz - 7 + W2/3 ~ *u'/3)z = 0. 

I t is easily seen that the three planes corresponding to the three Segre 
tangents at M are concurrent in the canonical ray c(l/6): 

(31) x - tz/6 = 0, y - <t>z/6 = 0. 

This line and the first principal ray of Fubini harmonically separate 
the canonical tangent and the projective normal of the surface at M. 

The plane (30) also envelopes a cone of the third class 

(32) yui + 0U2 — 2(\//Ui/6 + <£w2/6 + uz)uiU2 = 0 

and the three cuspidal planes are concurrent in the ray c( l /6) . 
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