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1. Introduction. We wish to present here some extensions of cer­
tain theorems of Halphen and Kasner concerning the dynamical tra­
jectories of positional fields of force in space. 

Kasner has developed the differential geometry of the dynamical 
trajectories of general positional fields of force in the plane and in 
space in his Princeton Colloquium Lectures.1 Recently Kasner and 
the author have introduced the concept of generalized fields of force 
which depend not only upon the position of the point but also upon 
the direction through the point.2 In a generalized field of force in 
space, there are oo5 dynamical trajectories just as in the ordinary 
positional case. 

The theorem of Halphen which we wish to extend to generalized 
fields of force is that all positional fields of force whose oo5 dynamical 
trajectories are plane curves are of the central or parallel type. That 
is, the lines of force are all straight lines through a fixed point O 
(which may be finite or at infinity). Moreover the oo5 trajectories con­
sist of the oo2 systems of oo3 ordinary plane dynamical trajectories of 
the central or parallel type, each such system lying in a plane through 
the point 0. There are ooW(3> such systems of oo5 dynamical trajec­
tories,3 and the number of central fields of force is oo4+/<3>. 

We find that all generalized fields of force whose oo5 dynamical 
trajectories are plane curves form a more extensive class. The oo5 tra­
jectories consist, in general, of oo2 systems of oo3 generalized plane 
dynamical trajectories, each such system lying in a plane tangent to a 
base surface 2 . The various degenerate situations are four in number 
and may be described as follows : (i) The base planes are tangent to a 
given curve C, (ii) the base planes pass through a given finite point 0, 
(iii) the base planes are all parallel to the tangent planes of a given 
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1 Kasner, Differential geometric aspects of dynamics, Amer. Math. Soc. Colloquium 
Publications, vol. 3, 1913, 1934. Also see Trans. Amer. Math. Soc. vols. 7-11 (1906-
1910). 

2 See (1) A generalized theory of dynamical trajectories, Trans. Amer. Math. Soc. 
vol. 54 (1943) pp. 23-38; and (2) Generalized dynamical trajectories in space abstract 
49-3-120. 

3 The symbol oo*/<n) denotes the content of a geometric manifold which depends 
on k functions of n variables only. See Kasner, A notation for infinite manifolds, 
Amer. Math. Monthly vol. 49 (1942) pp. 243-244. 
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cone T, and (iv) the base planes are all parallel to a fixed line L. The 
number of such planar systems of generalized dynamical trajectories 
is oo/<2)+2/(5)̂  a n ( j t ] ^ n u m b e r of associated generalized fields of force 
is oo/(2)+/(4)+2/(5) 

The theorem of Kasner which we wish to generalize is concerned 
with arbitrary positional fields of force and may be stated in the fol­
lowing manner. If a particle starts at rest from any given point O 
the resulting rest trajectory which it describes will be initially tangent 
to, and also will possess the same osculating plane as, the line of force 
at 0 ; moreover, the ratio of the curvature of the rest trajectory to that 
of the line of force is 1:3. 

In a generalized field of force this theorem is no longer valid. I t 
is true that the rest trajectory and the line of force will be initially 
tangent, but, in general, they will have different osculating planes 
at 0. We determine all those fields of force such that, at any point 0 
of space, the rest trajectory and the line of force will have the same 
osculating plane. In the final part of our paper, we obtain a converse 
of Kasner's theorem. 

2. The differential equations of the oo5 generalized dynamical tra­
jectories. We now consider any generalized field of force in space. 
Observe that an ordinary positional field of force could be called 
isotropic whereas a generalized field of force could be termed aniso­
tropic. (A state of stress in a solid medium is an example of a general­
ized field of force, although it is not of the most general character.) 

Let Ffy, \j/> x) be the rectangular components of the generalized 
force vector which corresponds to the lineal element E(x, y, z, y', z'). 
(Note that the primes denote differentiation with respect to x). We 
assume that the direction of our force vector F($, \[/, x) does not iden­
tically agree with that of the corresponding lineal element E. The 
equations of motion of a particle of unit mass are 

dH/dfi = 4>(x, y, s, y', *')> d*y/dt* = f(x, y, s, y', s'), 

d*z/dt2 = xO> y, *, y', *')» 

where, of course, t is the time. 
Upon eliminating the time / from these equations, it is found that 

the oo5 dynamical trajectories of a generalized field of force are given 
as the integral curves of either of the two Monge differential equa­
tions of third order 

