
CLASSES OF MAXIMUM NUMBERS ASSOCIATED WITH 
TWO SYMMETRIC EQUATIONS 

H. A. SIMMONS 

1. Introduction. Let^ t- , ,-( l /#) stand for the elementary symmetric 
function of the j th order of the i reciprocals (l/xp) (£ = 1,2, • • •, i > 0) 
with 

y^ (1/x) = 0 when i < j or j < 0, 
it} 

= 1 when j = 0 

(J^A.i(x) having a similar meaning for the xp themselves). 
Here we extend the work of papers I,1 II,2 I I P by obtaining relative 

to equations (1) and (1.1) below results analogous to those in I, II, 
III 

m 

(l)4 £ (1/*) + Z «•• [«•(*)]-* = à/a, 
n,n—l i = l 

a = (c + l)b — 1, 7r(#) = #ix2 • * * xn, 

(1.1) E (i/«) + x £ (iA) + M E (i/«) = JA; 
71,n—2 w,n—1 n , n 

in (1), 6, c, and m are arbitrary positive integers, n>l, and the at-
are any non-negative real numbers; in (1.1), a and b are as in (1), 
n > 2, X is a non-negative integer, and ju is a positive integer. 

We have not seen previous mention of (1); the case of (1.1) in 
which fx = 0 was treated in II and that in which X =/x == 1 was treated 
in I I I . Our procedure for (1) does not suffice for the equation that is 
obtained by adding to the left member of (1.1) the terms 

m 

^ ai[ir(x)]-\ 
i=2 

The following definitions and notation from I will be frequently 
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used here: xi.. .p , l^p^n, stands for the set (xi, X2, • • • , xp) ; 
P(x) = P(xij X2, • • • , xn) stands for a polynomial, not a constant, 
which is symmetric in the Xi (i = 1, 2, • • • , n) and has at least one 
positive, and no negative, coefficient; the Kellogg solution of equation 
(e), where e stands for (1) or (1.1), is the solution that is obtained by 
minimizing the variables this order, one at a time, 
in (e) among positive integers ; an E-solution of (e) is any solution of 
it in which #1^X2^ • • • ^xn while Xi> X2, • • • , xn are positive in­
tegers. When any further definition or notation from I, II, or III is 
used here, a suitable reference to the appropriate article will be given. 

We can now state accurately our purpose here. It is to prove that 
the Kellogg solution w of equation (e) has the following two proper­
ties, which were called remarkable properties in III : (i) It contains the 
largest number that exists in any JS-solution of (e) and no other 
E-solution of (e) contains this number, (ii) If X, with XT^W, is an 
E-solution of (e), then P(X) <P(w). 

The discussion from §2 to the end of this paper is divided into two 
parts as follows: Part 1 treats (1), §§2 to 6 (inclusive); Part 2, (1.1), 
§§7 to 12. 

This paper involves innovations of notation and procedure of I, II, 
III. The terms set a and set r, which were important in I, II, I II , are 
not used here ; they are not needed because of our use of a new term 
that is very convenient for present purposes, namely s-set (cf. §4). 
This change is accompanied by new procedure for both (1) and (1.1) : 
in Part 1, we use a new lemma, namely Lemma 4.1 ; in Part 2, we in­
troduce an upper bound R(X) (cf. §8) for the maximum number that 
we seek to identify and we show that R(X) is uniquely maximized, 
with respect to values that R(x) can assume on E-solutions X of (1.1), 
by the Kellogg solution of (1.1). In so far as we know, our reasoning 
about R(X) in §11 affords the first strong resemblance of our proce­
dure (for identifying maximum numbers) to that which Curtiss0 used 
in solving Kellogg's problem.6 

PART 1. T H E REMARKABLE PROPERTIES OF THE KELLOGG 

SOLUTION OF ( 1 ) 

2. The Kellogg solution of (1). This solution is x = w where [I, (23)] 

(2) wp = 1 (p = 1, 2, • • • , n - 2), wn_! = c + 1, 

5 D. R. Curtiss, American Mathematical Monthly, vol. 29 (1922), pp. 380-387, 
and note, in particular, his upper bound (10), p. 384. 

6 O. D. Kellogg, ibid., vol. 28 (1921), pp. 300-303. 
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with wn defined to be the unique positive solution xn of the equation 
that is obtained by substituting in (1) for each xp (p = l, 2, • • -,n — l) 
its value wp from (2). 

Iî n = 2, only the last equation in (2) is to be retained. 

