TWO NOTES ON MEASURE THEORY
EDWIN HEWITT

I. In a recent paper [1],! Saks has indicated a construction
whereby a Carathéodory outer measure can be produced on any
compact metric space M, provided that a certain linear functional
® is defined on the set € of all continuous real-valued functions
whose domain is M. The functional ® is required to be non-negative
for non-negative functions, and to have the property that if the se-
quence {f.} has the uniform limit 0, then the sequence ®(f,) is a
null-sequence. (The measure itself can be defined without this last
property.) The purpose of this note is to show that such a linear
functional always exists, in a non-trivial form, specifically, so that
d(1)=1.

We consider the set € as a linear space, and together with € the
lihear space R CG€, where ® consists of all constant functions. On the
entire space €, we define a functional p(f) =sup.ewn f(x). This least
upper bound always exists, since M, being a compact metric space,
is a bicompact space, on which every continuous real-valued function
is bounded. It is easy to verify that p(f+g) <p(f)+p(g), for all
f, g€6, and that p(¢f) =ip(f) whenever ¢ is a non-negative real num-
ber. We define a linear functional ® on the subspace & as follows:
®(f) =f(x) for an arbitrary xEM. It is clear that ®(f) =p(f) for
FER and that ® is linear on &. By virtue of the celebrated theorem
of Hahn-Banach, it appears that ® can be extended linearly to all
of € in such a fashion that ®(f) =p(f) for all f&€. We further ob-
serve that ® may be taken non-negative for non-negative functions.
For, if ® has been defined by the Hahn-Banach construction for
all fEB, where RCBCE, B=C, and if g&C—B and g=0, then the
number a=inf;es (p(f+g) — P(f)) is an upper bound to possible
values for ®(g). a, however, is plainly non-negative, so that ®(g)
may always be taken non-negative. Suppose now that the sequence
of functions {f,} has the uniform limit 0. The function e—f, is non-
negative for all > N(e), N(e) being some natural number dependent
upon the arbitrary positive number e. Accordingly, ®(e—f,) = ®(¢)
— ®(f,) =eP(1) — (f,) =e¢— ®(f,) =0. Likewise, it is easy to show
that e+ ®(f.) =0 for all sufficiently large #. It follows at once that
lim, ., ®(f.)=0. It is proved in Saks [1] that the functional ® can
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be used to define a Carathéodory outer measure under which every
Borel set is measurable.

II. The present note has.as its object the proof of the following
result.

THEOREM. If E is any infinite set, there exists a non-negative real-
valued function I defined on all subsets of E such that:

(1) T(4UB) =I'(4)+T'(B);

(2) T(4)=T(B) of ACB;

(3) T 2 14.) =2 21T(4,) if AuNApn=0 for m=n;

4) T(E)=1;

(5) T'(0)=0;

(6) the function T' assumes an infinite number of different values;

) I‘({p})=0 for all points pEE except for those in a countable
subset of E.

Since Ulam has proved that a function enjoying properties (4) and
(3) cannot vanish for all subsets containing exactly one point (where
E has any of a wide class of cardinal numbers), it appears that the
present theorem is the strongest result possible.

The proof of this theorem depends upon a consideration of the
family 9B of all bounded real-valued functions defined on the set E.
As in the preceding note, it is easy to prove the existence of a linear
functional ® defined on the family B considered as a linear space.
The construction, for our present purposes, will be considered in
more detail. Let E be partitioned into N, disjoint sets E;, Eg, Eg, * + -,
E,, - - -, each having cardinal number equal to the cardinal number
of E. Let w, be the characteristic function of the set E,. It is obvious
that w, €Y for every n. We shall first define the linear functional ®
on the linear spaces Pi1, Bz, Ps, « - =, P, - - - obtained from K, the
space of constant functions, by adjoining wi, ws, ws, + + +, Ws, + + + in
succession and forming all possible linear combinations. As in the
preceding note, we define p(f) as sup.cr f(x), and ®(f) as f(x) for
fER, x being any point of E. By the Hahn-Banach construction, if
®(f) is to be bounded by p(f), we must have, when we calculate
®(w1), a1 = P(wy) £by, where a1=supyee (—p(—f—w)— ®(f)) and
bhi=inf,ee (p(f+w) — B(f)). It is easy to show that b3=1 and that
a;=0. We may, then, in accordance with the Hahn-Banach construc-
tion, take ®(w;) as 1/2.

The numbers a:=supsew, (—p(—f—ws)— B(f)) and by =inf;cyp,
(p(f+we) — ®(f)) are lower and upper bounds, respectively, for
®(w;). a; may be computed as 0, and bg, as it is easy to see, is equal
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to 1/2. We may thus put ®(w,;) =1/4. This process may be continued
by finite induction; it is found that the function w, may be assigned
the value 1/2» under the functional ®. ® having been defined for
the linear space generated by & and the sequence {w,.}, the Hahn-
Banach construction is carried out for the rest of 8 in any fashion
consonant with the restrictions of that theorem, provided that
®(f) =0 for non-negative functions f. We thus have a linear non-
negative functional defined on all of the space B.

The measure I'(4) for every subset 4 of E can now be defined:
T'(4) =®(w4), wa being the characteristic function of the set 4.
Properties (1)-(7) can now be established. It is plain that
waypSws+wp, whence P(ws+wp—ways)=0, and consequently
®D(wayp) = P(ws) + P(wp), which inequality establishes (1). It is also
obvious that 4 CB implies that ws <wp. From this, we infer prop-
erty (2).

We examine (3) in some detail. If 4 and B are disjoint sets, it
follows that wiyp=wi-+ws, and consequently ®(ways)=P(wa)
+ ®(wp), that is, the measure is additive for all subsets of E. We
may thus state that all subsets of E are measurable in the sense of
Carathéodory. It is easy to prove from this fact that if {A,.} is any
sequence of pairwise disjoint sets, then I‘(Z,‘f_lA W) =2 T'(4,). The
proof may be carried over word for word from a similar proof in
Saks [2, chap. 2, §4, p. 44, Theorem 4.1].

Statements (4), (5), and (6) are immediate consequences of the
definitions of ® and T.

To prove that T vanishes for all points except those in a countable
subset, we assume the contrary. If an uncountable set T of points
exist such that I‘({p}) >0 fer every pE&T, then there is some €>0
with I‘({p,.})>e, where p,E€T, and n=1, 2, 3,.-.. On account
of property (3), we have T .y {pn}) =D s T'({pn}) = . Since
1=T(E) 2T n.1 {#x}), a contradiction is apparent.
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