A CONVERGENCE THEOREM FOR CERTAIN LAGRANGE
INTERPOLATION POLYNOMIALS

M. S. WEBSTER
In the Lagrange interpolation polynomial L,[f; 8] where

LIS 0] = 3 flaniilo),

$a(x) ’
®a (1) (% — x)

0 L8] = 17 [6] = l(a) =

M@sgw—w.

x=cosb;— 1<y <1;k=1,2,---,m;n=1,2,---

H

and f(x) is a continuous function defined in (—1, 1), we suppose that

2) %p = %y = oS B = COS kr/(n + 1).
Then [1],! we have
i 1)6
o) = Sn(nF D6 r = cosd,
) 27 sin @
1 [0] (— 1)*+1sin? @;, sin (n + 1)8
k =

(n + 1) sin 6(cos.6 — cos ;) .
We introduce the following notations:

, =1=0/2=7/2(n+ 1), M = max lf(x)l>

Sil6] = {ilo — t] + o + t]}—/2~.

We shall prove the following theorem which was suggested by a
similar theorem of Griinwald [2].

4)

THEOREM. Let f(x) be a continuous function in the interval —1 Sx <1.
Then

(5) lim (1/2){L.[f; 60 — t.) + La[f; 0 + #t.]} = f(cos8), 0<8 <,

n— o

and the convergence is uniform in the interval 0<a<0=m—a (a arbi-
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LAGRANGE INTERPOLATION POLYNOMIALS 115
rary, fixed constant). In general, convergence does not hold for 6=0 or
0= e
We shall prove first that there is a constant D for which
(6) > |s:lo]| < b, 0<a<O0<mr—a;n=1,2---.
k=1

If 6, +¢, it follows from (3) and (4), by the use of trigonometric
addition formulas, that

(—1)*+1 sin ¢ sin? 6 cos (n+1)6
4(n+1) sin (0—1¢) sin (6+1)
cos 6§ cos 0y — cos 20 cos ¢
“sin (040, —2)/2 sin (0—0;—1) /2 sin (0-+0,+£)/2 sin (0—0x+1)/2

If 0 is restricted to the interval 0<a =60 =w/2, and if » is large so that
t<a/2, it is easily seen (assuming a =7/3) that

Selo]=
@)

sin? 0, <4
sin (1/2)(0 + 6% — #) sin (1/2)(0 + 6x + 2) '
| 5:[0]| < e
(8) * (n+ 120 —6—t| - |60—6u+1t|
2
|csc(0—>\) csc(0+>\)[ £——=¢C,

COs a — COS 2«
a<0=7/2,0=\E /2.

For a given 6, there are at most two values of %2 for which
|0—0:| <m/(n+1). Since [1] |h(x)| <2 (—1Sx=<1;k=1,2, - -, m;
n=1,2,---), from (8) we have

> | 8:l0]| <4+ > | 54l6]|

k=1 1S5kSn,|0=-0k|2 7w/ (n+1)
<ap—"C !
(9) (n+1)? 154 j0-0n1z 5/ rny | 0—0k—1t]| - | 6—Oi+2]
2rC A 2n+1)7 1
Y
(n+1)? 13 ™ (21—-1)?

<4+8rC2. —=D', 0<a<0=w/2; n=Zno(a),
m=1 M
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because in the summation
|6 —6tt|2|0—0]| —tZir/n+1) —x/2(n+ 1), 121

By continuity, (9) holds for all # in 0 <a <6 =w/2. Since (9) is valid
for » sufficiently large, there exists a D for which (6) is valid for all
nif 0<a=60=mw/2.

Since 0 =m —0,-x41, it is found that

o —t] = Laxpa[0 +¢] and L6+ t] = Ly 6 —t]
where ' =m —6. It follows that
Skl8] = Sn—rs1l0’], > IS¢ | < D, /250 S 71— a
k=1

This completes the proof of (6).
From (8), if 8 (>0) is fixed and if # is sufficiently large (so that
£<48/2), it is seen that
w3C n 1

> | Sel6]] < 2

1SkSn, | 0—0k > (n+1)% ;2 (6—1)2

473Cn 1
< _o (—)
8%(n + 1) n

We are now ready to prove the main part of the theorem. Let
be fixed (0<a=0=w—a) and €>0. It is well known that

Shw =1 XS] =t
k=1

k=1

(10)

Since f(x) is continuous, there exists a § >0 such that

| f(cos 6) — f(cos 6:) | < e provided |8 — ;] < 8.
Let

A= (1/){L.[f; 6 — t] + La[f; 6 + ¢]} — f(cos 0)

n

= ;z {f(cos 6x) — f(cos 0)}Sk[0]
2 {f(cos 6i) — f(cos 6) }.Sk[o]

15ksSn,|0—0k| S8

+ > {f(cos 8x) — f(cos 6) }Sk[6].

