THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA
A. A. ALBERT

1. Introduction. An algebra ¥ is said to be nilpotent of index 7 if
every product of 7 quantities of U is zero, and is said to be a zero
algebra if it is nilpotent of index two. It is said to be simple if it is not
a zero algebra and its only nonzero (two-sided) ideal is itself, and is
said to be semi-simple if it is a direct sum of simple algebras.

The radical of an associative algebra U is a nilpotent ideal R of A
which is maximal in the strong sense in that it contains!® all nilpotent
ideals of . No such ideal exists in an arbitrary non-associative alge-
bra, and so the radical of such an algebra has never? been defined.
However the property that A —9 be semi-simple is really the vital one
and we shall define the concept of radical here by proving this theorem.

THEOREM 1. Every algebra A which is homomorphic to a semi-simple
algebra has an ideal N, which we shall call the radical of U, such that
A—N is semi-simple, N is contained in every ideal B of U for which
A—B is semi-simple.

The hypothesis that U shall be homomorphic to a semi-simple alge-
bra is equivalent to the property that there shall exist an ideal B in A
such that A—B shall be semi-simple. It is a necessary assumption
even in the associative case, since ) may be nilpotent and then =N,
every A —9B is nilpotent. Moreover it is satisfied by every algebra
with a unity quantity. We shall, nevertheless, carry our study a step
farther in that we shall define explicitly a certain proper ideal N for
every algebra [ such that either M is the radical of A in the sense
above or 2 is not homomorphic to a semi-simple algebra. In the latter
case A —N is a zero algebra.

Our results will be consequences of the remarkable fact® that the
major structural properties of any non-associative algebra U over §
are determined by almost the same properties of a certain related as-
sociative algebra T(). We define the right multiplications R, and the
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left multiplications L, of U for every x of A to be the respective linear
transformations

a—a x = aR,, a— xa = al,, ain ¥,

on ¥, and let the transformation algebra T(2) of ¥ be the polyno-
mial ring over § generated by the R, the L., and the identity trans-
formation I. If & is any set of linear transformations .S on 2 we define
AS to be the linear subspace of A spanned by the images a.S of every a
of ¥. Then if § is the radical of T'(A) the set AP is a proper ideal of A
which is zero if and only if §=0. When A — AP is a zero algebra the
algebra T(A)— 9 is a field of order one and we shall prove these
theorems.

THEOREM 2. An algebra N is homomorphic to a semi-simple algebra
if and only if A—UAD is not a zero algebra.

THEOREM 3. If A —AD <s a zero algebra and B is an ideal of U the
algebra A —B is a zero algebra if and only if B contains AD.

THEOREM 4. Let U be homomorphic to a semi-simple algebra. Then
either A—UD is semi-simple and D is the radical of A or A—AD s
the direct sum of a semi-simple algebra and a zero algebra No=N—AD
such that M s the radical of .

We shall close our discussion with a study of algebras with a unity
quantity and the radicals of isotopes with unity quantities. Moreover
we shall exhibit an algebra with a unity quantity and a radical which
is a field.

2. A fundamental lemma. Let B be a linear subspace of an algebra
A of order n over § and m be the order of B so that there exists an
idempotent E of rank m in the algebra (§), of all linear transforma-
tions on A such that

B = AE.
Then B is an ideal of ¥ if and only if
) ET®) = ETQ)E.

Since T'(A) contains the identity transformation I it follows that
2 BTA) = B.

We let @ be the intersection

3 TROENTQ),
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so that & consists of all S=SE in T(Y). Then &T'() is contained
in TAOETQ) =TQ)ETQ)E by (1), ST (%) is contained in &. Also
TAOTAE=TE, T(N)S =& is an ideal* of T(A). Then T(A) - &

is defined and we may prove the fundamental lemma.
LEMMA 1. The algebra T (A —DB) is equivalent to T(A) —S.

