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TAYLOR SERIES 
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1. Introduction. With the objective of providing a straightforward 
numerical method for the determination of poles and zeros of func­
tions defined by Taylor series this note reexamines Hadamard's solu­
tion of this problem, which is found in his classical thesis.1 The best 
known part of Hadamard's solution is the criterion which enables 
one to determine the meromorphic character of the expanded func­
tion and the total number of poles on the circle of convergence. But 
this solution also includes a method of determining these poles as 
functions of the Taylor coefficients, and Hadamard himself intimated 
that his results should prove useful in the numerical evaluation of 
poles and zeros. However, it seems that, as a device in numerical 
analysis, his method has attracted much less attention than it de­
serves. This may be due to the fact that Hadamard's criterion for the 
number of poles employs limits superior, which are impractical for 
numerical work. 

In this paper no use is made of limits superior, and the number of 
poles on the circle of convergence is ascertained by the process of eval­
uating their affixes. Besides determining the polynomial whose zeros 
are all the poles of the expanded function on the circle of convergence 
with their proper multiplicities, the paper also determines the poly­
nomial whose zeros are the different poles of highest order only. 
These results are based on an identity and an inequality for persym-
metric determinants involving successive Taylor coefficients of ra­
tional and meromorphic functions, which seem to be new, and may 
also prove useful in other applications. 

2. A formula for persymmetric determinants. We first are going 
to establish an identity for persymmetric determinants of the form 

(1) 
,(m) 

an = 

Cn+1 Cn+2 

Cn+2 £n+3 

Cn-\-m 6n-fm-fl 

' ' 0n-\-m 

' ^w+w+1 

. . . 

' * 6n+2m—1 

n = - 1, 0, 1, 
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1 J. Hadamard, Essai sur Vétude des fonctions données par leur développement de 

Taylor, J. Math. Pures Appl. (4) vol. 8 (1892) pp. 101-186. 
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where the 2m — 1 numbers cn+i, cn+2, • • • , cn+2m-i are successive co­
efficients in the Taylor series expansion of a rational function. 

Suppose, at first, the rational function has only simple poles and 
is of the form g0(z) = 2 ^ = 0 ^ = —]C*-if*/(s —**), **^0- We wish to 
evaluate d^=d^\g0]. Since Cn=ZXiftfT ( , , + 1 ) (» = 0, 1, • • • ), we 
have 

dn = S 

. -(«+2) 
Çki%ki 

- ( n + 3 ) 
ÇkiZki 

Çk2Zk 

Çk2Zfr 

(n+3) 

(n+4) 

à kp^kp 

-(n+p+2) 
5 kp*>kp 

- ( n + p + 1 ) - ( n + p + 2 ) - ( n + 2 p ) 

where the sum is extended over all the combinations (with repeti­
tions) ki, &2, • • • , kp of the numbers 1, 2, • • • , p. Since the combina­
tions with repeated elements lead to vanishing determinants we may 
also write 

dn = 
f if 2 * * * f p 

(*1*2 ' ' ' Zp)
n+2*> 

2p-2 
Zki 

2p-3 
Zki 

p—1 
Zki 

2p-Z 
Zk2 

2p-4 
Zk2 

p-2 
Zk2 

p-1 
' Zkp 

p-2 
' Zkp 

0 
* Zkp 

The sum of determinants in the last formula is known to be equal to 
the square of the difference-product of the numbers Zi, 22, • • • , zp; 
hence 

(2) 
dn [go] Af if 2 • ' ' f p(Z!Z2 

A = n (** - **')*. 
Zp) 

-(n+2p) 

R, Av — J. , Zr j >P-
k<k' 

Now suppose the 2p — \ numbers cn+i, Cn+2, • • • , cn+2P-i are suc­
cessive Taylor coefficients of the more general rational function 

g0) = Z CnZn 

(3) 
JU.1 \ ( Z - i + 

f*. 
Zjt)p* ( z - Z f c ) M _ 1 + + 

Tfc.PA;-: 

— Zk/* 

Zk 7* 0 , 

which has, at most, ^ = ^ 1 + ^ 2 + • • • +PQ poles (counted according 
to their multiplicities). We are going to evaluate d(

n
p)=d(

n
p)[g] as the 
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limit of determinants d^ formed for rational functions with only 
simple poles. 

