
THE TERNARY OPERATION (abc)±ab-lc OF A GROUP 

JEREMIAH CERTAINE 

1. Introduction. This note is the result of some investigations into 
the ternary operation ab^c in a group. We shall assume familiarity 
on the part of the reader with the notions of a group, a one-one 
transformation (we shall use the shorter term permutation) of an 
arbitrary set of elements, an automorphism, and a coset.1 We shall 
use the multiplicative notation for a group G with elements a,b1c1 • • 
We shall also use the following convention for multiplication of per­
mutations. Given two permutations 7\: x—*xTi (i = l, 2), then T\T% 
is x—>(xTi)T2- Finally, we denote automorphisms by small Greek 
letters. 

In §2 we shall review certain properties of the ternary operation 
in a given group, determining all subsets closed with respect to this 
operation and the group of permutations of G which preserve this 
operation. These results had been previously obtained by Reinhold 
Baer.2 

In §§3 and 4 we give postulates for this operation with proofs of 
their independence and consistency. Thus, if a ternary operation 
satisfies these postulates in an arbitrary set of elements, then the 
set may be made into a group (unique within isomorphism) in which 
(abc) = a&~1c. The first set of postulates appears as a weakened form 
of a set given by Baer in his paper,8 in which he mentions the group 
property. This and an equivalent set completely determine the ter­
nary function as ab~lc. However, by further weakening one of these 
postulates, it is possible to get a system which no longer has this last 
property. That is, the group property still holds but the ternary oper­
ation is not determined by the group operation. 

In the remaining sections we get a geometric interpretation of the 
ternary operation and derive therefrom simple conditions on pairs 
of elements (vectors) under which they form a group. In the case 
where an abelian group is desired, the conditions are even simpler, 
reducing essentially to a single law. 

I wish to express my gratitude to Garrett Birkhoff for his kind 

Received by the editors February 10, 1943, and, in revised form, May 5, 1943. 
1 Cf. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig and Berlin, 1937, 

pp. 1, 5, 41 and 10. 
2 Zur Einfilhrung des Scharbegriffs, J. Reine Angew. Math. vol. 160 (1929) pp. 

199-206. 
3 Cf. Baer, op. cit. p. 202, footnote. 
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assistance and encouragement, without which this note would proba­
bly not have been written. 

2. The ternary operation in a group. 

THEOREM 1. SC.G is closed under (abc) if and only if S is a coset of 
some subgroup of G; indeed a right- (left-) coset of S^S (SS'1). 

PROOF. For the first part see Baer's paper.4 As for the second ob­
serve that if S = sT (sES), then T^s^S (sGS) and hence T^S^S. 
Similarly, S = Ts (sGS) implies T = SS~\ 

DEFINITION 1. The set of all permutations of G of the form aTa: 
x-*(xa)a} where a is an automorphism of G, is called the holomorph of G, 
or simply the holomorph.5 

THEOREM 2. The group of all permutations which preserve the ternary 
operation is the holomorph* 

Explanation. A permutation T preserves the ternary operation, by 
definition, if and only if (abc)T= (aT bT cT). The group property fol­
lows from the general theorem that the set of all automorphisms of 
any algebra form a group, and the set in question is exactly that of 
the automorphisms with respect to the ternary operation.7 

3. Postulates for the ternary operation. The reader will observe, as 
stated in the introduction, that we may consider the postulates given 
below as postulates for a group under the ternary operation. The first 
set is interesting, considered as postulates for a group, because it does 
not (explicitly) require the existence of either the identity or the in­
verse.8 The other sets require only the existence of an identity. An 
analogous situation is that of generalized groups defined by the use of 
an w-ary function.9 However, the postulates given below seem to be 
the simplest for the general case. 

4 Cf. Baer, op. cit. Satz 3 (part 3). As may be seen, Baer's "schar" is simply a 
coset studied under the operation ab~lc. By Theorem 1, and also by the fact that 
sT=*sTs~"ls, where sTs~x is a subgroup if and only if T is (and indeed equals T if and 
only if T is normalized by s), we see that the property of being a coset is intrinsic. 