For let a be any quantity of A and {a} =a+B be the corresponding
coset in the decomposition of the additive group ¥ relative to 8. If T
is in T(Y) the set BT is contained in B, the coset {aT} =aT+DB is
independent of a. Then the correspondence

4 a— {aT} = {a} T,

is a transformation Ty of % —B uniquely determined for every T of
T(A). Moreover T is a linear transformation. But then we have de-
termined a mapping

of T(A) on a set T, of linear transformations Ty on A —B. It is clear
from (4) that

6) {a(Twe+ TaB)} = {aTi}a+ {aT2}B = {a}(Tra + Ta),
(7 {a(T1T2)} = {(aT)Ts} = {aT1}To = {a} T10T20

for every @ and B of §, Ty and T of T(A). Then (5) determines a
homomorphism of T(A) on T,.

The general right multiplication R; of A —B is the transformation
{a}—{a}-{x}, and this s the transformation (R.), given by (5). For

® taj-{a} = {a-a} = {aR.}.

Similarly L =(Las)o, To contains T(A—B). If uy, - -+, us are a
basis of A over § and S;=R., T:=L., every transformation
of T(A) is a polynomial T=¢(I, Sy, -+, Su T1, -+, Th),
To=¢(I, St + * +y Suoy T10, * * +, Tno) is in T(A—-1B), T(A—B) =T,.
If T9=0 we have {aT} =0 for every a, aT is in B for every a of ¥,
aT=aTE, T=TE is in &. Thus the algebra T() is homomorphic
under (5) to T(A—B) such that & is the ideal of all transformations
T of T(A) such that Ty=0. Then T(A) —S is equivalent to T(A—B).
This proves our lemma.

3. Algebras with a semi-simple transformation algebra. A quantity

¢ This proof is so brief that I repeat it rather than refer to the proof in the article
quoted in Footnote 3.
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25#0 of an algebra 4 is called an absolute divisor of zeroif z-a=a-2=0
for every a of 4. Suppose first that U contains no absolute divisor
of zero and that T'() is semi-simple. Then T(A) =T, - - - &I, for
simple algebras T; and T;=T(A)E; where E; is the unity quantity
of T;, E; is a nonzero idempotent of the center of T'(A). We let
A;=AE; and have (1) for each E;, A; is an ideal of A. Now A;=WE;
and it follows that the U; are supplementary ideals A=%,& - - - ®U,.
Write A=A, DB, and have TA) =T;8S;, Ti=TE;, ©;=T(N)Eq0
where E;o=1—E;. Then &, is the algebra & of Lemma 1 for =%3;,
T(UA-B)~T(A) —S,. Clearly A—B;=N;, T(A) —S:;=T,;, T(A) =T,
is simple. But 2; has no absolute divisor of zero and then is known?
to be simple when ; is simple. Thus we have shown that if 7'(%) is
semi-simple and ¥ has no absolute divisors of zero it is semi-simple.

If B is a linear subset of A we have BACTBT(A), ABCTBT(Y).
Then if O is any right ideal of T'(2) we have (AD)AC(AD) T (A) CAD,
AAD) CAD)T(A) CAH. Hence AD is an ideal of A. If H50 is a
nilpotent ideal of T'(%) we cannot have AH=0. Also AH=A since
otherwise $'=0 would imply that A=0. Let then U be semi-simple,
9 be the radical of T'(A). We write A=A, - - - &Y, for simple alge-
bras ¥; and may choose pairwise orthogonal idempotents E; of (),
such that A,=AE;, E,+ - -+ +E,=I1. Then A; is an ideal of ¥,
ETA)=ETN)E;, E;$=E;QE;=9; is clearly a nilpotent ideal of
E;T(N). But it follows that AP =AH:1®D - - - U for ideals A, H;
of U;. This is impossible unless each ;=0 since each U, is simple.
Thus if U is semi-simple so is T(N).