With the numbers zk,u ^,2, • • • , zktPk (& = 1, 2, • • • , q) which 
are assumed to be different from each other and from 0 but otherwise 
arbitrary, we define the polynomial 

(4) Tk(z) = f* + f*,iO - Zk) + ' • • + h,ph-i(z - s*)'*"1, 

and consider, instead of the function g{z)y the function 

(5) gl(z) = £ CnZn = - Z ~ • 
n=0 fc=l \Z — Zk,l)KZ — Zk,2) ' ' ' \Z — Zk,pk) 

gi(z) has only simple poles. Its partial fraction expansion is 

v ' 

gi(«) == - Z) ——! > I = 1, 2, • • • , p k ; k = 1, 2, • • • , g, 

w h e r e 

?M = 
1Tk(Zktl) 

(Zk,l ~ 3fcfl) * • # (Zk,l — ^ M - l X ^ M — Zk,l+l) ' * * (Zk,l — Zk,pk) 

Applying the first result (see formula (2)) to the function gi(z), we 
find d^)[gi]=AiJJk,i^ktiz^n+2p\ where A' is the square of the differ­
ence-product of the numbers zkth But 1 1 ^ , ^ , ^ = 11^ ,^^(^ ,0 /11^^» 
where A& = ( - l ) ^ ( ^ - i ) / 2 j J z < r ( ^ z - 2 A ; i r ) 2 . Hence 

(6) 

dn [gl] = &"TÏTnc(Zk,l)Zk,l 
k,l 

A" = ( - 1 ) W P » - « / I I I («t.i - Zk'.i')2, 
k<k'\l,l' 

I = 1, 2, • • • , ^&; /' = 1, 2, • • • , pkf. 

We now assume that the numbers zk,i depend on a variable 8, and 
that limn+0 zk,i(ô)=zk (7=1, 2, • • • , pk\ k = l, 2, • • • , q). Instead 
of g\{z) and cn' we now have g(z, ô) and cn(8) respectively. Comparing 
(5) and (3), we see that g(zf ô) converges to g(z), cn(ô) converges 
to cn, as 5->0. Hence d(^[g(d)] converges to d(

n
p)[g], as S->0. More­

over, by (4), TTk{Zk,i) converges to f *,, as 8—>0. Using all these limits, 
we obtain from (6) 

7^)r 1 A <PiJP2 J>Q / Pi P2 PQ.-(n+2p) 

an [g\ = Af 1 f 2 ' ' ' U (2l 22 ' ' * Ztt) 
(7) 
W A = ( - 1 )^*<P*- I ) /* I l (»* ~ **')2p*p*'» M ' « 1, 2, • • • , g. 
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3. The equation for all the poles on the circle of convergence. In 
the following, the numbers an will represent the Taylor coefficients 
of any analytic function that has no singularities other than poles on 
its circle of convergence about 0. And besides such determinants as 
defined in (1), we shall consider determinants dffi (i = l, 2, • • - , m)t 

defined as 

(8) £?\J\ = 

#n+l dn+2 ' ' ' flw-fi-1 dn an+t'+i • • * # n + w 

dn+2 dn+Z ' ' * Un+i dn+l dn+i+2 ' * * #n+m+l 

dn+m dn+m+l * * * dn+i+m— 2 ̂ w+m—1 dn+i+m ' ' * ̂ «+2m-1 

drZi[f] = - dnZ [ƒ], n = 0, 1, • • - . 

THEOREM 1. Suppose j\z) =^nanz
n ~ g(z)+j\{z), where 

*- i \ (2 - 2*)p* (2 - a;*) vk~l z - z k J 

I «* I = r > 0, 2* 5* 2jb,(£ ^ £'), f ^ p£ 0, ft, *' = 1, 2, • • • , q, 

and fi(z) is regular in \z\ ^R — rr, r > l ; suppose 

T(Z) = (Z — 2 i ) w ( « — 2 2 ) P a • ' ' (2 — Zq)
pQ 

= z* + yiz?-1 + - — +yp, £ = #1 + £2 + • • • + pq. 