5 Cf. Zassenhaus, op. cit. p. 46. 
6 Cf. Baer, op. cit. Satz 11 (part 3). An alternative proof would be to consider T 

as given and define d—eT, e the identity of Gt and a: x-+(xT)d~\ Using ab~(aeb), 
it is easy to verify that (a6)a~(aa)(&a), and that T*=aTd. The converse is straight­
forward. 

7 Cf. Garrett Birkhoff, Proc. Cambridge Philos. Soc. vol. 31 (1935) p. 434. 
8 Cf. Rainich, Note on group postulates, Bull. Amer. Math. Soc. vol. 43 (1937) 

pp. 81-84. 
9 Cf. E. L. Post, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 208-350. 



!943l THE TERNARY OPERATION OF A GROUP 871 

We shall assume, unless otherwise stated, that the systems defined 
below are closed with respect to (abc) and that they contain all ele­
ments under discussion. 

DEFINITION 2. Let G be a set of elements on which there is defined a 
ternary operation (abc) satisfying the following postulates : 

(3.1) Ai: ((abc)de) = (ab(cde))} A2: (abb) = a, A3: (bba) = a. 

We shall call G an abstract coset. 

We shall not use these postulates directly but use a weakened yet 
equivalent set given below. The equivalence is a corollary to Theorem 
3 proved below. 

Ai: ((abc)de) = (ab(cde)). 

B : There exists u in the set satisfying (a) (auu) = ay (b) (aau) = u. 

THEOREM 3. If G is a set satisfying (3.2) and we define ab = (aub), 
then G becomes a group and (abc) = #ô~"1c. 

PROOF. Closure is obvious. 
In Ai take b = d = u, and we get the associative law (ac)e = a(ce). 
By definition and B(a), it follows that u is a right identity. 
If a is given, choose x = (uau). Then ax = (au(uau)) = ((auu)au) 

= (aau) = u. I t follows that G is a group under the binary operation 
and hence u is a left identity also, that is, (uua)=ua = a for all a. 

Finally > (abc) = ((auu)bc) = (au(ubc)) = a(ubc) = a(ub(uuc)) 
= a((ubu)uc) =*ab~lc. 

COROLLARY 1. (3.1) and (3.2) are equivalent. 

PROOF. The proof is obvious. 
Thus we see that if G satisfies (3.1), we may choose any element 

u in G and define a group Gu with u as its identity, and db = (aub) 
as its law of composition. However, the following corollary shows that 
we get essentially the same group no matter which element we choose 
for the identity. 

COROLLARY 2. The groups Gu are isomorphic for all u in G, an abstract 
coset. Moreover, (abc)=ab"1c. 

PROOF. Consider Gu and Gv. Define T: x—>(xuv). T is in the holo-
morph of Gu with a the identity permutation. By Theorem 2 it fol­
lows that (aub)T=(aT uT bT). But uT—v, which completes the 
proof. 
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Remark. G may thus be considered either as a group or as an ab­
stract coset. We could define the holomorph of an abstract coset as 
the group of all permutations preserving the ternary operation (abc). 
This evidently coincides with the holomorph of G (considered as a 
group) given by Definition 1. 

Now we shall examine the system we get from (3.2) by weakening 
postulate Ai. 

DEFINITION 3. Let G be a set of elements on which there is defined a 
ternary operation satisfying, for some u in G} 

A: ((auc)de) = (au(cde))y 

B: (a) (auu) = a, (b) (aau) = u. 

THEOREM 4. If G is a set satisfying Definition 3, and we define 
ab = (aub), then G becomes a group and the following properties are 
equivalent : 

T: (abc) = ab~xc> Ai: ((abc)de) = (ab(cde)), A3: (bba) = a. 

PROOF. The fact that G is a group follows from the proof of Theo­
rem 3. I t is obvious that T implies Ai and A3. But Ai implies T by 
Theorem 3. I t suffices to prove that A3 implies T. But, by the proof of 
Theorem 3 again, (abc) — a(ubc). Now b(ubc) = (bbc) =c or (ubc) = &_1c, 
so the result follows. 