Suppose finally that 2 does have absolute divisors of zero and let N
be the set of all absolute divisors of zero of . Then clearly M is an
ideal of ¥ which is a zero algebra, M=NE for an idempotent E of
(F)n HH A=N we have T(A) =IF and T () is semi-simple. Otherwise
I—E=E,is an idempotent of (§)., A=A(E+E,) is the direct sum
A= DN where & =AE, contains no absolute divisors of zero. If a
and x arein A we writex =g+hwithgin Sand 2inN,e-x=a-g=aR,,
R,=R,, (a-x)E,is in &, R,E;=R, for every x of U. Similarly every
L, is in T(A)E, and it is clear that T(®) is equivalent to T(N)E,.
The algebra © of Lemma 1 defined for 8= is T'(A) E, and is an ideal
of T, TN) =T (N)Eo¢+IF. The algebra & of Lemma 1 defined for
B=Nis TE and is EF since EcE=0. Then T(A) =T A)E,DEF,
T(N)E, is semi-simple when T'() is semi-simple, T(®) is semi-simple

5 In the paper referred to in Footnote 3, N. Jacobson defined T'(%) to be generated
by the right and left multiplications of ¥ and with I omiited. He then proved our re-
sult. We require the more general statement including the case where % may be a zero
algebra and so refer to Lemma 10 of my own paper of that reference.
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and so is @. Conversely, if @ is semi-simple so is T'(A)E, and so is
T(A). We have proved this lemma.

LeMMA 2. The transformation algebra T'(N) is semi-simple if and only
if U is either semi-simple, a zero algebra, or a direct sum of a semi-
simple algebra and a zero algebra.

4. The radical of an algebra. If % is an associative semi-simple
algebra and B is an ideal of 9 we have A=V DE, where € is an ideal
of I equivalent to A —B and is semi-simple. Let ¥ now be an associa-
tive algebra with radical 9520 and B be an ideal of Y. If B contains N
the algebra A — B is equivalent to (A —N) — (B —N) and is semi-simple
by the argument above. Conversely, let 8 be an ideal of U such that
A—PB is semi-simple, A —B contains no properly nilpotent classes.
Then every properly nilpotent quantity of U must define the zero
class of A —B, B contains all properly nilpotent quantities of A, B
contains N. This proves Theorem 1 in the associative case.

We now let B be any ideal of an arbitrary algebra o, § be the radi-
cal of T'() so that AP is a proper ideal of A. If A —B is semi-simple
sois T'(A—B) by Lemma 2, and so is T(YA) —& by Lemma 1. But by
the result justproved contains 9. However 8=UE,S=T(A)E=SE,
H=9E, AD=AHE is contained in AS=AYSE and hence in B. Then
we have proved that the radical N of A contains AP, A —B is equiva-
lent to (A—AH) — (B—AP). Hence A — AP cannot be a zero algebra.
If A—AP is semi-simple our definition implies that AH=N. Other-
wise Ao=A—-AHD =G DN, where @ is semi-simple and Ny is a zero
algebra, B—APD is an ideal By of A such that Ap—B, is semi-simple.
If there is a quantity of Mo not in By the corresponding class of Ay— B,
is an absolute divisor of zero of that algebra, contrary to our hypothe-
sis. Hence By contains Ny, B contains the algebra N of all the quanti-
ties in the classes of My, N is the radical of Y. This proves Theorem 1
and Theorem 4.

If 9 is homomorphic to an algebra %, and B is the set of all quanti-
ties of A mapped into zero by the given homomorphism then A —B is
equivalent to %o. If A —B is semi-simple we have seen that B contains
A, A—B is equivalent to (A —AH) —(B—-APH), A—AD cannot be a
zero algebra. This proves Theorem 2. We have also seen that if
A—-APD is a zero algebra and A —B is a zero algebra then T(A—B)
=T(A)—S for an ideal & of T'(A). But then by Lemma 2 T(A) — S
is semi-simple, & contains , AS=ASE contains AP and is con-
tained in AL =9B. This proves Theorem 3.

5. The radicals of isotopic algebras. Let A and U, be algebras of the
same order so that we may regard them as having quantities in the
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same linear space. Then 2 and 9; are principal isotopes if multiplica-
tion in 9, is given by [a, x] =aR" for RY = PR, P and Q nonsingu-
lar linear transformations on A. If A and A, have unity quantities the
transformations P and Q are in T'(%) and T(N) =T(y).