Then, for i = l, 2, • • • , p, 

(9) Y, + d ^ [ƒ]/<£° [ƒ] = 0(r"n) , 05 n -> 00. 

PROOF. The function <f>{z) =^2vavz
v = ir(z)f(z) has the coefficients 

(10) a„ = av-p + 7i0v_p+1 + y2av^p+2 + • • • + ypav. 

If, in (10), we put v successively equal to n+p, n+p-\-l, • • • , 
n + 2p — l, we have £ equations for the unknowns 71, 72, • • • , 7P , 
whose solution is, provided <4P) [ƒ]?•* 0, 

(H) 7*' + n̂* /^n = ^ni /dn , i = 1, 2, • • • , #, 

where e^ denotes the determinant obtained from d^ when <zn, 
a»+i, • • • , dn+p-x are replaced by an+pj an+p+i, • • • , o:w+22,-i respec­
tively. 

The determinants e{£ are easily estimated. Since </>(z) is regular 
in | s | ^Rf and ƒ(#) is regular in \z\ <ry there is some number <r>l 
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such that an = 0(a-nR~n), an = 0{<rn,^-l)r-n) as n—> 00 ; hence 

(12) en% = 0{r R ) = 0(j r ), asw--»°o. 

A lower bound for the determinants d^ [f] is derived from iden­
tity (7). If g(z) =J2nCnz

n, / i 0 ) =J^nbnz
n
} then an = bn+cn, and d^lf] 

is the sum of djf}[g] and several other determinants, each of which 
has at least one column of è's and otherwise columns of c's. Hence, 
as in (12), 

(13) dn [ƒ] = dn [g] + 0(T "r Pn), as »—• oo. 

But since, by (7), for n = 0, 1, 2, • • • , \d^[g]\ = Mr-*>n, where AT 
is a positive constant, we deduce from (13) that there is another con­
stant Mi such that, for sufficiently large n, 

(14) \d?)\f]\>M*—. 

In particular, d^ [ƒ ] 5*0 when w is sufficiently large. • 
Inequalities (12) and (14), together with equation (11), prove the 

theorem. 
Let it be noted that, since yP = ( — \)vzv^z^ • • • z\q, we have 

r*= \yp\, or by (9), r^lim^d^lfW^lf]]. This relation implies 
r* = l i m n . J <#>[ƒ] |-i/».* 

It is not necessary that all the poles zk should lie on the circle 
| z| =r. Indeed, we may state the following: 

COROLLARY. Estimate (9) still holds true if \zk\ — Tkr} r&^l 
(* = 1, 2, • • • , g), and R = rr• rfrf2 • • • TJ«, T > 1 . 

The proof of this corollary is an obvious variation of the proof 
given above. 

If f(z) is a rational function, say f(z) = \{/(z)/7r(z), where \f/(z) is a 
polynomial whose degree we define to be s^p —2, then 4>(z) =^2vavz

v 

= ir(z)f(z)=\l/(z); hence a„ = 0 for p>s, and consequently e^=0 for 
n>s — p. On the other hand, f(z) is the sum of a polynomial /i(z) 
of degree s—p and a fraction g{z) such as in (3). Hence, for n>s—p, 
d^lf] = 4 P ) k l ^ O , by (7). Thus, relation (9) holds, for n>s-p, with 
0 substituted for the second term. In particular, 

2 This "rather delicate limit relation" (see P. Dienes, The Taylor series, Oxford, 1931, 
p. 330) was first proved by Hadamard, op. cit. Other authors have tried to give simpler 
proofs for it, see, for example, A. Ostrowski, Über einen Satz von Herrn Hadamard, 
Jber. Deutscher Math. Verein. vol. 35 (1926) pp. 179-182. It is an immediate conse­
quence of identity (7). On the other hand, it is the only intricate point in the proof of 
Theorem 1. 
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(15) 7< = - d s _ p + M [ / ] /4 -p+i [ / ] , i = 1, 2, • • • , £. 

