
THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA 

A. A. ALBERT 

1. Introduction. An algebra 21 is said to be nilpotent of index r if 
every product of r quantities of 21 is zero, and is said to be a zero 
algebra if it is nilpotent of index two. It is said to be simple if it is not 
a zero algebra and its only nonzero (two-sided) ideal is itself, and is 
said to be semi-simple if it is a direct sum of simple algebras. 

The radical of an associative algebra 21 is a nilpotent ideal 9Î of 21 
which is maximal in the strong sense in that it contains1 all nilpotent 
ideals of 21. No such ideal exists in an arbitrary non-associative alge­
bra, and so the radical of such an algebra has never2 been defined. 
However the property that 2Ï — 5ft be semi-simple is really the vital one 
and we shall define the concept of radical here by proving this theorem. 

THEOREM 1. Every algebra 21 which is homomorphic to a semi-simple 
algebra has an ideal 31 y which we shall call the radical of 21, such that 
21 — 91 is semi-simple, 31 is contained in every ideal 33 of 2Ï for which 
2Ï—33 is semi-simple. 

The hypothesis that 21 shall be homomorphic to a semi-simple alge­
bra is equivalent to the property that there shall exist an ideal 33 in 21 
such that 21 — 33 shall be semi-simple. I t is a necessary assumption 
even in the associative case, since 21 may be nilpotent and then 21 = 9Î, 
every 21—33 is nilpotent. Moreover it is satisfied by every algebra 21 
with a unity quantity. We shall, nevertheless, carry our study a step 
farther in that we shall define explicitly a certain proper ideal 31 for 
every algebra 21 such that either 31 is the radical of 21 in the sense 
above or 2Ï is not homomorphic to a semi-simple algebra. In the latter 
case 21 — 31 is a zero algebra. 

Our results will be consequences of the remarkable fact3 that the 
major structural properties of any non-associative algebra 2Ï over % 
are determined by almost the same properties of a certain related as­
sociative algebra 7X21). We define the right multiplications Rz and the 
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left multiplications Lx of 2Ï for every x of 21 to be the respective linear 
transformations 

a—^a'X—aRXî a-^x-a=aLXy a in 21, 

on 21, and let the transformation algebra T(2I) of 21 be the polyno­
mial ring over % generated by the RXl the Lx, and the identity trans­
formation I. If © is any set of linear transformations £ on 21 we define 
21© to be the linear subspace of 21 spanned by the images aS of every a 
of 21. Then if § is the radical of JP(21) the set 2l§ is a proper ideal of 21 
which is zero if and only if § = 0. When 2Ï — 2t§ is a zero algebra the 
algebra JH(2I) — § is a field of order one and we shall prove these 
theorems. 

THEOREM 2. An algebra 2Ï is homomorphic to a semi-simple algebra 
if and only if 21 — 21 ̂ p is not a zero algebra. 

THEOREM 3. If 21 —2l̂ > is a zero algebra and $8 is an ideal of 21 the 
algebra 21— 93 is a zero algebra if and only if $8 contains 2l§. 

THEOREM 4. Let 21 be homomorphic to a semi-simple algebra. Then 
either 21 — 21 ̂ p is semi-simple and 2t§ is the radical of 2Ï or 21 — 2l§ is 
the direct sum of a semi-simple algebra and a zero algebra 5fto = 9Î — 21 § 
such that yt is the radical of 21. 

We shall close our discussion with a study of algebras with a unity 
quantity and the radicals of isotopes with unity quantities. Moreover 
we shall exhibit an algebra with a unity quantity and a radical which 
is a field. 

2. A fundamental lemma. Let 93 be a linear subspace of an algebra 
21 of order n over g and m be the order of 93 so that there exists an 
idempotent E of rank m in the algebra ($)*, of all linear transforma­
tions on 21 such that 

93 = 2(£. 

Then 93 is an ideal of 21 if and only if 

(1) ETQX) = ETQQE. 

Since T(2l) contains the identity transformation I it follows that 

(2) 932X21) = 93. 

We let © be the intersection 

(3) T(%)Er\T(%), 
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so that © consists of all S = SE in T(2I). Then ©7X21) is contained 
in r(2l)Er(2I) = r (3 l )£ r (2 l )£ by (1), ©r(2l) is contained in @. Also 
r(2I)r(2I)£ = 7\2l)£, r(2t)© = @ is an ideal4 of 7(21). Then r ( « ) - @ 
is defined and we may prove the fundamental lemma. 

LEMMA 1. The algebra 7"(2l — S3) is equivalent to T{%) — @. 

