A REMARK ON ALGEBRAS OF MATRICES
WINSTON M. SCOTT

1. Introduction. Let ¥ denote a matrix algebra, with unit element,
over an algebraically closed field K. We shall assume that ¥ is in re-
duced form, that is, that 2 is exhibited with only zeros above the
main diagonal, with irreducible constituents of ¥ in the main di-
agonal, and that ¥ is expressible as the direct sum of its radical and a
semisimple subalgebra which latter has nonzero components only in
the irreducible constituents of ¥:
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the €;; denoting irreducible constituents; further Y =A*+N where N
is the radical of % and
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As a part of ¥, €;; forms an additive group or module of matrices
upon which ¥, itself considered as a module, is homomorphically
mapped. We shall consider €;; as a matrix module with ¥ as both left
and right operator system. For a matrix 4 of 9, we shall use the
notation C;;(4), (j<4,71=1, 2, - -+, ), to denote the parts of 4,

Cll(A) . .« 0. 0
(3) A = C21(A) ng(A) e
Cald) - o Culd)

Let B be any element of ¥, and let B* be the component of B in the
semisimple subalgebra 2*. We define B as a left and as a right oper-
ator of C;j(4) by the relations below, using o to distinguish this
operation from ordinary matrix multiplication
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BoC;i(4) = Cu(B) -Ci(4) = Cij(B*4),
Cij(4) o B = C;;(4)-C;;(B) = Ci(4B¥).

We shall indicate that a matrix module has U as both right and left
operator system by calling the module an (¥, %) module. Under (4),
G;; is a simple (A, A) module. Moreover, each G;; is either a 0-part
or there exist elements in ¥ such that the corresponding C;; have any
arbitrary components from K. We shall call the €;; simple parts of 9.1

4)

2. The basic theorem. Professor R. Brauer, in a recent paper,? has
proved a theorem which has a great many applications and among
other things includes the Jordan-Holder Theorem as a special case.

Basic THEOREM. Let G and H be two groups, with finite composition
lengths, for both of which a given set 0 is the operator set. Let

G=GDGDGD---DG = (1)
be a composition series of G, and
H=HDOH,DH,D:---2DOH,= (1)

be a composition series of H. If 0 is a homomorphism which maps H
upon a normal subgroup H* of G, H* CG, then one can choose complete
residue systems P, of G,.. (mod G,) and Q, of H,—; (mod H,),
(p=1,2,---,r;0=1,2,---,5), such that

(a) either 8 maps Q, on a P, in a (1—1) manner and G,_1/G,
=H, :/H,, or 0 maps Q, on 1, and

(b) each P, is the image of at most one Q,,.

Here, in our application of the basic theorem, H will be mapped
on the whole group G and, consequently, statement (b) of the theorem
may be sharpened to “Each P, is the image of exactly one Q,.”

3. An application of the basic theorem. We shall first prove:
THEOREM 1. 4 composition series
A= DL DA D+ DUn

of a matrix algebra N considered as an (N, A) module is also a composi-
tion series of U considered as an (A*, A*) module where A is considered
as the direct sum of A*, a semisimple subalgebra, and N, the radical of A.

1 For a further study of simple parts, see W. M. Scott, On mairix algebras over an
algebraically closed field, Ann. of Math. vol. 43 (1942) pp. 147-161.

2 R. Brauer, On sets of matrices with coefficients in a division ring, Trans. Amer.
Math. Soc. vol. 49 (1941) pp. 502-548.
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Proor. In UA;_i/A; we consider all residue classes (4¢~1), Select
the classes different from (0) which have representatives belonging
to® a highest power of the radical N, say N*. These together with the
(0) class form an admissible subgroup with elements of ¥ as operators
on both left and right (that is, as (N, UA) operators), for if we have
(4¢=D) such that 4¢=D belongs to N, then

A(AG-DYB = (44D B)

has the representative 44 “~DB which is contained in 9. Then this
admissible subgroup must coincide with the whole factor group
Ai1/A; since W;1/A; is simple. We can conclude, then, that every
class in A;_1/Y; has a representative which belongs to %te.
Now let (4¢=D) be a class with A¢~D belonging to N*. We have
that for NeN
N{AGD) = (NAG-D)

has a representative in M+, But we have selected all classes different
from (0) belonging to a highest power which was R*. Then the class
(NAG=D) must be the 0-class. Therefore, we have that for 4 €Y,
A=A4*+N, A*cA*, and NEN,

A(AGDY = (4.4 GD)
= (4% A6V 4 N.4G-D)
= (A*. 4 (-D)
= A¥(46D),

and our theorem is proved.

Now considering the simple part €;; as an (¥*, ¥*) module (as we
may, since A*CY), we have that 4—Ci;(4) is an (A*, A*) homo-
morphism so that by our basic theorem €;;is (U*, A*) isomorphic to a
composition factor group of . But the operators of the system  on
€;; and on the factor group are equivalent by (4) and Theorem 1 to
operators of the system U*, From this we have that €;; is also (3, %)
isomorphic to the composition factor group.

Thus we have, by the basic theorem, a proof of the following theo-
rem.

THEOREM 2.4 A nonzero simple part C;; of A is (A, N) isomorphic to
a composition factor group of U iiself considered as an (U, A) module.

WasHINGTON, D. C.

3 For a definition of belonging to as used here, see C. Nesbitt, On the regular repre-
sentations of algebras, Ann. of Math. vol. 39 (1938) pp. 634—658.
¢ For a direct proof of this theorem, see W..M. Scott, op. cit.



