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1. Introduction. The radical of a ring has been hitherto defined by 
using either the notion of a nilpotent or a nil-ideal. In the following 
we shall ascribe the term specialized radical to the sum Na of all two-
sided nilpotent ideals of a ring S, and the term generalized radical to 
the sum Ny of all two-sided nil-ideals of the ring. In §2 of the present 
note the notions of a semi-nilpotent ideal and its counterpart the semi-
regular ideal are introduced, and the term radical is suggested for the 
sum N of all two-sided semi-nilpotent ideals of the ring. These nota­
tions may be justified by the following considerations: 

(a) Each nilpotent ideal is semi-nilpotent, and each semi-nilpotent 
ideal is a nil-ideal. 

(b) The radical N is a two-sided semi-nilpotent ideal which con­
tains also all one-sided semi-nilpotent ideals of the ring. 

(c) The radical of S/N is zero. 
(d) The radical N contains the specialized radical Na and is a sub­

set of the generalized radical Ny. 
(e) In the case of an algebra the notions: nilpotent, semi-nilpotent 

and nil-ideal are identical,andiVr
(r = iVr = iV7;butif one turns to general 

rings, and replaces radical N and semi-nilpotent ideals either by 
specialized radical Na and nilpotent ideals or generalized radical Ny 

and nil-ideals, then some restriction has to be imposed on the ring 5 
in order to assure the validity of (b) and (c).1 

These results are applied in §3 to semi-primary rings (which will 
be called in short: A -rings). 

2. The radical of a general ring. In this section certain theorems 
related to the radical of a general ring are proved. 

NOTATION. If r±t • • • , rn is a finite set of elements in the ring S, 
then the ring generated by the r will be denoted by {rh • • • , rn}. 

DEFINITION. A right ideal is called semi-nilpotent if each ring gener-

Presented to the Society, October 31, 1942; received by the editors October 7, 
1942. 

1 Thus the specialized radical N9 is nilpotent (and hence the specialized radical of 
S/Nff is zero) if (as is well known) the maximal condition or (as can be shown) the 
minimal condition is satisfied by the two-sided ideals of the ring. As to the generalized 
radical Ny, it has been proved (G. Koethe, Die Struktur der Ringe, Math . Zeit. vol. 32 
(1930) pp. 161-186) that if each regular right ideal of S contains a minimal regular 
right ideal, then Ny contains also all one-sided nil-ideals of the ring. 
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ated by a finite set of elements belonging to the ideal is nilpotent. A right 
ideal which is not semi-nilpotent, is called semi-regular. 

REMARKS. Each regular right ideal (that is, an ideal which contains 
elements which are not nilpotent) is evidently semi-regular, and each 
semi-regular right ideal is potent (that is, not nilpotent). Accordingly, 
each nilpotent right ideal is semi-nilpotent, and each semi-nilpotent 
right ideal is a right nil-ideal. One can easily find examples of rings 
containing semi-nilpotent right ideals which are not nilpotent. The 
problem of constructing a ring with right nil-ideals which are not 
semi-nilpotent, is equivalent to the construction of a potent nil-ring 
with a finite number of generators. I t can be easily shown that such 
rings can always be found among the subrings of a ring with a gener­
alized radical Ny (see §1) which does not contain all one-sided nil-
ideals of the ring. 

THEOREM 1. The sum R = (RU R2) of two semi-nilpotent right ideals 
Ri and R2 is a semi-nilpotent right ideal. 

