A CONVERGENCE THEOREM FOR CERTAIN LAGRANGE INTERPOLATION POLYNOMIALS

M. S. WEBSTER

In the Lagrange interpolation polynomial $L_n[f;\theta]$ where

(1)
$$L_{n}[f;\theta] \equiv \sum_{k=1}^{n} f(x_{k}) l_{k}[\theta],$$

$$l_{k}[\theta] \equiv l_{k}^{(n)}[\theta] \equiv l_{k}(x) \equiv \frac{\phi_{n}(x)}{\phi_{n}'(x_{k})(x-x_{k})},$$

$$\phi_{n}(x) \equiv \prod_{k=1}^{n} (x-x_{k}),$$

 $x = \cos \theta$; $-1 < x_k < 1$; $k = 1, 2, \dots, n$; $n = 1, 2, \dots$, and f(x) is a continuous function defined in (-1, 1), we suppose that

(2)
$$x_k \equiv x_k^{(n)} = \cos \theta_k = \cos k\pi/(n+1).$$

Then [1],1 we have

(3)
$$\phi_n(x) = \frac{\sin (n+1)\theta}{2^n \sin \theta}, \qquad x = \cos \theta,$$

$$l_k[\theta] = \frac{(-1)^{k+1} \sin^2 \theta_k \sin (n+1)\theta}{(n+1) \sin \theta (\cos \theta - \cos \theta_k)}.$$

We introduce the following notations:

$$t_n \equiv t \equiv \theta_1/2 \equiv \pi/2(n+1), \qquad M = \max_{-1 \le x \le 1} |f(x)|,$$

$$(4)$$

$$S_k[\theta] \equiv \{l_k[\theta-t] + l_k[\theta+t]\}/2.$$

We shall prove the following theorem which was suggested by a similar theorem of Grünwald [2].

THEOREM. Let f(x) be a continuous function in the interval $-1 \le x \le 1$. Then

(5)
$$\lim_{n\to\infty} (1/2) \{ L_n[f; \theta - t_n] + L_n[f; \theta + t_n] \} = f(\cos \theta), \quad 0 < \theta < \pi,$$

and the convergence is uniform in the interval $0 < \alpha \le \theta \le \pi - \alpha$ (α arbi-

Presented to the Society, April 18, 1942; received by the editors April 10, 1942.

¹ The numbers in brackets refer to the bibliography.

rary, fixed constant). In general, convergence does not hold for $\theta = 0$ or $\theta = \pi$.

We shall prove first that there is a constant D for which

(6)
$$\sum_{k=1}^{n} |S_k[\theta]| < D, \qquad 0 < \alpha \leq \theta \leq \pi - \alpha; n = 1, 2, \cdots.$$

If $\theta \neq \theta_k \pm t$, it follows from (3) and (4), by the use of trigonometric addition formulas, that

(7)
$$S_{k}[\theta] = \frac{(-1)^{k+1} \sin t \sin^{2} \theta_{k} \cos (n+1)\theta}{4(n+1) \sin (\theta-t) \sin (\theta+t)} \frac{\cos \theta \cos \theta_{k} - \cos 2\theta \cos t}{\sin (\theta+\theta_{k}-t)/2 \sin (\theta-\theta_{k}-t)/2 \sin (\theta+\theta_{k}+t)/2 \sin (\theta-\theta_{k}+t)/2}$$