(* - y W " = [(*, + y'tv + z'*z) - y(*. + /* , + «'*.)]/' 
+ fov - ytfv - Hb"2 + «v - y*.oy v', 
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or 

2) (X ~ Z,<t>)Z'" = [ (X* + y'Xv + Z'Xz) ~ Z'{<t>x + y,<t>v + *'**)]2" 

solved together with the Monge differential equation of second order 

(3) 2" = [(x - *W( * - y*)]y". 
Therefore the generalized dynamical trajectories are of the three-

dimensional type (G), namely 

«" = £ (* , y, z, y', z')y", 

y'" = G(x, y, 0, y', s')y" + # (* , y, 0, y', z')y"\ 

Conversely any system of <*>5 curves of the three-dimefrsional type 
(G) represents the dynamical trajectories of 00/w> generalized fields 
of force. 

Kasner has shown that the three-dimensional type (G) may be 
characterized by the two geometric properties listed below. For each 
of the 00x trajectories passing through a given lineal element E, con­
struct the osculating plane and the osculating sphere at E. The two 
properties are : 

Property I. The 00 * trajectories possess the same osculating plane 
a t £ . 

Property II . The locus of the centers of the osculating spheres at E 
is a straight line. 

3. Extension of Halphen's theorem. Now we shall discuss our ex­
tension of the Halphen problem. 

THEOREM 1. A system of <x>5 generalized dynamical trajectories con­
sists wholly of plane curves if and only if it is represented by a system 
of differential equations of the three-dimensional type (G) where the func­
tion K is defined as a solution of an equation of the form 

(4) F[«' - y'K, K, z - %(z' - y'K) - yK] = 0, 

where F is an arbitrary function of three variables. 

There are thus oo/<2)+2/(6> systems of generalized dynamical trajec­
tories which consist wholly of plane curves. 

We proceed with the proof of Theorem 1. Upon substituting the 
three-dimensional type (G) into the condition ynz'" — y'"z" = 0 for 
plane curves and simplifying, we obtain the equation 

(5) y"\Kv> + KKZ>) + y"*(K, + y'Ky + z'Kz) = 0. 



i943l EXTENSIONS OF CERTAIN DYNAMICAL THEOREMS 739 

By this equation we see that, upon excluding the <*>4 straight lines 
which are trajectories of any three-dimensional type (G), there are 
at most oo4 trajectories in any system of oo6 dynamical trajectories, 
which are plane curves. 

Now if our three-dimensional type (G) is to contain more than oo4 

plane trajectories, we observe that (5) must be an identity in yff. 
Therefore the function K must satisfy the two partial differential 
equations of the first order 

(6) Ky, + KKZ> = 0, Kx+ y'Ky + zfKz = 0. 

First let us suppose that K is independent of y' or z'. From these 
equations we see that K must be constant. This solution for K is 
given by the equation (4) where F is a function of the second variable 
K alone. Therefore, we can henceforth suppose that K contains y' 
or zf explicitly. 

By the first of equations (6) and by the fact that K contains y' 
or z', we find that K must be a solution of a finite equation of the form 

(7) z' - y'K = \(K, x, y, s), 

where X is an arbitrary function of four variables.4 Obtaining the par­
tial derivatives of K with respect to x> y, and z from this equation 
and substituting into the second equation of (6), we find 

(8) x, + y% + zf\z = o. 

Eliminating z1 from this equation and equation (7), we find 

(9) y'(\y + K\z) + (X, + XX.) = 0. 

Now this must be an identity in y'. Assume the contrary. We then 
can solve this equation for yf and differentiate the result with respect 
to z'. Since, by (7), Kz^0 we find 

dKXKy + K\J 

This will mean that the equation (9) solved for y' is independent of y\ 
This is absurd. Hence (9) is an identity in y'. 

By the preceding argument, the function X of (K, x, y, z) must 
satisfy the two partial differential equations of the first order 

(11) X„ + i£X* = 0, Xs + XX* = 0. 
4 This equation (7) arises in the characterization of ordinary positional fields of 

force in space. See Kasner, Dynamical trajectories: The motion of a particle in an arbi­
trary field of force, Trans. Amer. Math. Soc. vol. 8 (1907) pp. 135-158. 
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Suppose now that X* = 0. These equations show that X is independ­
ent of (#, y y z). Therefore X is a function of K only. Substituting this 
result into (7), we discover that the function K is given by the equa­
tion (4) where F is independent of the third variable. Henceforth we 
may suppose that Xz7^0. 

