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It is the purpose of this note to prove the following theorem: 

THEOREM 1. Let G be a Lie group1 and G* a compact subgroup of G. 
Then there exists in G an open set O containing G* with the property 
that for each subgroup H of G lying in O there is an element g of G such 
that g~lHg is in G*. 

Roughly, the theorem says that each subgroup near enough to G* 
can be transformed into G* by an appropriate element of G. This re­
sult can be regarded as a generalization of the known fact that Lie 
groups cannot have arbitrarily small subgroups (other than the iden­
tity), although it was not from this point of view that our interest 
arose. To make our meaning clear, assume that G* is an invariant 
subgroup so that the factor group G/G* is also a Lie group. If there 
were in G a subgroup H near G* it would go, by the homomorphism 
taking G into G/G*, into a subgroup near the identity of G/G*. The 
only subgroup of G/G* near the identity is the identity itself which 
means that if H is to be near G* it must actually be a subgroup of G*. 
We see that when G* is an invariant compact subgroup of G, the con­
clusion of the theorem is true in a trivial sense. 

Our proof of Theorem 1 in the more general situation is based on 
certain facts about the way in which G operates on the coset space 
G/G* which will be denoted by M. This is the space whose points are 
the cosets gG* of G* in G. The group G acts transitively on M which 
can be regarded as a Riemannian space and Cartan2 has shown that 
there exists in M a Riemannian metric for which G is a group of iso-
metries. This fact will be of great importance in what follows. 

We begin, as we may, by supposing that M is endowed with a 
Riemannian metric invariant under G and, furthermore, we assume 
that M has been made into a metric space (Fréchet) in the usual way 
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1 For all definitions and theorems on topological groups used in this paper see 
Pontrjagin, Topological Groups. The term compact, as used here, implies that the set 
is closed. 

2 La Théorie des Groupes Finis et Continus et VAnalysis Situs, Mémorial des Sci­
ences Mathématiques, vol. 42, p. 43. For an excellent summary of properties of iso-
metries and geodesies which will be useful here, see the paper by Myers and Steenrod, 
The group of isometries of a Riemannian manifold, Annals of Mathematics, (2), vol. 40 
(1939), pp. 400-416. 
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by letting the distance d(xy y), between two points x and y be the 
greatest lower bound of the lengths of geodesic paths joining a and b. 
This distance is invariant under G. Moreover, for small enough neigh­
borhoods this distance is equal to the length of the geodesic joining 
x and y since in such neighborhoods geodesies furnish a proper abso­
lute minimum for the lengths of paths. 

We shall use the symbol S(x, r), x a point of M and r a positive 
real number, to designate the set of points of M whose distance from x 
is at most r, and we shall call that set the sphere about x of radius r. 
The boundary of this sphere will be the set of points for which the 
distance is precisely r, the inside (or interior) will be the set for which 
the distance is less than r. We shall say that a sphere is convex if each 
pair of its points are the end points of a geodesic every inner point 
of which is inside the sphere. I t will be worth keeping in mind that, 
on our definition, when a geodesic belongs to a convex sphere only its 
end points can belong to the boundary of the sphere. 

I t will be convenient to use a number of simple lemmas and we now 
turn to them. 

LEMMA 1. If x is any point of M there exists a neighborhood U of x 
such that if a, b, and c are three distinct points of U which lie on one 
geodesic in that order, then 

d(b, x) < max [d(a, x)> d(c, x)]. 

Let r be a positive number such that every sphere of center x and 
radius rf ^r is convex.3 Let U be the interior of S(x, r). If a, &, and c 
are in U, consider the sphere S(xy r{) where ri = d(x, b). The boundary 
of this sphere meets the geodesic abc at b and this means that either 
a or c is outside S(x, ri) as otherwise the fact of convexity of S(x, ri) 
would be contradicted. But if a point is outside S(x, fi) its distance 
from x is greater than r, and this concludes the proof. 

LEMMA 2. If x is any point of M, there exists a neighborhood U of x 
such that if a, b, c, and e are four distinct points in U and a, b, and c 
are on a geodesic in that order then 

d(b, e) < max [d(a, e), d(c, e)]. 

Here we shall let U designate the interior of S(x, r/2) where r has 
the same meaning as in the preceding lemma. Since G is transitive 
over M there will be an element g in G such that g(e) =x. The points 

3 For the existence of such a number r in a Riemann space see the article by 
Whitehead, Convex regions in the geometry of paths, Quarterly Journal of Mathe­
matics, vol. 3 (1932), pp. 33-42. 
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#(#)> g(b), and g(c) are inside S(x, r), and they are on a geodesic since 
the isometry g preserves geodesies. Making use of Lemma 1, and using 
again the fact the g is an isometry, we complete the proof of this 
lemma. 

LEMMA 3. If x is a point of M there is a neighborhood U of x such that 
if a, b, c are distinct points lying in that order on a geodesic in U and 
tf d, e,f are distinct and lie in that order on a geodesic in U then 

d(b, e) < max [d(a, d), d(a, ƒ), d{c, d), d(cy ƒ)]. 

First we conclude from Lemma 2 that d(b} e) is either less than 
d(a, e) or less than d{c, e). Say the notation is such that 

d(b, e) < d(a, e). 