For let a be any quantity of 21 and {0} = a+S3 be the corresponding 
coset in the decomposition of the additive group 21 relative to S3. If T 
is in T{%) the set S371 is contained in S3, the coset {aT} = a7 ,+S3 is 
independent of a. Then the correspondence 

(4) a-* {aT} = {a}T0 

is a transformation To of 21 —S3 uniquely determined for every JP of 
7(21). Moreover 7"0 is a linear transformation. But then we have de­
termined a mapping 

(5) T-*T0 

of !7(2l) on a set £ 0 of linear transformations To on 21— S3. It is clear 
from (4) that 

(6) {a(Tia + T2/3)} = {aTx}a + {aT2}$ = {a}(T10a + T*fi), 

(7) {a{T1T2)\ = {{aTx)T2} = { a r i } r M = {<*}710720 

for every a and j3 of g, Tx and T2 of 7X21). Then (5) determines a 
homomorphism of 7X21) on S£0. 

The general right multiplication i?{a5} of 21—S3 is the transformation 
{a}—>{a} - {x}, and this is the transformation (Rx) 0 given by (5). For 

(8) {<*}•{*} = {a-x} = {aRx}. 

Similarly L[x] = (Lx)0, To contains 7X21 — S3). If «i, • • • , wn are a 
basis of 21 over g and Si = RUi, Ti — Lu. every transformation 
of 7(21) is a polynomial r = <£(7, Si, • • • , 

r o =0(/ , S10, • • •, sn0, r10, • • •, rn0) is in r(2i-S3), r(2i-S3) = r0. 
If r 0 = 0 we have {aT} = 0 for every a, aT is in S3 for every a of 21, 
aT = aTE, T=TE is in ©. Thus the algebra T(2l) is homomorphic 
under (5) to 7X21—S3) such that © is the ideal of all transformations 
T of 7X21) such that T0 = 0. Then 7\2t) - © is equivalent to 7\2l-S3). 
This proves our lemma. 

3. Algebras with a semi-simple transformation algebra. A quantity 

4 This proof is so brief that I repeat it rather than refer to the proof in the article 
quoted in Footnote 3. 
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z y£ 0 of an algebra A is called an absolute divisor of zero ifjs-a = a-2 = 0 
for every a of A. Suppose first that 21 contains no absolute divisor 
of zero and that 7\2l) is semi-simple. Then 2"(2l) = Xi@ • • • © ï r for 
simple algebras Xi and Xi = T(^i)Ei where Ei is the unity quantity 
of Xi, Ei is a nonzero idempotent of the center of !T(2t). We let 
2l; = 2LE; and have (1) for each Eu 21; is an ideal of 21. Now 2tt = 2l*£t 
and it follows that the 2lt- are supplementary ideals 21 = 2Ii 0 • • • © 2tr. 
Write 21 = 21; ©33; and have T(2l) = Xi © ©;, £* = T(%)Ei, ©*• = r(«)E<0 

where Ei0 = I — Ei. Then @t- is the algebra © of Lemma 1 for 33=33;, 
r ( « - » ) ~ r ( 8 ) - © < . Clearly « - » < = «<, T{%) -©*• = £;, r(2l;) = î ; 
is simple. But 21» has no absolute divisor of zero and then is known5 

to be simple when Xi is simple. Thus we have shown that if T(2l) is 
semi-simple and 21 has no absolute divisors of zero it is semi-simple. 

If 53 is a linear subset of 21 we have 332IOBr(2Q, 2193087X21). 
Then if § is any right ideal of T(2l) we have (2l£)2lC(2l£)r(2I) C2t£, 
2l(2I£)C(2l£)r(2l)C2t£. Hence 2l£ is an ideal of 21. If £ ^ 0 is a 
nilpotent ideal of 7\2l) we cannot have 2I§ = 0. Also 21§T^21 since 
otherwise § ' = 0 would imply that 21 = 0. Let then 21 be semi-simple, 
& be the radical of T(2l). We write 2l = 2li© • • • ©2lr for simple alge­
bras 21; and may choose pairwise orthogonal idempotents Ei of (§)w 

such that 2l; = 2LE», Ex+ • • • +Er = I. Then 21; is an ideal of 21, 
EiT(%) = EiT(tyt)Ei, Ei& = EifQEi = fQi is clearly a nilpotent ideal of 
EiTQS). But it follows that 2l£ = 2li£i© • • • ©2li£ r for ideals 2I;£; 
of 21;. This is impossible unless each § ; = 0 since each 21; is simple. 
Thus if 21 is semi-simple so is T(2l). 