PROOF. Suppose R is semi-regular, that is, R contains a finite set 
foi, • • • , fon so that the ring S* = {roi, • • • , r0n} is potent. Write 
roi = r<Ti+ryil where r^E-Rii ryiÇ:R2, then evidently also 
5** = {r<ri, • • • , ran, f7i, • • - , ryn\ is potent, since S*C5**. Define a 
set ri, • • • , rm as follows: (1) each ri is either an rak or an rTJ-, (2) the 
ring {ri, • • • , rm} is potent, (3) each ring generated by a proper 
subset of the /%• is nilpotent. One obtains such a set by suppressing 
one way or another the greatest possible number of elements of the 
set ra\, • • • , r^m • • • » ryn, so that the remaining set still generates a 
potent ring. The set of the r* necessarily contains certain r9% as well 
as certain r7k (since the ra% as well as the ryk taken separately gen­
erate nilpotent rings), hence m*t2. Now consider the rings 
T= {rh r2} - • • , rm} and U= {r2, • • • , rm}. By the definition of the 
ri it follows that T is potent, while U is nilpotent. Denote by p the 
index of the nilpotent element n and by a the index of the nilpotent 
ring U. Denote by wh • • • , w8 the finite set of all elements of the form 
r\rH * ' " fit> where 0 < \ < p ; 0 < / < c ; i , ^ l , j = l, • • • , / . Now,since T 
is potent, it follows that for each positive integer #, elements^, ••-,*;* 
can be found so that each Vi is a certain rk} and the product vi -v2 • • • vx 

is different from zero. From the definition of p and a it follows that if 
x > p , x >cr, then the set Vi, • • • , vx necessarily contains the element r\ 
as well as elements different from rx. Hence, by choosing an arbi­
trary integer y, and fixing x so that x>(p+<r)(y + 2), we have 
0i • • • vx—f'gi - - • gyh, whe re / and h are certain elements of T, while 
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the gi are elements of the set wh • • • , w8. Since g\ • • • gy^O, it follows 
that the ring {wi, • • • , ws} is potent. Since either r^Ri or fi£2?2, 
it follows that all the Wi are either in R\ or in R2l which is a contradic­
tion to the assumption that R\ as well as R2 are both semi-nilpotent. 

REMARK. Theorem 1 probably does not hold if semi-nilpotent ideals 
are replaced by nil-ideals. 

THEOREM 2. The sum N of all semi-nilpotent right ideals is a semi-
nilpotent two-sided ideal, which contains also all semi-nilpotent left ideals 
of the ring. 

PROOF. First note, that by Theorem 1 it follows easily (by induc-
duction) that also the sum of any finite number of semi-nilpotent 
right ideals is again a semi-nilpotent right ideal. If now fi, • • • , rn 

is any finite set in N, then for each rt- a finite number of semi-nilpotent 
right ideals R[, JRj, • • • , Rl{ can be found so that ^G(i?î , Ri, • • • , i?J.) 
i — 1, • • • , n. Hence the sum R of all the Ri, which is a semi-nilpotent 
right ideal, contains all the riy which implies that the ring {rh • • • , rn} 
is nilpotent. Since this is true for each set ru • • • , rn, it follows that N 
is a semi-nilpotent right ideal. To prove that Nis a left ideal, and hence 
a two-sided semi-nilpotent ideal, we show that if a£ iV, s £ 5 and 
R = (sa, saS) then RQN. Indeed, suppose R is semi-regular, that is, 
elements ri, • • • , rn of R can be found so that the ring {ri, • • • , rn} 
is potent. Each r»- has the form ri = saSi, where Si is either an in­
teger or an element of S. For an arbitrary positive integer x we can 
find an element different from zero which has the form sasit • • • sasix. 
Hence it follows that the ring {asis, as2s, • • • , asns} is potent, which 
is a contradiction, since aSisÇzN. The remaining part of the theorem 
follows from the fact that (as can be similarly proved) also the sum 
of all semi-nilpotent left ideals is a semi-nilpotent two-sided ideal. 

REMARK. Theorem 2 does not hold if semi-nilpotent ideals are re­
placed by nilpotent ideals and probably is not true if they are replaced 
by nil-ideals. 

DEFINITION OF THE RADICAL. The sum N of all two-sided semi-
nilpotent ideals of the ring (which by Theorem 2 contains also all one­
sided semi-nilpotent ideals) is called the radical of the ring. 

THEOREM 3. If N is the radical of S, then the radical of S/N is zero. 

PROOF. We show that if R[^N] is a semi-regular right ideal in S, 
then R/N is semi-regular in S/N. Indeed, let the elements n , • • •, rn 

of R generate the potent ring T= {rh • • • , rn}. If now R/N is semi-
nilpotent, then the ring T=(T+N)/N is nilpotent, that is, for a cer­
tain X we have 7X = 0 (where Ü is the zero of S/N), or TXQN. We 
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denote by U\, • • • , um the finite set of all products of the form 
^h'fi2 ' * * ri\> and put V— { U\, , Um } . Since with T also Tx for 
each X is potent, and since evidently T,°'X+1C UaT, we have U'T^O for 
each or. On the other hand, by the definition of U, we have UÇ1TX; 
hence UQN, which is a contradiction, since N is semi-nilpotent. 