15kSn, |0—0k]|>8

Then, by the use of (6) and (10), for sufficiently large #, we find that
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lal<e X |Sbll4+2x X Slo]]

1SkZEn,|0—0k| S8 1SkSn,|0—0k]>8

1
< eD + 2MO (——> < (D + 1), n> N.
n

As in Rogosinki’s theorem for Fourier series, the theorem may be
easily extended so that convergence holds at any point x (5 £ 1) of
continuity of a bounded function f(x), convergence being uniform in
any closed interval of continuity (excluding x = +1). In addition, ¢,
may be replaced by pmw/2(n+1) where p is any fixed odd integer.

Since L,[f; —t]=L,[f; t], the theorem would involve (for §=0)
the convergence of L,[f; t] to f(cos 0). This convergence does not
hold for all continuous f(x) because

M = Z'lk(l)l = n,
k=1
and, according to H. Hahn [3], a necessary and sufficient condition
for L,[f; 0] to converge to f(cos 0) for all continuous f(x) is that
\. be bounded for all #. We give an example (compare [4] and [5])
of a continuous function for which convergence does not occur at
x=1.
Let fu.(x) be defined for each # (n=1, 2, - - - ) as follows:

(=1, —1 2 x<%,,
2(x—x
(11) fu(x) = (_1)k[1—"_(—‘-ﬁ1_)],xk+1§ xZap k=1,2,--- ,n—1,
Xk Xk41
1, n<x=1.
Now,
Lalfai t] = = 22 (— D*t]
k=1
_ 2 i sin? kt cos? ki
(n 4+ 1) sint j—y sin (k4 1/2)¢sin (k — 1/2)¢
Since
sin kt 2
—_——— >, E=1,2,---,mn,
sin (B+1/2)¢ 3
we have
4 n
Lilfoi t]| > —m—— cos? k¢
| Ly ]I 3(n+1)sint;c§
(12) )

>

> (1 + cosbi) > o
3(n + 1) sin t 1 oSk 3w
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By the Weierstrass approximation theorem, we may approximate
fa(x) by a polynomial g,(x) of degree d(n) such thatin (—1, 1),

(13) len® | =3/2, | Lalgas #]] > 20/3n.

This is possible, in view of (12), because

n

| Lalfai 8] — Lalga: t]| = | X [falan) — galan) Jilt] | < ¢

k=1
provided
| fu(®) = gal) | = (¢ / lhrelD), —1sss1
k=1
Let
(14) g(x) = X cign (%), —1=2x=1,
=1
where ¢c;=n,=1, and
¢ 1 B .
(15) c.~+1=min{-—; —}, T'.Ez:ll;c‘)[tn.']l) i = 1, 2’... ;
4 Ti k=1

n; is the smallest integer satisfying the conditions

(@) miz d(ni-) + 1,

16
( ) (b) | CiLn;[gn.»; tn,'] - 8! > 4‘, 1 = 2, 3’ e,

Condition (b) is possible because of (13). From (15), it follows that
(17) Ciy1 = 1/4iy i=0,1,2,--" ’

and the series for g(x) converges uniformly so that g(x) is continuous
and Ig(x)| <2in (—1, 1). Let m=n, where r (#1) is a positive in-
teger. Using (15) and (17), we have

00 3 m m
<> a—2|u"lkll =2,

bl 2 k=1

> 6L [gnsi tm]

t=r41

(18)

> Cign(COS tm) | S 2.

t=r

If w(x) is any polynomial of degree less than m in x=cos , then
L, [w;08]=w(x). Since
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2 6iLm[gn; tm]

t=1

r—1 hd
= cer[gm; tm] + Z CiLm[gn;; tm] + Z: CiLm [gn.'; tm]

1=1 T=r+41

r—1 ©
= Cer [gm; tm] + E Cign,-(COS tm) + Z CiLm[gn,-; lm]r

t=1 i=r41

we find from (16) and (18) that

| Lulg; tn] — g(1) |
=| {Lulg: tu] — glcos tw)} + {g(cos tw) — g(1)} |

= Z Cilm [gn;; tm] — g(cos t,) | — 4
=1
g Cer[gm; tm] + Z CiLm [gn,-; tm] — Z cigni(cos tm) — 4
1=r+1 Ge=p
> 4, r=2,3---.
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