The following example shows that T does not hold for all sets 
satisfying (3.3). 

Example. Let G be the set of two elements u and a combined ac­
cording to the following rules: 

(uuu) = (aau) = (aaa) = (aua) = w, 

(auu) = (uau) = (uua) = (uaa) = a. 

Obviously B is satisfied. The reader may check A, noting that it 
is unnecessary to check A for the first element equal to u since 
(uux)=x for all x in G. But, since (aaa)=u^ar we see that (xyz) 
is not in general equal to xy~H. Also, since any group of order 2 (and 
there is only one) satisfies Definition 3 with (abc) =ab~~lc, we see that 
this set of postulates is insufficient to determine the ternary operation 
in terms of the group operation. 

Remark. I t is obvious that if we replace B(b) by A3 in (3.3) we 
get a set equivalent to (3.1) and (3.2). 

DEFINITION 4. G is said to be commutative if (abc) = (cba). 

THEOREM S. A necessary and sufficient condition that an abstract 
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coset be commutative is that {abc) = (cba) where b is some fixed element 
and a and c are arbitrary. 

PROOF. Necessity is obvious. For the sufficiency, let b be given as in 
the hypothesis and b' be arbitrary. Consider Gb and Gv. Gb is com­
mutative by hypothesis. By Theorem 3, Corollary 2, it follows that 
G^ is also commutative, whence (ab'c) — (cbr a). 

Remark. An analogous theorem for sets satisfying Definition 3 does 
not hold. For if it did then (ubc) = (cbu)=c(ubu)=cb~1

1 whence it 
would follow that (abc)—ab~lc. Yet, in the above example, we have 
(xuy) = (yux) for all x, y and (xyz)^xy~1z in general. As a corollary 
to this remark we have proved that every commutative system satis­
fying Definition 3 is a (commutative) abstract coset. We also have 
complete associativity, that is, ((abc)de) = (a(bcd)e) = (ab(cde)).10 Thus 
any system of this type is not only a Prüfer schar11 but also a Dörnte 
3-group.12 In fact, the commutative law, Ai and A2 (A3 is then also 
true) constitute exactly Prüfer's set of postulates. To sum up, we 
may assert that in the commutative case the three sets of postulates are 
equivalent to those of Prüfer and Dörnte and to each other. 

4. Consistency and independence of the sets of postulates. The 
consistency of these postulates was really proved in the example 
given above. Actually, any group with (abc)=ab~1c (or cb~la) will 
satisfy these postulates, with the possible exception of the commuta­
tive law. The latter is obviously satisfied if G is commutative. 

For the independence, we observe first that the commutative law 
is obviously independent of the others. To prove the other laws inde­
pendent we find that a single set of systems will suffice for all three 
sets of postulates. 

Consider the two element systems defined as follows: 

(abb) = (aaa) = (aba) = (bba) = a, (bbb) = (baa) = (aab) = (bob) = b. (Gi). 

(abb) = (aaa) = (aba) = (aab) = a, (baa) = (bbb) = (bab) = (bba) = b. (G2). 

Finally, let G3 be derived from G2 by defining [a'b'c'] = (c'b'af). 

THEOREM 6. (3.1) is a set of independent postulates. 

PROOF. Note first that the closure postulate is independent. But 
Gi satisfies A2 and A3 by inspection. Yet (ab(bab)) = (abb)=a?*b 

10 Pointed out by the referee. 
11 Cf. H. Prüfer, Theorie der Abelschen Gruppen, Math. Zeit. vol. 20 (1924) pp. 

166-187. 
12 Cf. W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, 

Math. Zeit. vol. 29 (1928) pp. 1-19. 
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-(aab) = aabb)ab) so that Ax is independent of A, and A,. 
"Now co-ider ft and observe that ta»)-* * * ƒ / ^ J ^ ^ 
gives At and A , However A3 is not satisfied sine:(aab) -a*L 

We observe finally that the definition of ft from ft ca 

dependent of Ai and A8. 
COROLLARY 1. (3.2) is an independent set of postulates. 

