A REMARK ON ALGEBRAS OF MATRICES

WINSTON M. SCOTT

1. Introduction. Let $\mathfrak A$ denote a matrix algebra, with unit element, over an algebraically closed field K. We shall assume that $\mathfrak A$ is in reduced form, that is, that $\mathfrak A$ is exhibited with only zeros above the main diagonal, with irreducible constituents of $\mathfrak A$ in the main diagonal, and that $\mathfrak A$ is expressible as the direct sum of its radical and a semisimple subalgebra which latter has nonzero components only in the irreducible constituents of $\mathfrak A$:

$$\mathfrak{A} = \begin{pmatrix} \mathfrak{C}_{11} & \cdot & \cdot & \cdot \\ \mathfrak{C}_{21} & \mathfrak{C}_{22} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \mathfrak{C}_{t1} & \mathfrak{C}_{t2} & \cdot & \cdot \mathfrak{C}_{tt} \end{pmatrix},$$

the \mathbb{C}_{ii} denoting irreducible constituents; further $\mathfrak{A} = \mathfrak{A}^* + \mathfrak{N}$ where \mathfrak{N} is the radical of \mathfrak{A} and

$$(2) \qquad \mathfrak{N} = \begin{pmatrix} 0 & \cdot & \cdot & \cdot & \cdot \\ \mathfrak{C}_{21} & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \mathfrak{C}_{t1} & \mathfrak{C}_{t2} & \cdot & \cdot & 0 \end{pmatrix}, \qquad \mathfrak{A}^* = \begin{pmatrix} \mathfrak{C}_{11} & \cdot & \cdot & \cdot & \cdot \\ 0 & \mathfrak{C}_{22} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \cdot & \mathfrak{C}_{tt} \end{pmatrix}.$$

As a part of \mathfrak{A} , \mathfrak{C}_{ij} forms an additive group or module of matrices upon which \mathfrak{A} , itself considered as a module, is homomorphically mapped. We shall consider \mathfrak{C}_{ij} as a matrix module with \mathfrak{A} as both left and right operator system. For a matrix A of \mathfrak{A} , we shall use the notation $C_{ij}(A)$, $(j \leq i, i = 1, 2, \dots, t)$, to denote the parts of A,

(3)
$$A = \begin{pmatrix} C_{11}(A) & \cdot & \cdot & \cdot & 0 \\ C_{21}(A) & C_{22}(A) & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ C_{t1}(A) & \cdot & \cdot & \cdot & C_{tt}(A) \end{pmatrix}.$$

Let B be any element of \mathfrak{A} , and let B^* be the component of B in the semisimple subalgebra \mathfrak{A}^* . We define B as a left and as a right operator of $C_{ij}(A)$ by the relations below, using o to distinguish this operation from ordinary matrix multiplication

Received by the editors June 15, 1942.

(4)
$$B \circ C_{ij}(A) = C_{ii}(B) \cdot C_{ij}(A) = C_{ij}(B^*A),$$

$$C_{ij}(A) \circ B = C_{ij}(A) \cdot C_{jj}(B) = C_{ij}(AB^*).$$

We shall indicate that a matrix module has \mathfrak{A} as both right and left operator system by calling the module an $(\mathfrak{A}, \mathfrak{A})$ module. Under (4), \mathfrak{C}_{ij} is a simple $(\mathfrak{A}, \mathfrak{A})$ module. Moreover, each \mathfrak{C}_{ij} is either a 0-part or there exist elements in \mathfrak{A} such that the corresponding C_{ij} have any arbitrary components from K. We shall call the \mathfrak{C}_{ij} simple parts of \mathfrak{A} .

2. The basic theorem. Professor R. Brauer, in a recent paper,² has proved a theorem which has a great many applications and among other things includes the Jordan-Hölder Theorem as a special case.

Basic theorem. Let G and H be two groups, with finite composition lengths, for both of which a given set θ is the operator set. Let

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_r = (1)$$

be a composition series of G, and

$$H = H_0 \supset H_1 \supset H_2 \supset \cdots \supset H_s = (1)$$

be a composition series of H. If θ is a homomorphism which maps H upon a normal subgroup H^* of G, $H^*\subseteq G$, then one can choose complete residue systems P_{ρ} of $G_{\rho-1}$ (mod G_{ρ}) and Q_{σ} of $H_{\sigma-1}$ (mod H_{σ}), $(\rho=1, 2, \cdots, r; \sigma=1, 2, \cdots, s)$, such that

- (a) either θ maps Q_{σ} on a P_{ρ} in a (1-1) manner and $G_{\rho-1}/G_{\rho}$ = $H_{\sigma-1}/H_{\sigma}$, or θ maps Q_{σ} on 1, and
 - (b) each P_{ρ} is the image of at most one Q_{σ} ,

Here, in our application of the basic theorem, H will be mapped on the whole group G and, consequently, statement (b) of the theorem may be sharpened to "Each P_{ρ} is the image of exactly one Q_{σ} ."