The numbers 7* having been found, the numbers av are given by (10). 
Thus, the coefficients of the polynomials TT(Z) and yp(z) are ex­
pressed, by (15) and (10), as rational functions of the Taylor coeffi­
cients ao, ai, - - - , ap+8 of ƒ(z) =\^{z)/ir(z). 

4. An inequality for persymmetric determinants. In the following 
as in the foregoing we shall assume the function ƒ(z) =^2n(inZn to have 
no singularities other than poles on the circle of convergence |z | = r 
of the Taylor series. We shall be interested no longer in all the poles, 
but only in the poles of highest order on \z\ =r. We shall say that ƒ (z) 
is of order m on | z\ =r if f{z) has there at least one pole of order my 

and no other singularities but poles of order less than or equal to m. 
We are going to establish an estimate for the determinants d^lf] 

(n = 0, 1, • • • ) where q is the number of poles of highest order of 
f(z) on \z\ =r. Suppose that f(z) =Ylnanz

n = g(z)+fi(z), where g(z) 
= -J2LiÇk/(z-Zk)m> I **| =r>0, and fi(z) is regular in | z\ <r and of 
order less than m on \z\ =r. The coefficient of zn in the Taylor series 
expansion of — Çk(z — Zk)~m is 

, 4X A*+ l)(« + 2) • • • (n + w - 1) 
( - 1) m~l : 77— f * 

{m — l)\zm+n 

{m - l)!sw+w \ rn / 

The coefficient of sw in the Taylor series expansion of fiiz) is, for the 
same reason, 0{nm~2r~n). Hence we have the estimate 

as n • 
* h /nm~2\ 

*n= Z —77 + 0[ ), 

(16) ? 

^ = ( - ! ) * - ! f t . 

(ra — l ) ^ ^ 1 

I t implies the less exact estimate 
(17) an = 0(nm-1/rn)1 as #—> <*>. 

Corresponding to the decomposition (16), the determinant dn][f] 
splits into the sum of a persymmetric determinant whose terms are 
^=X)t-if*g*"(H'1) 0" = » + l, w + 2, • • • , w + 2g —1) and several other 
determinants, each of which has at least one column made of terms 
that are 0(nm~2r~n), and otherwise columns made of terms that are 
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0{nm~lr~n). The first determinant, as was shown in §2, is equal to 
A-£i£2 • • '%q (ziz2 • • • zq)~

in+2q\ where A is the square of the differ­
ence-product of the numbers zh z2, • • • , zq. The sum of the other 
determinants is 0{nq{m~l)-~lr~qn), Hence, using (16), we have the esti­
mate 

dn [ƒ J = Cf f- 01 ), as n -» oo, 

^ / A\ t i \ , S IS 2 Çq 
Cf = ( - l ) « ( ^ - i ) A - -[(m - l)!]e(2i22 • • • zqY

q+m~l 

5. The equation for the poles of highest order. In §3 we have 
established the algebraic equation whose roots are all the poles of ƒ (2) 
(counted according to their multiplicities) on \z\ =r. We shall now 
establish the algebraic equation whose roots are the different poles 
of highest order off(z) on \z\ —r. 

THEOREM 2. Suppose that f(z) =y%2nanz
n = g(z)+f±(z), where 

g(z) = - GV(s - * ! ) * + JV(s - z2)
m + • • • + JV(* - *fl)~), 

| s* | = r > 0, s* 5* zk>(k T£ V), U ^ 0, *, 4' = 1, 2, • • • , q, 

andj\{z) is regular in \z\ <r and of order less than mon \z\ =r; suppose 
ir(z) = (z — zi)(z — Z2) - - - (z — zq)=zq+yiZQ-l+ • • • +yq. Then, for 
i = l, 2, • • • , q, 

(19a) 7i + dn- [f]/dlq) [ƒ] = 0(1/»), as n -> oo, 

and 

/IOKM 1 . r l o g ^ w * W l + f i ? l o g r (19b)3 w = 1 + hm 
n->oo q l o g W 

PROOF. The function <j>(z) =^Pauz
v = ir(z)f{z), whose coefficients are 

(20) a„ = a„_Q + Yxa^-g+i + • • • + yqav, 

is regular in \z\ <r, and of order less than or equal t o w - I o n \z\ =r. 
Hence, as in (17), the coefficients av are 0{vm~2r~v), as v—>oo. If, in 

3 Hadamard, see op. cit., defined the order of any series ^anz
n and proved that , on 

its circle of convergence, the order is given by the formula m = l + l i m sup (log \an\ 
-\-n log r)/log n. Formula (19b) represents, in accordance with the objective of this 
paper, the order as a regular limit, but it holds only for series which are meromorphic 
on their circle of convergence. 