If θ is restricted to the interval $0 < \alpha \le \theta \le \pi/2$, and if n is large so that $t \le \alpha/2$, it is easily seen (assuming $\alpha \le \pi/3$) that

$$\left| \frac{\sin^2 \theta_k}{\sin (1/2)(\theta + \theta_k - t) \sin (1/2)(\theta + \theta_k + t)} \right| < 4,$$

$$\left| S_k[\theta] \right| < \frac{\pi^3 C}{(n+1)^2 \left| \theta - \theta_k - t \right| \cdot \left| \theta - \theta_k + t \right|},$$

$$\left| \csc (\theta - \lambda) \csc (\theta + \lambda) \right| \le \frac{2}{\cos \alpha - \cos 2\alpha} \equiv C,$$

$$\alpha \le \theta \le \pi/2, 0 \le \lambda \le \alpha/2.$$

For a given θ , there are at most two values of k for which $|\theta-\theta_k| < \pi/(n+1)$. Since $[1] |l_k(x)| < 2 (-1 \le x \le 1; k=1, 2, \cdots, n; n=1, 2, \cdots)$, from (8) we have

$$\sum_{k=1}^{n} \left| S_{k}[\theta] \right| < 4 + \sum_{1 \leq k \leq n, |\theta - \theta_{k}| \geq \pi/(n+1)} \left| S_{k}[\theta] \right| \\
< 4 + \frac{\pi^{3}C}{(n+1)^{2}} \sum_{1 \leq k \leq n, |\theta - \theta_{k}| \geq \pi/(n+1)} \frac{1}{\left|\theta - \theta_{k} - t\right| \cdot \left|\theta - \theta_{k} + t\right|} \\
< 4 + \frac{2\pi^{3}C}{(n+1)^{2}} \sum_{l=1}^{n} \left[\frac{2(n+1)}{\pi} \right]^{2} \frac{1}{(2l-1)^{2}} \\
< 4 + 8\pi C \sum_{l=1}^{\infty} \frac{1}{m^{2}} \equiv D', \qquad 0 < \alpha \leq \theta \leq \pi/2; \ n \geq n_{0}(\alpha),$$

because in the summation

$$|\theta - \theta_k \pm t| \ge |\theta - \theta_k| - t \ge l\pi/(n+1) - \pi/2(n+1), \quad l \ge 1$$

By continuity, (9) holds for all θ in $0 < \alpha \le \theta \le \pi/2$. Since (9) is valid for n sufficiently large, there exists a D for which (6) is valid for all n if $0 < \alpha \le \theta \le \pi/2$.

Since $\theta_k = \pi - \theta_{n-k+1}$, it is found that

$$l_k[\theta - t] = l_{n-k+1}[\theta' + t]$$
 and $l_k[\theta + t] = l_{n-k+1}[\theta' - t]$

where $\theta' = \pi - \theta$. It follows that

$$S_k[\theta] = S_{n-k+1}[\theta'], \qquad \sum_{k=1}^n |S_k[\theta']| < D, \qquad \pi/2 \le \theta' \le \pi - \alpha.$$

This completes the proof of (6).

From (8), if δ (>0) is fixed and if n is sufficiently large (so that $t < \delta/2$), it is seen that

(10)
$$\sum_{1 \leq k \leq n, |\theta - \theta_k| > \delta} |S_k[\theta]| < \frac{\pi^3 C}{(n+1)^2} \sum_{k=1}^n \frac{1}{(\delta - t)^2} < \frac{4\pi^3 C n}{\delta^2 (n+1)^2} = O\left(\frac{1}{n}\right).$$

We are now ready to prove the main part of the theorem. Let θ be fixed $(0 < \alpha \le \theta \le \pi - \alpha)$ and $\epsilon > 0$. It is well known that

$$\sum_{k=1}^{n} l_k(x) \equiv 1, \qquad \sum_{k=1}^{n} S_k[\theta] \equiv 1.$$

Since f(x) is continuous, there exists a $\delta > 0$ such that

$$|f(\cos \theta) - f(\cos \theta_k)| < \epsilon \text{ provided } |\theta - \theta_k| \le \delta.$$