3. Our transformation. In considering an E-solution X^w of (1), 
we classify and transform elements as we did in §§15, 17 of I. Thus 
we define our transformation of X (X\... n) into a new set X' by (/i) 
or (fa) [I, (33) and (52)]: 

(/i): Xp = Xp(p * qillq; p è n), Xqi = wqv Q(l/X') = Q(l/X); 
(3) 

(h): Xp = Xp(p j* qltlq; p ^ n), XlQ = wlQ, Q(l/X') = Q(l/X); 
according as (h) requires X[q to be not greater than wiq or greater 
than wiqf respectively, where Q(l/X) is the case x=X of the left 
member of (1) ; if (h) defines Xiq to be equal to wiq, (h) and (/2) are 
the same transformation. 

If X'T^W, our transformation from X' to X" is obtained from (3) 
by replacing in (3) X, X'y q by X', X"y q', respectively, where 
Xq[ (X[q') is of class A'(B'), and the new transformation is regarded 
as a transformation (3). Thus we avoid giving here an analogue of 
(52) of I. 

Replacement of (1) by (1.1) in this section gives our transformation 
for §§11, 12; it will be called (3a). 

4. Important lemmas; s-set. In the sequel, we use Lemma 4 and 
Lemma 4.1 below. Lemma 4.1 depends on Lemma 4, which is essen­
tially Lemma la of I. 

LEMMA 4. Let Q(l/x) stand for a symmetric polynomial in the n re­
ciprocals (l/xp) (p = l, 2, - - - , n>l) which is not a mere constant and 
contains at least one positive, and no negative, coefficient ; with i and j 
equal to distinct positive integers each less than or equal to n, let Xi, Xj, 
a, 13 be positive numbers with a <XISXJ', and suppose that the expression 
that is obtained by replacing in Q{\/x) the numbers Xi, Xj by (x;—a), 
(xj+P), respectively, equals Q(l/x), then 

(4) XiXj S (%i — a)(xj + jÖ), Xi + Xj < (xi — a) + (x3- + P) , 

where h is a positive integer. Furthermore, the equality sign holds in (4) 
if, and only if, Q(l/x) is a polynomial in [^(x)]"1. 

In the proof of Lemma 4.1 and in §§6, 12, we use the following 
definition. 
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DEFINITION OF s-set. If in a set XM9*w every element of class B(a) 

[I, p. 898] is at least as large as every element of class A(a), we call X{a) 

an s-set (relative to w), s meaning satisfactory in the sense that X(a) can 
be transformed into w by one or more transformations of type (3) every 
one of which accords with (4). 

LEMMA 4.1. Let k be an integer greater than or equal to\.\letW= W\... „ 
(v>l) be the Kellogg solution of the équation (x±X2 • • • xv)~

1 = k~1; and 
let X = Xi... v be a set of v positive integers with Xi^X2S • • • ^Xv 

satisfying the relation 

(4.1) (xix2 • • • xv)~
l g kr\ 

then 

(4.2) E ( V * ) ^ E ( W , lgs<vS 
V ,S V,S 

with < holding in (4.2) except when X = W. 

PROOF. We first consider the case where 

(4.3) XiXt- • • Xv = *. 

Then Xx... „ is an s-set (relative to W). Therefore P{X) ^P(W), 
[I, Lemma 3], the equality sign holding in this relation if, and only if, 
X = W or P(X) is a polynomial in the product of all of the v variables 
Xi, X2, • • • , Xv. In particular, then, when P(x)^^2v,r(x), we have 

(4.4) E ( I ) ^ Z ( n l^r<v, 
v,r v ,r 

the equality sign holding in (4.4) if, and only if, X=W since r<v. 
But, using (4.3), we find 

E (x) Z (x) Z (WO 
(4 .5)Zd/X)= — ^ ^ — , Z ( W = ^ — , 

while, by (4.4), 

(4.6) I ( I ) l E ( n l ^ v - r < v . 
v ,v—r v,v—r 

From (4.5) and (4.6), it follows that in the present case (4.2) holds. 
Suppose now that < holds in the case x=X of (4.1), say 

(4.7) ( X i X , - . - Xv)-* = (k')~l, 

7 The case s — v is excluded merely for convenience in our applications of Lemma 
4.1; the case k = 1 is included for convenience in writing, not for use. 
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where kf is an integer greater than k. By considering the Kellogg solu­
tion of (4.7), one can prove that (4.2) still holds: indeed if the Kellogg 
solution of (4.7) is U, one finds readily that 