588 MICHAEL GOLOMB [August 

(20), we put v successively equal to n+q, n+q + 1, • • • , n + 2q — 1, 
we have q equations for the unknowns 71, 72, • • • , yg, whose solution 
is, provided 4 ? ) [ / ] ^ 0 , 

(21) 7» + dni fdn = ent- /dn , 1 = 1, 2, • • • , g, 

where e$ denotes the determinant that is obtained from d^ when 
an, dn+i, ' • • , öWg-i are replaced by cxn+fl, «n+e+i, * • * > an+2q-i respec­
tively. Using estimate (17) for the a's and a corresponding estimate 
for the a's, we find readily 

(22) eni = 0(n r ), as#—><*>. 

Taking into account that, by assumption, the poles z\, z2, • • * , zq 

are different from each other, we deduce from relation (18) that there 
are constants Mi, Mi such that, for sufficiently large n, 

/ o - > \ j ^ r / l « ( m - 1 ) - g n T . , ^ I I . , , 

(23) dn [ƒ J = Mn̂  f , Ml < I Mn I < M2. 

In particular, d^lfj^O when w is sufficiently large. 
Inequalities (22) and (23), together with equation (21), prove the 

theorem. 

6. Converses of Theorems 1 and 2. In problems where the poles of 
f(z) are to be determined from the given Taylor coefficients, it is, 
in general, not known, a priori, what and how many singularities/(s) 
has on the circle of convergence \z\ =r of its Taylor series expansion. 
Even if f(z) is known to be meromorphic, Theorems 1 and 2 do not 
always suffice to establish the polynomial w(z) whose zeros are all the 
poles, or the poles of highest order, of f(z) on | z\ = r, as the numbers 
p or q may not be known. In such a case the procedure to follow is to 
investigate the behavior of the quotients o?*[/]/#lw)[/], as n—»<*>, 
successively for m = l, 2, • • • . From the convergence properties of 
these sequences the nature and number of the singularities of f{z) on 
|z | —r can be deduced, as will be shown in the following converses 
of Theorems 1 and 2. I t will always be assumed that f(z) =X^#n2w 

has a positive radius of convergence. 

THEOREM 3. Suppose that, for a fixed p, there are p numbers 
Yi> T2, • • * , yP and a number r > 1 such that, for i = 1, 2, • - • , p, 

(24) 7* + dtf [f]/dT [ƒ] = 0{r~n), asn->«>; 

suppose that this is not the case for any p'<p. Then f (z) is regular in 
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the circle \z\ ^r=\yp\
llp but for p poles {counted according to their 

multiplicities) on \z\ =r, which are the zeros of the polynomials w(z) 
= sp+2Xi7.-*p~'. 

PROOF. According to the definition of the determinants d$, d%\ 
and since the quotients dl^/d^ exist, by assumption, for sufficiently 
large », we have 

(25) an — (1/dn )(On+ldnl + Cl>n+2dn2 + ' * * + dn+pdnp) = 0. 

Let r be the radius of convergence oî^2nanz
n; then an = 0(r'~n), as 

»-^oo, for any r'<r. If we choose r' so that R — rr' >r, we obtain, 
by substituting (24) in (25), 

an+P = an + Yî n-fi + 720„+2 + • ' ' + Jvan+p = 0(R~n), as n —•> oo. 

Hence the function </>(z) — ir{z)f{z) =^2Pavz
v is regular in \z\ ^R>r. 

This implies that ƒ (z) has no other singularities than, at most, p poles 
on the circle \z\ = r , which are among the zeros of TT(Z). 