Let

$$\Delta = (1/2) \left\{ L_n[f; \theta - t] + L_n[f; \theta + t] \right\} - f(\cos \theta)$$

$$= \sum_{k=1}^n \left\{ f(\cos \theta_k) - f(\cos \theta) \right\} S_k[\theta]$$

$$= \sum_{1 \le k \le n, |\theta - \theta_k| \le \delta} \left\{ f(\cos \theta_k) - f(\cos \theta) \right\} S_k[\theta]$$

$$+ \sum_{1 \le k \le n, |\theta - \theta_k| > \delta} \left\{ f(\cos \theta_k) - f(\cos \theta) \right\} S_k[\theta].$$

Then, by the use of (6) and (10), for sufficiently large n, we find that

$$\begin{aligned} \left| \Delta \right| &< \epsilon \sum_{1 \le k \le n, \, |\theta - \theta_k| \le \delta} \left| S_k[\theta] \right| + 2M \sum_{1 \le k \le n, \, |\theta - \theta_k| > \delta} \left| S_k[\theta] \right| \\ &< \epsilon D + 2MO\left(\frac{1}{n}\right) < (D+1)\epsilon, & n > N. \end{aligned}$$

As in Rogosinki's theorem for Fourier series, the theorem may be easily extended so that convergence holds at any point $x \neq \pm 1$ of continuity of a bounded function f(x), convergence being uniform in any closed interval of continuity (excluding $x = \pm 1$). In addition, t_n may be replaced by $p\pi/2(n+1)$ where p is any fixed odd integer.

Since $L_n[f; -t] = L_n[f; t]$, the theorem would involve (for $\theta = 0$) the convergence of $L_n[f; t]$ to $f(\cos 0)$. This convergence does not hold for all continuous f(x) because

$$\lambda_n \equiv \sum_{k=1}^n |l_k(1)| = n,$$

and, according to H. Hahn [3], a necessary and sufficient condition for $L_n[f; 0]$ to converge to $f(\cos 0)$ for all continuous f(x) is that λ_n be bounded for all n. We give an example (compare [4] and [5]) of a continuous function for which convergence does not occur at x=1.

Let $f_n(x)$ be defined for each n $(n=1, 2, \cdots)$ as follows:

$$(11) f_n(x) = \begin{cases} (-1)^{n-1}, & -1 \le x < x_n, \\ (-1)^k \left[1 - \frac{2(x - x_{k+1})}{x_k - x_{k+1}} \right], x_{k+1} \le x \le x_k; k = 1, 2, \dots, n-1, \\ 1, & x_1 < x \le 1. \end{cases}$$

Now,

$$L_n[f_n; t] = -\sum_{k=1}^n (-1)^k l_k[t]$$

$$= \frac{2}{(n+1)\sin t} \sum_{k=1}^n \frac{\sin^2 kt \cos^2 kt}{\sin (k+1/2)t \sin (k-1/2)t}.$$

Since

$$\frac{\sin kt}{\sin (k+1/2)t} > \frac{2}{3}, \qquad k=1, 2, \cdots, n,$$

we have

(12)
$$|L_n[f_n; t]| > \frac{4}{3(n+1)\sin t} \sum_{k=1}^n \cos^2 kt$$

$$> \frac{2}{3(n+1)\sin t} \sum_{k=1}^n (1 + \cos \theta_k) > \frac{4n}{3\pi}.$$

By the Weierstrass approximation theorem, we may approximate $f_n(x)$ by a polynomial $g_n(x)$ of degree d(n) such that in (-1, 1),

(13)
$$|g_n(x)| \leq 3/2, |L_n[g_n; t]| > 2n/3\pi.$$

This is possible, in view of (12), because

$$\left|L_n[f_n;t]-L_n[g_n;t]\right|=\left|\sum_{k=1}^n\left[f_n(x_k)-g_n(x_k)\right]l_k[t]\right|\leq \epsilon'$$

provided

$$|f_n(x) - g_n(x)| \le (\epsilon' / \sum_{k=1}^n |l_k|t|), \qquad -1 \le x \le 1.$$