Suppose finally that 21 does have absolute divisors of zero and let 31 
be the set of all absolute divisors of zero of 21. Then clearly 31 is an 
ideal of 21 which is a zero algebra, 3l = 3lE for an idempotent E of 
(S)w. If 81 = 91 we have 7\2l) = / $ a n d T(2l) is semi-simple. Otherwise 
I — E = E0 is an idempotent of (%)n, 21 = 2 1 ( J E + E 0 ) is the direct sum 
2l = @©$ft where @ = 2LEo contains no absolute divisors of zero. If a 
and x are in 21 we write x = g + h with gin ©and h in 3l,a-x = a-g = aR0, 
RX = R0, (a-x)Eo is in ©, RXE0 = RX for every x of 21. Similarly every 
Lx is in T(%)E0 and it is clear that r(@) is equivalent to T(%)E0. 
The algebra © of Lemma 1 defined for 93 = © is T(K)EQ and is an ideal 
of T(2l), T(2l) = r (« )E 0 +/3 f . The algebra © of Lemma 1 defined for 
93 = 31 is r ( » ) E and is E F since E0E = 0. Then TW) = T($)E0®EF, 
!T(2t)£o is semi-simple when T(2l) is semi-simple, T(®) is semi-simple 

5 In the paper referred to in Footnote 3, N. Jacobson denned T($L) to be generated 
by the right and left multiplications of SI and with I omitted. He then proved our re­
sult. We require the more general statement including the case where % may be a zero 
algebra and so refer to Lemma 10 of my own paper of that reference. 
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and so is @. Conversely, if © is semi-simple so is T($t)Eo and so is 
jf(Sl). We have proved this lemma. 

LEMMA 2. The transformation algebra T{%) is semi-simple if and only 
if 21 is either semi-simple, a zero algebra, or a direct sum of a semi-
simple algebra and a zero algebra. 

4. The radical of an algebra. If 21 is an associative semi-simple 
algebra and 33 is an ideal of 21 we have 2Ï=330Ê, where S is an ideal 
of 21 equivalent to 21—33 and is semi-simple. Let 21 now be an associa­
tive algebra with radical J l ^ O and 33 be an ideal of 21. If 33 contains ÏÏÎ 
the algebra 21 —33 is equivalent to (21 — -K) — (33 — Sft) and is semi-simple 
by the argument above. Conversely, let 33 be an ideal of 21 such that 
2Ï—33 is semi-simple, 21 — 33 contains no properly nilpotent classes. 
Then every properly nilpotent quantity of 21 must define the zero 
class of 2Ï—33, 33 contains all properly nilpotent quantities of 21, 33 
contains 31. This proves Theorem 1 in the associative case. 

We now let 33 be any ideal of an arbitrary algebra 21, § be the radi­
cal of 7\2l) so that 2l§ is a proper ideal of 2Ï. If 2Ï—33 is semi-simple 
so is r(2I— 33) by Lemma 2, and so is r(2l) — © by Lemma 1. But by 
the result justproved© contains § . However 33 = 2LE,© = T(2l)E = ©E, 
§ = £ £ , 2l$ = 2l§E is contained in 21© = 2I©£ and hence in 33. Then 
we have proved that the radical 31 of 21 contains 2l§, 2Ï—33 is equiva­
lent to (21 — 2l£) — (33 — 2I§). Hence 21 - 21 £> cannot be a zero algebra. 
If 21 — 2l§ is semi-simple our definition implies that 2l§ = 5ft. Other­
wise 2ïo = 2l —2l^ = @©9flo where © is semi-simple and 3lo is a zero 
algebra, 33 —2I£> is an ideal 33o of 2ïo such that 2lo~33o is semi-simple. 
If there is a quantity of 3lo not in 33o the corresponding class of 2lo—33o 
is an absolute divisor of zero of that algebra, contrary to our hypothe­
sis. Hence 33o contains 9îo, 33 contains the algebra 31 of all the quanti­
ties in the classes of 3lo, 31 is the radical of 21. This proves Theorem 1 
and Theorem 4. 

If 21 is homomorphic to an algebra 2lo and 33 is the set of all quanti­
ties of 2Ï mapped into zero by the given homomorphism then 21—33 is 
equivalent to 2to. If 21—33 is semi-simple we have seen that 33 contains 
2l£, 2Ï-33 is equivalent to (2I-2I£) - ( 3 3 - 2 I § ) , 2 l - 2 t £ cannot be a 
zero algebra. This proves Theorem 2. We have also seen that if 
2Ï — 21 § is a zero algebra and 21—33 is a zero algebra then T(2l—33) 
= 7X21) - © for an ideal © of 7X21). But then by Lemma 2 T(2l) - © 
is semi-simple, © contains § , 2l© = 2t©£ contains 2t§ and is con­
tained in 2Ü3=33. This proves Theorem 3. 

5. The radicals of isotopic algebras. Let 21 and 2Ii be algebras of the 
same order so that we may regard them as having quantities in the 
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same linear space. Then 2t and 2li are principal isotopes if multiplica­
tion in 2ti is given by [a, x] = aRx

l) for Rx
x) =PRxQ, P and Q nonsingu-

lar linear transformations on 2t. If 21 and 2li have unity quantities the 
transformations P and Q are in r(2I) and P(2l) = P(2Ii). 