3. An application of the basic theorem. We shall first prove:

THEOREM 1. A composition series

$$\mathfrak{A} = \mathfrak{A}_0 \supset \mathfrak{A}_1 \supset \mathfrak{A}_2 \supset \cdots \supset \mathfrak{A}_m$$

of a matrix algebra $\mathfrak A$ considered as an $(\mathfrak A, \mathfrak A)$ module is also a composition series of $\mathfrak A$ considered as an $(\mathfrak A^*, \mathfrak A^*)$ module where $\mathfrak A$ is considered as the direct sum of $\mathfrak A^*$, a semisimple subalgebra, and $\mathfrak A$, the radical of $\mathfrak A$.

¹ For a further study of simple parts, see W. M. Scott, *On matrix algebras over an algebraically closed field*, Ann. of Math. vol. 43 (1942) pp. 147-161.

² R. Brauer, On sets of matrices with coefficients in a division ring, Trans. Amer. Math. Soc. vol. 49 (1941) pp. 502-548.

PROOF. In $\mathfrak{A}_{i-1}/\mathfrak{A}_i$ we consider all residue classes $\langle A^{(i-1)} \rangle$. Select the classes different from $\langle 0 \rangle$ which have representatives belonging to³ a highest power of the radical \mathfrak{N} , say \mathfrak{N}^{ρ} . These together with the $\langle 0 \rangle$ class form an admissible subgroup with elements of \mathfrak{A} as operators on both left and right (that is, as $(\mathfrak{A}, \mathfrak{A})$ operators), for if we have $\langle A^{(i-1)} \rangle$ such that $A^{(i-1)}$ belongs to \mathfrak{N}^{ρ} , then

$$A \langle A^{(i-1)} \rangle B = \langle AA^{(i-1)}B \rangle$$

has the representative $AA^{(i-1)}B$ which is contained in \mathfrak{N}^{ρ} . Then this admissible subgroup must coincide with the whole factor group $\mathfrak{A}_{i-1}/\mathfrak{A}_i$ since $\mathfrak{A}_{i-1}/\mathfrak{A}_i$ is simple. We can conclude, then, that every class in $\mathfrak{A}_{i-1}/\mathfrak{A}_i$ has a representative which belongs to \mathfrak{N}^{ρ} .

Now let $\langle A^{(i-1)} \rangle$ be a class with $A^{(i-1)}$ belonging to \mathfrak{N}^{ρ} . We have that for $N \in \mathfrak{N}$

$$N\langle A^{(i-1)}\rangle = \langle NA^{(i-1)}\rangle$$

has a representative in $\mathfrak{N}^{\rho+1}$. But we have selected all classes different from $\langle 0 \rangle$ belonging to a highest power which was \mathfrak{N}^{ρ} . Then the class $\langle NA^{(i-1)} \rangle$ must be the 0-class. Therefore, we have that for $A \in \mathfrak{A}$, $A = A^* + N$, $A^* \in \mathfrak{A}^*$, and $N \in \mathfrak{N}$,

$$\begin{split} A\langle A^{(i-1)}\rangle &= \langle A\cdot A^{(i-1)}\rangle \\ &= \langle A^*\cdot A^{(i-1)} + N\cdot A^{(i-1)}\rangle \\ &= \langle A^*\cdot A^{(i-1)}\rangle \\ &= A^*\langle A^{(i-1)}\rangle, \end{split}$$

and our theorem is proved.

Now considering the simple part \mathfrak{C}_{ij} as an $(\mathfrak{A}^*, \mathfrak{A}^*)$ module (as we may, since $\mathfrak{A}^*\subset\mathfrak{A}$), we have that $A\to C_{ij}(A)$ is an $(\mathfrak{A}^*, \mathfrak{A}^*)$ homomorphism so that by our basic theorem \mathfrak{C}_{ij} is $(\mathfrak{A}^*, \mathfrak{A}^*)$ isomorphic to a composition factor group of \mathfrak{A} . But the operators of the system \mathfrak{A} on \mathfrak{C}_{ij} and on the factor group are equivalent by (4) and Theorem 1 to operators of the system \mathfrak{A}^* . From this we have that \mathfrak{C}_{ij} is also $(\mathfrak{A}, \mathfrak{A})$ isomorphic to the composition factor group.

Thus we have, by the basic theorem, a proof of the following theorem.

THEOREM 2.4 A nonzero simple part \mathfrak{C}_{ij} of \mathfrak{A} is $(\mathfrak{A}, \mathfrak{A})$ isomorphic to a composition factor group of \mathfrak{A} itself considered as an $(\mathfrak{A}, \mathfrak{A})$ module.

WASHINGTON, D. C.

³ For a definition of belonging to as used here, see C. Nesbitt, On the regular representations of algebras, Ann. of Math. vol. 39 (1938) pp. 634-658.

⁴ For a direct proof of this theorem, see W. M. Scott, op. cit.