Let

(14)
$$g(x) \equiv \sum_{i=1}^{\infty} c_i g_{n_i}(x), \qquad -1 \leq x \leq 1,$$

where $c_1 = n_1 = 1$, and

(15)
$$c_{i+1} = \min \left\{ \frac{c_i}{4}, \frac{1}{T_i} \right\}, \quad T_i \equiv \sum_{k=1}^{n_i} \left| l_k^{(n_i)} \left[t_{n_i} \right] \right|, \quad i = 1, 2, \cdots;$$

 n_i is the smallest integer satisfying the conditions

(16)
$$(a) \quad n_i \ge d(n_{i-1}) + 1,$$

$$(b) \quad |c_i L_{n_i}[g_{n_i}; t_{n_i}] - 8| > 4^i, \qquad i = 2, 3, \cdots.$$

Condition (b) is possible because of (13). From (15), it follows that

$$c_{i+1} \leq 1/4^i, \qquad i = 0, 1, 2, \cdots,$$

and the series for g(x) converges uniformly so that g(x) is continuous and $|g(x)| \le 2$ in (-1, 1). Let $m = n_r$ where $r \ne 1$ is a positive integer. Using (15) and (17), we have

(18)
$$\left| \sum_{i=r+1}^{\infty} c_i L_m[g_{n_i}; t_m] \right| \leq \sum_{i=r+1}^{\infty} c_i \frac{3}{2} \sum_{k=1}^{m} \left| l_k^{(m)}[t_m] \right| \leq 2,$$

$$\left| \sum_{i=r}^{\infty} c_i g_{n_i}(\cos t_m) \right| \leq 2.$$

If w(x) is any polynomial of degree less than m in $x = \cos \theta$, then $L_m[w; \theta] \equiv w(x)$. Since

$$\begin{split} \sum_{i=1}^{\infty} c_i L_m \big[g_{n_i}; \, t_m \big] \\ &= c_r L_m \big[g_m; \, t_m \big] + \sum_{i=1}^{r-1} c_i L_m \big[g_{n_i}; \, t_m \big] + \sum_{i=r+1}^{\infty} c_i L_m \big[g_{n_i}; \, t_m \big] \\ &= c_r L_m \big[g_m; \, t_m \big] + \sum_{i=1}^{r-1} c_i g_{n_i}(\cos t_m) + \sum_{i=r+1}^{\infty} c_i L_m \big[g_{n_i}; \, t_m \big], \end{split}$$

we find from (16) and (18) that

$$\begin{aligned} |L_{m}[g;t_{m}] - g(1)| \\ &= |\{L_{m}[g;t_{m}] - g(\cos t_{m})\} + \{g(\cos t_{m}) - g(1)\}| \\ &\geq \left|\sum_{i=1}^{\infty} c_{i}L_{m}[g_{n_{i}};t_{m}] - g(\cos t_{m})| - 4 \\ &\geq \left|c_{r}L_{m}[g_{m};t_{m}] + \sum_{i=r+1}^{\infty} c_{i}L_{m}[g_{n_{i}};t_{m}] - \sum_{i=r}^{\infty} c_{i}g_{n_{i}}(\cos t_{m})| - 4 \\ &> 4r, \end{aligned}$$

BIBLIOGRAPHY

- 1. M. Webster, Note on certain Lagrange interpolation polynomials, Bull. Amer. Math. Soc. vol. 45 (1939) pp. 870-873.
- 2. G. Grünwald, On a convergence theorem for the Lagrange interpolation polynomials, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 271-275.
- 3. H. Hahn, Über das Problem der Interpolation, Math. Zeit. vol. 1 (1918) pp. 115-143.
- 4. P. Erdös and P. Turán, On interpolation. I, Ann. of Math. (2) vol. 38 (1937) pp. 142-155.
- 5. E. Feldheim, Quelques recherches sur l'interpolation de Lagrange et d'Hermite par la méthode du développement des fonctions fondamentales, Math. Zeit. vol. 44 (1938–1939) pp. 55-84.

PURDUE UNIVERSITY