PKOOF. We observe first that the systems are symmetric in a and b. 
The corollary then follows immediately. 

COROLLARY 2. (3.3) is a set of independent postulates. 

corollary. 0^ c^m nf free vectors is usually 
5. Axioms for free vectors^By * * £ £ ^ £ ^ o u t c h a n g i n g 

as a, ». *, and A For obviously ^ ^ ^ ° ^ J £ g w i t h a n y 

r e d ^ ^ l X ^ o X e T c U ordered p a . U e . 0 ^ 
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(a, bf c, d). This concept generalizes to any group by defining a 
parallelogram as the ordered quadruple (a, b, c, ab~~lc). But we may 
also consider the difference i - a a s a vector (the vector from a to &, 
say) and interpret the equality c—d=b—a as the statement that 
parallel vectors of the same length and direction are equal. This is 
the same as saying that these vectors are free. We shall now define 
this concept in the abstract. 

DEFINITION 5. By a set of free vectors we mean all pairs of elements 
{points) of an arbitrary set, the pairs (a, b) being connected by an equiva­
lence relation (reflexive, symmetric and transitive relation) denoted 
by ~ and satisfying: 

Vi: (a, b)~(a', b') implies (b, a)~(b', af). 
V2: (a, t)~(a', c'), (6, c )~ (6 ' , c') imply {a, 6 ) ~ ( a ' , V). 
V3: Given (a, b) and c, there exists a unique d such that (a, b)~(d, c). 

These postulates have a very simple interpretation in the light of 
the preceding paragraph. Vi simply says that opposite sides of 
parallelograms are equal when their sense is taken into consideration. 
V2 may be interpreted as a statement on congruent triangles and V3 
as a guarantee of the existence of a unique vector through a given 
point parallel to a given vector. 

THEOREM 7. Given any system of free vectors it is possible to define 
from them a group.13 

Explanation. We shall define as elements of the group the couples 
ab which are respectively the classes of all pairs equivalent to (a, b). 
We shall define ab+cd = ahy where (d} c)~(h, b) and h is given by V3. 

PROOF. We shall divide the proof into several parts. 
(a) Given (a, b) and c there exists a unique d such that (a, b)~(c, d). 

By V3, there exists a rf(unique) such that (b, a)^(d, c). Apply Vi. 
(b) Addition is unique. To prove this we must show that if 

(a, 6 ) ~ ( a ' , 6') and (c, d ) ~ ( c / , d'), then ab+cd = a'b'+c'd'. But con­
sider h, h' where {d, c)~(h, b), (d', c')~{h', bf). We get by Vi and 
hypothesis (A, b)~(h', b'). V2 and hypothesis give (a, h)~(af, h'). 

(c) ab+bc = ac. By definition, this sum is ah where (c, b)~(h, 6). 
The reflexive law and V3 imply h = c, the desired result. 

(d) Now let u be fixed. Then uu is a right zero, for by V3 an arbi­
trary vector ab~cu for suitable c. Hence ab+uu = cu+uu = cu = ab. 
Again, by (a) ab = ud for suitable d, whence by Vi, ba*=du. Thus 

13 In connection with this result, which shows that Definition 5 may be consid­
ered as a definition of a group, cf. B. A. Bernstein, Trans. Amer. Math. Soc. vol. 43 
(1938) pp. 1-6 and H. Boggs and G. Y. Rainich, Bull. Amer. Math. Soc. vol. 43 
(1937) pp. 81-84. 
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ab+ba = uu, so ba is a right negative. Since the associative law ob­
viously follows from (c) and (a), the proof is complete. 

In the commutative case the postulates may be reduced to a very 
simple form. We shall prove the following theorem. 

THEOREM 8. Any set of pairs of elements f or which there is defined 
an equivalence relation satisfying the following postulates constitutes a 
commutative group of free vectors {under the definitions of Theorem 7). 

V0: (a, b)~(a', b') implies (a, a')~(b, bf). 
V3: Given (a, b) and c there exists a unique d such that (a, b)~(d, c). 