As immediate consequences of the foregoing theorems we have 
these following theorems. 

THEOREM 4. If in a ring S each right ideal (other than zero) is semi-
regular, then also each left ideal (other than zero) is semi-regular. 

THEOREM 5. An element s of a ring S belongs to the radical N of S if, 
and only if, sSQN. 

3. Remarks on ^4-rings. Using the notions of specialized radical, 
radical and generalized radical, one may define the following three 
classes of A -rings (that is, rings which have a similar structure as the 
algebras) : 

DEFINITION. The ring S is called a specialized A-ring, if the special­
ized radical Nff of S is nilpotent, and the ring S/Na is semi-simple. 

DEFINITION. The ring S is called an A-ring, if the ring S/N is semi-
simple. Herein N denotes the radical of S. 

DEFINITION. The ring S is called a generalized A-ring, if the ring 
S/Ny is semi-simple. Herein Ny denotes the generalized radical of S. 

Using a well known theorem of E. Noether and the evident fact 
that the specialized radical of a ring is zero if the radical or the gen­
eralized radical of the ring is zero, we obtain the following charac­
terization of A -rings and generalized A -rings: 

THEOREM 6. A ring S is an A-ring (generalized A-ring) if, and only 
if, the minimal condition is satisfied by the right ideals which contain the 
radical N (generalized radical Ny). 

REMARKS. The condition of Theorem 6 concerning generalized 
A -rings, and "condition I" formulated by Koethe1 are of course 
equivalent. As to the specialized A -rings, since the discovery of 
E. Artin that rings with a maximal and minimal condition for the 
right ideals are specialized A -rings, various attempts have been made 
to generalize this result. However, a criterion for specialized A -rings 
along the line of Theorem 6 has not been found as yet. 

DEFINITION. A ring P with a unit is called a completely primary ring, 
if each right ideal of P other than P is semi-nilpotent. 
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REMARK. Replacing semi-nilpotent ideals by nilpotent(nil-)ideals, 
one obtains a specialized completely primary {generalized completely 
primary) ring. 

DEFINITION. A ring Q with a unit is called a primary ring, if each 
two-sided ideal of Q other than Q is semi-nilpotent. 

REMARK. Replacing semi-nilpotent ideals by nilpotent(nil-)ideals 
one obtains a specialized primary (generalized primary) ring. 

THEOREM 7. A primary A-ring is isomorphic to a total matric-ring of 
a finite degree over a completely primary ring. Conversely, the total 
matric-ring of a finite degree n over a completely primary ring P is a 
primary A -ring. 

PROOF. The proof of the first part of the theorem can be derived by 
well known methods and may be omitted. The second part follows 
by known argument if only the following lemma is established: If 
in the matrix (pik), i, k = l, • • • , n> the elements pik are contained in 
the radical JV* of P, then the matrix a = (pik) belongs to the radical N 
of Q. To prove the lemma, suppose a is not in N, then by Theorem 5 
we can find matrices cei = (^/fc), ce2 = (/4)> ' * * > <xt = (piic) so that the 
subring A — {aai, aa2, • • • , aat} of Q is potent. Evidently, the sub-
ring A*= { • • • ,pikpfl, • • • } (where i,k,j, Z = l, • • • , n; r = 1, • • • , /) 
of P is then also potent. Since pikÇzN*, also pikpJiÇzN* which is a. 
contradiction, since iV* is semi-nilpotent. 

REMARK. The second part of Theorem 7 is a generalization of an 
analogous theorem concerning specialized completely primary rings, 
since one can easily find examples of completely primary rings which 
are not specialized completely primary rings. I t does not seem prob­
able that an analogous theorem could be proved for generalized com­
pletely primary rings. This has been attempted by Koethe under the 
assumption that the generalized completely primary ring P satisfies 
the minimal condition for the right ideals; however, this condition 
implies that P is a specialized completely primary ring. 
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