Now using Lemma 2 again we have 

d(ay e) < max [d(a, d), d(a, b)]} 

and Lemma 3 is proved. 

LEMMA 4. If x is any point in M, there exists a neighborhood U of x 
such that if H is a closed subgroup of G and H{xY is in U then H has a 
fixed point in U. 

Let U denote some convex sphere about x which satisfies the con­
clusion of Lemma 3. We shall show that this [/fulfills the conclusion 
of the present lemma. Suppose, therefore, that H is a subgroup of G 
such that H(x) is contained in U. 

Let q be a point in U such that H(q) is of minimum diameter with 
respect to all orbits of H which lie entirely in U. If H(q) = q our proof 
is completed so we may take it that H(q) y^q. 

In this case H(q) contains at least two points. Let b denote the mid­
point of some geodesic determined by a pair of points of H(q) ; now, 
because i J i s a group of isometries, H(b) is entirely included in the set 
of such midpoints, and H(b) lies in U. It will now be shown that H(b) 
has a smaller diameter than H(q) and this will be a contradiction to 
our choice of q. This contradiction will complete the proof of our 
lemma. 

The diameter of H(b) coincides with the distance between two 
points of H(b). This implies that there is an h in H such that the 
diameter of H{b) is 

d[b, h(b)]. 

4 This is the orbit of the point x under the group H. 
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The point b is the midpoint of a geodesic abc where a and c are in 
H(q). The point h(b) is on the geodesic h(a), h(b), h(c). Calling these 
points d, e> and ƒ we may apply Lemma 3 and conclude that 

d\b, h(b)\ < max {d[a, h(a)], d[ay h(c)]> d[c, h(a)], d[c, h(c)]}. 

This shows that the diameter of H(b) is smaller than that of H(q) and 
completes the proof of this lemma. 

It is now a simple matter to conclude the proof of our theorem. 
We have to recall that the "points" of the space M are the cosets gG*, 
g in G. Let us now interpret Lemma 4 in this light, with the group G* 
taken as the point x. The open set U of the lemma corresponds to a 
system of cosets gG* and the set of elements of G which belong to one 
of these cosets constitutes an open set O of G. The set 0 is a neighbor­
hood of G*. 

Now let H be a subgroup of G which lies in 0 and let h be an ele­
ment of H. Then, by the construction of 0, every element of the coset 
^G* belongs to O and the point hG* of M belongs to U in M. There­
fore the premises of Lemma 4 are satisfied and we may suppose that 
H has a fixed point in M. 

This means that there is a "point" gG* of M such that 

H(gG*) = gG*. 

This, however, is an equation in sets in G. We may write it 

HgG* = gG*. 

From this we conclude that 

g~lHgG* = G*. 

But this means that for every choice of an element k in G* and ele­
ment h in H: g~xhgk is contained in G*. 

This means that for every choice of h in H: g~xhg is contained in G* 
and then finally, that the group g~lHg is a subgroup of G*. This con­
cludes the proof of our theorem. 

COROLLARY. The element g of Theorem 1 may be chosen within any 
prescribed neighborhood of the identity if the open set 0 is chosen there­
after sufficiently small. 

This corollary is a consequence of our method of proof. If the neigh­
borhood U of the last lemma is small H will have a fixed point y 
near x. Because of the transitivity of G over M there is a g in G such 
that g = g(x) and this g may be chosen near the identity in G if y is 
near enough to x. 
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These results may be extended slightly in certain directions as fol­
lows: 

THEOREM 2. Let G be a compact connected finite-dimensional group 
and let G* be a closed connected subgroup. There exists an open set O 
containing G* such that if H is a closed connected group in O then H is 
the transform of a subgroup of G*. 

Let Z be an invariant zero-dimensional subgroup of G such that 
/(G) =G/Z is a Lie group. By Theorem 1 there exists an open set 0\ 
containing ƒ(G*) such that any subgroup of f(G) which is in 0\ can 
be transformed into a subgroup of/(G*). Let 0=/~ 1(Oi) , and let H 
be a closed connected subgroup of G which is contained in 0. There 
is a gi in f(G) such tha t gïxf{H)gi is in /(G*). Let g be an element in 
/_1(gi)- Then g~lHg is a connected group such that f(g~~lHg) is in 
/(G*). This means that every element of g~lHg belongs to the collec­
tion of elements G*Z=/~1/(G*). 

The set of elements G*Z forms a group which must have the same 
dimension as G* for both are taken by ƒ into f(G*) and the homo-
morphism ƒ, since it has a zero-dimensional kernel, preserves dimen­
sion.5 Hence the component of the identity of G*Z must be G*. For 
in any case this component certainly includes G* and it cannot be 
larger than G*, because if a finite-dimensional connected compact 
group contains another connected closed group as a proper subgroup 
it must be of higher dimension than this subgroup. This fact can be 
seen generally by observing that a similar fact is true for Lie groups. 

If the connected group g~lHg is in G*Z it must be in the component 
of the identity of G*Z. Therefore g~lHg is in G* as we wished to prove. 

SMITH COLLEGE AND 

Q U E E N S COLLEGE 

8 See van Kampen, Note on a theorem of Pontrjagin, American Journal of Mathe­
matics, vol. 58 (1936), pp. 177-180, especially p. 178. 