PROOF. We first show that these form a system of free vectors. To 
prove Vi, let (a, b)~(a', b')> By V0, we get (a, a')~(b, bf) or 
(6, b')~(a, a'). By V0 again we have (b, a)~{b', a'). The hypotheses 
of V2 give (a, a')~(b, bf)~(c, c')> using V0. Hence (a, b)~(a', b'). 
It remains only to prove that the group which we get is commutative. 
To this end consider ab and cd and choose e such that (J, e)~(c> d) 
and ƒ such that (a, b)~(e, ƒ). But ab+cd — ae while cd+ab — be 
+ef=bf. Since (a, e)~(b,f), the result follows. 

The question which naturally arises is whether all systems of free 
vectors (as defined in Definition 5) are necessarily commutative, in 
which case we should surely use the conditions of Theorem 8. In fact 
a necessary and sufficient condition that the group of free vectors be com­
mutative is that Vo hold. Sufficiency being obvious, suppose (a, b) 
~(a', b'). Then aa'= ab+ba' = ba'+ab = bb' since (a, b)~(a', &')-
Hence we get (a} a')~(bt bf). To settle this question completely and 
to prove the consistency of these postulates, we now show how any 
group may be made into a system of free vectors. 

THEOREM 9. Any group G with elements a, b, • • • may be converted 
into a group of free vectors V, and conversely. Moreover, G and V are 
isomorphic. 

PROOF. Necessity. Let G be given and define (a, è)^/(c, d) if and 
only if ab~l = cd"1. This is obviously an equivalence relation. V3 is also 
obvious. But db~l=sa'b'~l implies ba~x — b'a'~l (VO; and ac~l=*a'c'~lt 
bc-i = b'c'~l imply ab-^ac-Kbc-^-^a'c'-Kb'c'-^-^a'b'-1, which 
completes the proof. 

Sufficiency. Let V be given and let u be any fixed element. Then 
the correspondence aT^au is one-one between the elements of the 
proposed G and the elements of V. We define a binary operation in G 
by ab+±au+bu, thus making G into a group isomorphic to V. Now, 
by Theorem 7, a~l+±uay and ab~l+±au-\"ub—ab. Thus ab~l~cd~l if 
and only if (a, b)~(c, d). 
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As for the isomorphism, we need only consider the case where V is 
defined from G. Obviously, the correspondence ab~l^±ab is one-one 
from G onto V. Moreover, the correspondent of ab+cd is ah"1 where 
dc^ — hb"1 or hrx~b~xcd-x. This establishes the isomorphism. 

HARVARD UNIVERSITY 

AN INVARIANT OF INTERSECTION OF TWO SURFACES 

CHUAN-CHIH HSIUNG 

1. Introduction. Projective invariants of several pairs of surfaces 
have been deduced and characterized geometrically by various au­
thors.1 In this paper we shall supplement their investigations by 
studying in ordinary space two surfaces intersecting at an ordinary 
point with distinct tangent planes. 

In §2 we show by analysis the existence of a projective invariant 
determined by the neighborhood of the second order of the two sur­
faces at the point of intersection. 

The final two sections are devoted to the presentation of projec-
tively, as well as metrically, geometric characterizations of this in­
variant. 

2. Derivation. Suppose that two surfaces Su S2 in ordinary space 
intersect a t an ordinary point O with distinct tangent planes n , r2, 
and let the common tangent / be distinct from the asymptotic tan­
gents. Let /i, t2 be the harmonic conjugate lines of / with respect to 
the asymptotic tangents of the surfaces Su S2, respectively, at the 
point 0 . If we choose the point 0 to be the origin, the lines tt t2l h 
to be, respectively, the axes x, y, z of a general nonhomogeneous pro­
jective coordinate system, then the power series expansions of the 
surfaces Su S2 in the neighborhood of the point 0 may be written in 
the form 

(1) Su y = hx2 + miz* + 

(2) S2: z = l2x
2 + m2y

2 + 

Presented to the Society, September 13, 1943; received by the editors June 15, 
1943. 

1 See the bibliography at the end of the paper. 