Since X ^ O , we find from the second of equations (11) that X must 
satisfy an equation of the form 

(12) z - x\ = /x(X, K, y), 

where /x is an arbitrary function of three variables. Obtaining the 
partial derivatives of X with respect to y and z from this equation, 
and substituting into the first of equations (11), we find 

(13) ixy = K. 

The integration of this equation yields the following solution for /*, 

(14) n = yK + f{\E), 

where ƒ is an arbitrary function of two variables. Substituting this 
into (12), we find 

(15) s= x\+yK + f(\K). 

Finally, eliminating X from this equation and equation (7), we dis­
cover that 

(16) z = x(z' - y'K) + yK+f(z' - y'K, K). 

This may be obtained as a solution of the equation (4) for the third 
variable. Thus the proof of Theorem 1 is complete. 

To obtain Halphen's theorem as a consequence of Theorem 1, we 
first observe that, for the ordinary positional case, equation (3) 
demonstrates that equation (4) must be a function of a linear in­
tegral function in (z'—Ky') and K with coefficients functions of 
(x, yr z) only. If the third variable is missing in (4), then the coeffi­
cients must be constants and the field of force is of the parallel type. 
On the other hand, if the third variable is present in (4), the equation 
may be written in the form (16), where ƒ is integral linear in the two 
variables with constant coefficients. Solving the resulting equation 
for Ky we find that the field of force is of the central type. This com­
pletes the proof of Halphen's theorem. 

THEOREM 2. The oo5 generalized dynamical trajectories of Theorem 1 
consist of oo2 systems of oo3 generalized plane dynamical trajectories, 
each such system lying in a plane which is} in general, tangent to a 
base surface S. 
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The degenerate situations which arise are four in number and may 
be described as follows: (i) The base planes are tangent to a given 
curve C, (ii) the base planes pass through a given finite point O, 
(iii) the base planes are all parallel to the tangent planes of a given 
cone T, and (iv) the base planes are all parallel to a fixed line Z. 

To prove Theorem 2, we first observe that the differential equations 
of the dynamical trajectories of Theorem 1 may be written as 

F[Z' - y v / y " . *"/y", z - *(*' - / « " / y " ) - y *"/y"] = o, 

/ " = Gy" + Hy"K 

To find out what curves of this system (17) lie in the plane 
z = ax+by+c, we eliminate z between the first of equations (17) and 
the equation of the plane. The result of this elimination yields 

(18) F(a, b, c) = 0. 

Therefore we conclude that for a plane to contain at least one curve of 
(17), its parameters (#, b, c) must satisfy the preceding equation. 
Moreover any such plane will contain oo3 spatial generalized dynami­
cal trajectories, and these form a generalized plane dynamical system 
of arbitrary character. The conclusion of our theorem is obtained 
from the observation that the oo2 planes whose parameters (a, b, c) 
satisfy (18) are, in general, tangent to a surface 2 . The degenerate 
situations also can be obtained by a discussion of the various forms 
that the function F may assume. 

It must be noted here that any plane system of oo8 generalized 
dynamical trajectories of Theorem 2 is of perfectly general character, 
whereas in Halphen's theorem any such plane system must be of the 
central or parallel type. 

4. The lines of force and the rest trajectories. In the remainder of 
this paper, we shall suppose that 

(19.1) « y - ƒ 4v - *) (x.' ~ *'*.' - *) - Wv - / * . ' ) (Xir' - *'**') * 0 

and 

(19.2) Mv - y'<t>v ~ 3<ri (x.' - *'*.' - 3*) - Wv - y'«.0 (x*' - *'4v) ^ o. 

Let us first of all consider the lines of force in a generalized field of 
force. At any point 0 there is, in general, one (and at most oox) lineal 
element E0 whose direction coincides with that of the corresponding 
force vector Fo. The lines of force are the integral curves of the dif­
ferential equations defined by all the lineal elements Eo of a certain 
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region of space. This system of differential equations is 

(20) ^ - y<j> = 0, x - sty = 0. 

By (19.1), it follows that there are, in general, oo2 lines of force. 
Otherwise if the left-hand side of (19.1) is identically zero, there are 
oo f (i), or oo 1

9 or a finite number of lines of force. 
Consider next the rest trajectories in a generalized field of force. 

A rest trajectory is defined as the trajectory described by a particle of 
unit mass which starts at rest from any point 0 . By (19.2) there are, 
in general, oo3 rest trajectories in a generalized field of force. Other­
wise if the left-hand member of (19.2) is identically zero, there are 
at most oo/*1) rest trajectories. 