Hf(z) had less than p poles on \z\ —r, some relation like (24) would, 
by Theorem 1, hold for p' <p, in contradiction with the hypothesis. 
Hence ƒ (z) has exactly p poles on \z\ =r, which are the zeros of ir{z). 
Since ( — \)pyp is the product of the p zeros, r= \yp\

llp. 

THEOREM 4. Suppose f (z) has no singularities but poles on \z\ =r; 
suppose that, for a fixed q, there are q numbers 71, 72, • • • , 7« such that, 
fori = l,2,---,q, 

(26) yi + limdn-ifydTif] = 0; 
n—»oo 

suppose that this is not the case for any q' <q. Then f(z) is regular 
in the circle \z\ <r= \yq\

1/q, and of order 

m = l+limn^0 0 (log \d{*) \ +nq log r)/q log » 

on \z\ =r. f{z) has q different poles of order m on \z\—r, which are 
the zeros of the polynomial w(z) = zq+^2^1yiz

q~i. 

PROOF. Let r be the radius of convergence of ^ n ^nS w , and let m 
be the order of f{z) on \z\ —r. If ƒ (z) had less than q poles on |z | = r , 
some relation like (26) would, by Theorem 2, hold true for q' <q, in 
contradiction with the hypothesis. Hence ƒ (z) has q'^q poles of order 
m on \z\ =r. 

As in the proof of Theorem 3, we have, for sufficiently large », 

(27) an — (1/d* )(an+idni + an+2dn2 + • • • + an+qdnq) = 0. 
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In §4 (see (17)) it was shown that an = 0(nm~1r~n), as n—><*>, whereas 
by assumption, d$/d^ = —7*+0(l), as n—»oo. Hence (27) implies 

(28) an+(Z = a» + yian+1 + 72^+2 + • • • + 7«ön+« = 0(^m"V~w), 

a s ^—» 00. 

Now suppose qr>q. Since x(s) is of degree q, <t>{z) =^n0Lnz
n 

=s?r0&)/080 is, like ƒ(2), of order m, and has q"^q' — q different poles 
Z\, 22, * • * , 2«" of order m on \z\ =r. Hence, as was shown in §4 (see 
(16)) an has the form 

q" Ok 

(29) an = nm~lY, h 0 

as w—>oo, and 0*5^0 (& = 1, 2, • • • , g") . 
I t is easily shown4 that there is a positive number M such that, 

for n = 0, 1, • • • , at least one of the q" numbers | r n + ' 2 C i 0 * / ^ + , ' | . 
v = 0, 1, • • • , qtf — 1 is greater than M. This fact, together with (29), 
implies that, to any given no, there are numbers n>no such that 
I an\ > (l/2)Mnm~~1r~n, whereas, because of (28), no may be found such 
that, for all n>n0, \an\ <{\/2)Mnm~lr~n. Thus the assumption q'>q 
is proved to be wrong. 

Since we have proved that the number of poles of f(z) of order m 
on \z\ =r is q, the other statements of the theorem follow immedi­
ately from Theorem 2. 

COROLLARY. If f(z) =^2,nanZn has no singularities but poles on the 
circle of convergence \z\=r of^nanz

n, and if si = limn^00 an/an+i exists, 
thenfiz) is of order m = l+limn^0 0 (log \an\ +n log r)/log n on \z\ = r, 
Zi being the only pole of order m on \z\ =r.5 

This is obviously Theorem 4 for q = 1. 
The following theorem is the logical product of Theorems 3 and 4. 

THEOREM 5. Suppose that, for a fixed p, there are p numbers 
7i> 72, • • * , yP and a number r > l such that, for i = \, 2, • • • , p, 
yi+d(ni[f]/d(n}[f]=0(T-n), as n-^oo; suppose that there is no p'<p 
such that the limits limn^o <4^[ƒ]A4P)[ƒ] (* = 1, 2, • • • , p') exist 
Then f(z) is regular in the circle \z\ ^r= \yp\

l!p but for p poles of 
the first order on \z\ =r, which are the zeros of the polynomial w(z) 
= 2p+ZXi7<2p"*. 