Let 93 be an ideal of 21, 93 = 2LE, ET{%)=ET{%)E. Then EP = EPE, 
EQ = EQE and £ P P - 1 = £ = (£P)(EP^ 1 ) , P , = £ P is a nonsingular 
quantity of ET(%). Similarly Qi=EQ is a nonsingular quantity of 
£7X21). Write 93i = 2li£, so that since £P(2Ii) =ET{^)E the space 93i 
is an ideal6 of 2ti. Then if b and 3; are in 93i we have b = bE> y = yE, 

(9) [J, y] = fcEPl^g = bP1RyQx. 

It follows that 93 and 93i are principal isotopes with isotopy given by 

(10) RyX) = P A g , 

Every isotope 2Ii of 21 is equivalent to a principal isotope and we have 
proved the first part of this theorem. 

THEOREM 5. Let 21 and 2Ii be isotopic algebras with unity quantities. 
Then every ideal 93 of 21 is an isotope of an ideal 93i of 2li such that the 
difference algebras 2Ï—93 and 2ti — 93i are isotopes. 

We now observe that the homomorphism (5) of P(2l) on r(2l—93) 
carries every nonsingular P of P(2I) into a nonsingular P 0 of P(2t — 93). 
Then if we define 

(11) (#U) ( 1 ) = Po£{*)Q0, 

the algebra with multiplication defined by 

(12) [{a}, {x}}= {a}(*,,)) (1 ) 

is a principal isotope of 21— 93. But the difference algebra 2ïi—93i has 
multiplication defined by [ {a}, {x} ] = { [a, x ]} = {aRx

l) ) = {aPRxQ} 
= {aP}R[xQ]= {a} (R{x]y» since {aP} = {a}P0, {xQ} = {xJQo. This 
proves our theorem. 

We should observe that while P 0 and Qo are in P(2l — 93) the trans­
formations Pi and Qi defining the isotopy of B and B\ need not be in 
P(93). This is an evident consequence of the fact that if 21 has a unity 
quantity so does 21— 93, but certainly 93 need not have a unity quan­
tity. Observe also that if 2Ï of order n does not have a unity quantity 
and we pass to an algebra 21 of order n + 1 with a unity quantity the 
algebra 21 will be an ideal of 2Ï. The results above then become of par-

6 It follows from this that if S3 is an ideal of % the same linear space is an ideal S3i 
of Hi. However, we wish to prove the stronger result that 33 and S3i are isotopic. 
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ticular importance in the study of isotopes of algebras without unity 
quantities. 

We conclude our general results by proving the following theorem 

THEOREM 6. Let 21 be an algebra with a unity quantity, $£ be the radi­
cal of JT(21). Then 21 § is the radical of 21 and is isotopic to the radical 
2ti§i of any isotope 2Ii of 21 with a unity quantity. Moreover the semi-
simple algebras 21 — 2l§ and 2ti — 2li§ are isotopic. 

For every homomorph 21—33 of an algebra 21 with a unity quantity 
has a unity quantity and cannot be a direct sum of a zero algebra and 
another algebra. Thus Theorem 4 implies that 2l̂ p is the radical of 2Ï. 
Our result follows from Theorem 5. 

6. An algebra whose radical is a field. Let 2Ï be an algebra with a 
basis e, u, v over g so that every quantity of 21 is uniquely expressible 
in the form a=ae+fiu-{-yv for a> /3, y in g. We let e be the unity 
quantity of 21 and complete the definition of 21 with the relations 

u2 = e, uv = v, v2 = v, vu — 0. 

Let 33 be a nonzero ideal of 2Ï and a 5^0 be in 33 so that the correspond­
ing a, j3, y are not all zero. Then au—au-\-$e, (au)u=ae+^u, 
a — (au)u=yv, v[(au)u] =av, v(au)=f3v are all in 33, 33 contains the 
algebra 5ft of order one over % spanned by v. Now (ae+fiu+yv)v 
= (a+P+y)v, v(ae+fiu+yv) = (ce+7)z>, 9t is an ideal of 21. If 21 = 33 ©& 
for ideals 33 and (S we have proved that both 33 and Ê would contain 9Î. 
This is impossible. Also 5ft is a nonzero proper ideal of 21 and 21 cannot 
be simple. I t follows that 21 is not semi-simple. But 21 =-K+© where © 
is the semi-simple associative algebra spanned by e and u, 2ï — 9fl = ®, 
21 — yi is semi-simple. Then 5ft is the radical of 21 according to our 
definition and is a field of order one over %. 

T H E UNIVERSITY OF CHICAGO 