Thus it is obvious that under the assumptions (19.1) and (19.2) 
there are, in general, oo2 lines of force and oo3 rest trajectories. 

5. The extension of Kasner's theorem concerning one-third of 
the curvatures. In this section we shall determine all generalized fields 
of force such that, at any point 0, the rest trajectory and the line 
of force will have the same osculating plane. 

In the first place, we can easily show that the rest trajectory 
through the point O is tangent to the line of force at 0 . This is an 
immediate consequence of the equations 

dy/dt = y'dx/dt, d2y/dt2 = yfd2x/dt2 + y"(dx/dt)2, 

dz/dt = z'dx/dt, d2z/dt2 = z'd2x/dt2 + z"(dx/dt)2, 

together with the initial conditions (dx/dt)o= (dy/dt)0 = (dz/dt)0 = 0 
and the equations (20) defining the lines of force. 

We discuss our extension of Kasner's theorem. 

THEOREM 3. The rectangular components F(<f>} $, x) of any general­
ized field of f or ce for which, at any point 0 of space, the rest trajectory 
and the line of force possess the same osculating plane at 0 must be such 
that the single éliminant with respect to yf and zf of the three equations 

(22) ^ - y<t> = 0, x ~ sty = 0, (AC + BF)/(DC + EF) = C/F, 

where A, By C, D> E, F are defined by the expressions 

A = fv, - / 4 v , B = tfy - y'<i>z>} 

C = (I* + y'ypy + sty.) - ƒ(<£* + y'<t>y + sty,), 

D = Xv' - sty*/', E = xz' - *ty*', 

F = (x* + y'xv + z'xz) - z'(<f>x + y<t>y + sty,), 

is identically zero. 
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In the first place, the first derivatives (y', z') of the line of force 
and the rest trajectory through the point 0 are given as solutions of 
the equations (20). 

By obtaining the total derivatives of equations (20) with respect 
to x and using the formulas (23), we find that the equations defining 
the second derivatives ( F " , Z" ) of the line of force through the point 
0 are 

(24) (A - 0 ) F " + BZ" + C « 0, DY" + (E - <$)Z" + F = 0. 

By equations (2.1) and (2.2), we see that the equations defining the 
second derivatives (y"t z") of the rest trajectory through the point 
0 are 

(25) (A - 3*)y" + Bz" + C = 0, Dy" + (£ - 3<f>)z" + F = 0. 

I t is obvious that, in general, the osculating planes can not be iden­
tical. Let us impose the condition that the two osculating planes be 
identical. Then there must exist a number p such that 

(26) y" = PY", z" = PZ". 

Eliminating F " and Zn from equations (24), (25), and (26), we find 

y" = (1 - p)C/2*, «" = (1 - p)F/20f 

(27) p = (AC + BF - <t>C)/(AC + BF - 3<I>C) 

= (DC + EF - <t>F)/(DC + EF - 30F). 

This last equation establishes the validity of Theorem 3. 
For the generalized fields of force of Theorem 3, let X be defined 

by the two equal expressions 

(28) X = (AC + BF)/<t>C = (DC + EF)/<j>F. 

THEOREM 4. For the generalized fields of force of Theorem 3, the ratio p 
of the curvature of the rest trajectory to that of the line of force is given 
by the formula 

(29) P - (1 - X)/(3 - X). 

This result may be considered to be an extension of Kasne^s one-
third theorem. 

6. A converse of Kasner's theorem concerning one-third the cur­
vatures. If, in addition to the possession of the same osculating plane, 
we impose the condition that the ratio p = l / 3 , we obtain the follow­
ing converse of Kasne^s theorem. 
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THEOREM 5. The rectangular components F(<j>, \p, x) of any generalized 
field of force for which, at any point O of space, the rest trajectory and 
the line of force possess the same osculating plane and the ratio p of the 
curvature of the rest trajectory to that of the line of force is 1/3 must be 
such that the two éliminants with respect to y' and zf of the four equations 

* - y'<t> = 0, x - *'* = 0, 

AC + BF = 0, DC + EF = 0, 

where {A, B, C, D, E, F) are defined by equations (23), are identically 
zero. 

Thus it is seen that, in the generalized fields of force in space, there 
are no general geometric relations between the lines of force and the 
rest trajectories except for the trivial one concerning the possession of 
the common tangent line. This is entirely different from the two-
dimensional case (see footnote 2) where there is a theory—the gen­
eral theorem being quite similar to our Theorem 4. 
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