4 See A. Ostrowski, Über Singularitaten gewisser mit Lücken behafteten Potenzreihen, 
Jber. Deutschen Math . Verein. vol. 35 (1926) p. 269. 

6 Cf. footnote 3. 

( ^ 
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PROOF. AS in the proof of Theorem 3 it is seen that ƒ (z) has no other 
singularities than, at most, p poles (counted according to their multi­
plicities) on the circle of convergence |z | —r oî f(z) =^2nanz

n. If, on 
\z\ =ri ƒ0s) had less than p poles, or if some of the poles were of 
higher than the first order, then ƒ(z) would have q<p poles of high­
est order on |z | =r. This would imply, by Theorem 2, the existence 
of the limits l ining dnf/dn

Q) (i = l, 2, • • • , q), in contradiction with 
the hypothesis of the theorem. f(z) has, therefore, exactly p poles of 
the first order on \z\ =r. The other statements of the theorem follow 
immediately. 

7. Application to the evaluation of roots. The zeros of smallest 
absolute value of the function F(z) =^2nAnz

n are the poles of the func­
tion ƒ(z) =^nanZn = 1/F(z) on its circle of convergence. Hence the 
theory just developed contains a method of evaluating zeros of small­
est absolute value of functions given by Taylor series. The procedure 
to follow is that outlined at the beginning of §6. It requires the evalua­
tion of the determinants dffl [ƒ] (n = 0, 1, • • • ) for several values of m. 
These determinants are defined, in (8), in terms of the coefficients an 

of f(z). They also can be expressed6 easily in terms of the coefficients 
An of the given function F{z), with the determinant dffilf] of order 
m in the elements aw, an+i, • • • , aw+2m-i replaced by a determinant 
of order m+n + l in the elements A0, Au • • • ,^4n+2w-i. 

Since the order of these latter determinants increases with n} they 
are not suited for practical purposes. If numerical evaluation of the 
zeros of F(z) is required, it is advisable to compute first the coeffi­
cients an of the reciprocal function f(z), and then to work with the 
determinants dffîlf] as given in (8). If ƒ(*) = ] £ 7j,(Zn2 IS the negative 
reciprocal of F(z) ^^nAnZ71, and the coefficient A 0 is made to be — 1, 
then the coefficients a„ are given by the simple recursion formulae : 

a0 = 1, 

öi = Au 

a>2 = A2 -{- d\Ai, 

as = Az + aiA2 + a2Ah 

To illustrate the numerical efficiency of the method, the two conju­
gate complex roots zi, z2 of smallest absolute value of F(z) =z — ez = 0 
were computed. The results are exhibited in the following table. The 

6 See J. Hadamard, loc. cit., p. 136. 
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second column of the table contains the Taylor coefficients an of 
f(z) — l/(ez — z) multiplied by n\ in order to avoid fractions; the third 
column contains the quotients d£?[/]/d£2)[/], which represent suc­
cessive approximations to — 71 = 21+22; the fourth column contains 
the quotients ^2-i[/]A42)[jf], which represent successive approxima­
tions to Y2 = £i£2. The final values in the table give 

21 + 22 = 0.6362630104, 2i22 = 1.889406976 

with a relative error of 1 • 10~10. As the table shows, the fifth approxi­
mation, which is obtained with very little effort, already gives the 
values of 2i+22 and 2i22 with a relative error of 1 • 10~~6. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

an 

-8 
32 
977 

1 325 
-116 987 

19 
73 

-847 
554 
488 
198 
135 
762 

0 
-1 
-1 
5 
19 

-41 
-519 
-183 
223 
451 
067 
547 
611 
559 
969 
287 

dfi\j]/dt[f] 

0.67 
0.632 
0.6368 
0.63616 
0.6362624 
0.6362628 
0.63626291 
0.63626306 
0.63626299 
0.636263011 
0.6362630099 
0.6362630105 
0.6362630104 
0.6362630104 

<ff-i\S\/<ff\S] 

2 
1.89 
1.891 
1.8897 
1.88942 
1.88941 
1.8894073 
1.8894072 
1.88940700 
1.889406978 
1.889406977 
1.889406976 
1.889406976 
1.889406976 

PURDUE UNIVERSITY 