Let Bbeanideal of A, B=UYE, ET(N) =ET(A)E. Then EP=EPE,
EQ=EQE and EPP'=E=(EP)(EP-Y), Py=EP is a nonsingular
quantity of ET(). Similarly Q;=EQ is a nonsingular quantity of
ET(N). Write 8:=9E, so that since ET(;) =ET(,)E the space 8,
is an ideal® of ;. Then if b and y are in B; we have b=0>bE, y=yE,

9 [6, y] = BEPR,zq = bP1Ryq,.
It follows that B and B, are principal isotopes with isotopy given by

(10) R, = PiRyq.

Every isotope 2, of 9 is equivalent to a principal isotope and we have
proved the first part of this theorem.

THEOREM 5. Let A and N, be isotopic algebras with unity quantities.
Then every ideal B of U is an isotope of an ideal By of Wy such that the
difference algebras A —B and A, — B, are isotopes.

We now observe that the homomorphism (5) of T'(%) on T'(A—B)
carries every nonsingular P of T'(2() into a nonsingular P, of T( —93).
Then if we define

(11) (Riz)® = PoRizlqq
the algebra with multiplication defined by
(12) [{a}, {#}] = {a}(RED®

is a principal isotope of A —B. But the difference algebra %; —B; has
multiplication defined by [{a}, {x}]={[a, 2]} = {aR"} = {aPR.qo}
={aP}Rpg;={a} (Ri)® since {aP} = {a} Py, {xQ}={x}Qo This
proves our theorem.

We should observe that while Py and Qg are in 7T'(A —B) the trans-
formations P; and Q: defining the isotopy of B and B; need not be in
T(®). This is an evident consequence of the fact that if % has a unity
quantity so does % —9, but certainly 8 need not have a unity quan-
tity. Observe also that if % of order # does not have a unity quantity
and we pass to an algebra ¥ of order z+1 with a unity quantity the
algebra % will be an ideal of Y. The results above then become of par-

6 It follows from this that if 98 is an ideal of U the same linear space is an ideal B,
of As. However, we wish to prove the stronger result that 8 and 8, are isotopic.
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ticular importance in the study of isotopes of algebras without unity
quantities.

We conclude our general results by proving the following theorem

THEOREM 6. Let A be an algebra with a unity quantity, O be the radi-
cal of T(N). Then A is the radical of N and is isotopic to the radical
A D1 of any isotope Wy of A with a unity quantity. Moreover the semi-
simple algebras N —AD and W1 —AD are isotopic.

For every homomorph A —B of an algebra A with a unity quantity
has a unity quantity and cannot be a direct sum of a zero algebra and
another algebra. Thus Theorem 4 implies that A9 is the radical of A.
Our result follows from Theorem 5.

6. An algebra whose radical is a field. Let 9 be an algebra with a
basis e, #, v over § so that every quantity of 9 is uniquely expressible
in the form a=ae+PBu+vyv for a, B, v in §. We let e be the unity
quantity of 2 and complete the definition of A with the relations

u’ = e, uy = 9, 2?2 = 9, v = 0.

Let 8B be a nonzero ideal of A and ¢ 70 be in B so that the correspond-
ing «, B, v are not all zero. Then eu=au-+Le, (au)u=oae+Bu,
a—(au)u="v, v[(au)u]=av, v(au) =Pv are all in B, B contains the
algebra N of order one over § spanned by v. Now (ae+Bu-++yv)v
= (a+B+7)v, v(ae+Bu-+vv) = (a+v)v, Nisan ideal of A. If A=BDE
for ideals 8 and € we have proved that both 8 and € would contain N.
This is impossible. Also N is a nonzero proper ideal of Y and A cannot
be simple. It follows that 2 is not semi-simple. But A=N4® where ®
is the semi-simple associative algebra spanned by e and %, A —N=,
A—N is semi-simple. Then N is the radical of A according to our
definition and is a field of order one over §{.
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