E (i/x) è E (i/u) < E (i/w), i£s-v. 
V ,S V,S V ,S 

5. Proof of Property (i) for the w of (1). We substitute any E-solu-
tion XT^W of (1) for x in (1) and employ the following equivalent of 
the resulting equation (%2i,j standing for y^i.i(l/X) here as in the 
sequel) 

(5) E + x~1( Z +ai E ) + Z ^ r Y E Y=J/a. 
w—l,tt—1 \ n—l,n—2 n—l,n—1/ t = 2 \ w—l,n—1/ 

In order to establish Property (i), it suffices to prove that w has 
Property (i) when n = 2 and to prove that the following relations hold 

(5.i) E s E (i/w), E < E (i/w), ^>2 . 
n—l,n—1 w—l,w—1 n—l,n—2 TJ—l,n—2 

When w = 2, equation (l) reduces to 

(5.2) X? + Xî\l + a^T) + £ (a..X7*)X7* = &<f \ 
t=2 

In this case, X^w implies that Xi<wi. This fact and (5.2) imply that 
X2<W2 [I, Lemma 2] . 

When n>2, the first relation of (5.1) is true by the definition of 
Kellogg solution since (cf. (2)) 

E £(c + i)-x= E (i/w), 
W — 1 , 7 2 . — 1 W — l , t t — 1 

and since X^w, the second relation of (5.1) follows from Lemma 4.1 
(cf. the case of (4.2) in which X^w and (v, s) = (n — l, n — 2) with 
n>2). 

6. Proof that the w of (1) has Property (ii). Let X^w be an E-solu-
tion of (1). The discussion of the case n = 2 in §5 shows that in this 
case X is an s-set (so that P(X) <P(w)). Suppose n>2. Then, by §5, 
Xn <wn, and by (2) every classified element of Xi... (w_2) is of class A. 
Therefore, whether Xw_i is of class A, class B, or unclassified ( = wn-i), 
X is an 5-set. 

PART 2. T H E REMARKABLE PROPERTIES OF THE KELLOGG 

SOLUTION OF ( 1 . 1 ) 

7. The Kellogg solution of (1.1). This solution is x = w where 
[I, (23)] 
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wP = 1, p = 1, 2, • • • , » — 3, 

Wn-2 = C + 1, Wn_i = a ]T) (W) + X L 
L n-2,1 J (7) 

L n-1,2 n -1 ,1 J 

If n = 3, the first set of equations in (7) is, of course, to be omitted. 

8. An upper bound for Xn. In the sequel X stands for an E-solu-
tion of (1.1), arbitrary except as we specify. 

If we substitute X for x in (1.1) and solve the resulting equation 
for Xny we find after simple algebraic manipulations that 

(8) 
L n-1,2 n-1,1 J 

-ïbX1X2 • • • Xn-t - a( S (X) + \)1 

Since the Xp (p = l, 2, • • • , n — 1) are positive integers, the second 
factor in the right member of (8) is the reciprocal of a positive integer. 
Therefore, 

(8.1) Xn^ a\ £ (X)+X £ P 0 + / I . 
L n-1,2 n -1 ,1 J 

9. An inequality for Xn_i when Xn is the maximum number. In 
the sequel, the statement that X^w and Xn is the maximum number 
that we seek to identify (so that Xn ^ wn) will be referred to as hypothe­
sis H, or merely as H. We use H henceforth until a contradiction of 
it is reached in §11. 

Under hypothesis H, we now desire to prove that 

(9) Xn_x S w*-i. 

Suppose that this is not true, so that (with H holding) 

(9.1) Xn-l > Wn-1. 

We presently contradict (9.1). The case x — X of (1.1) is equivalent to 

D +(i/x„_x)( I + \ E ) 
n—2,n—2 \ n—2,n—3 n—2,n—2/ 

(9 '2) + ( i / i» ) ( Z +x D +M E ) = &/«, 
\ n—l,n—3 n—l,n—2 n— l ,n—1/ 

a = (c + l)i - 1, 
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with n>2. To reach the contradiction, we first establish the following 
relations 

(9.3) E ^ Z ( 1 » , n>2, 
n—2,n—2 n—2,n—2 

(9.4) Z +X E ^ E ( l /w)+X E (l/w), » > 2 . 
n—2,n—3 n—2,n—2 fl—2,n—3 n—2,n—2 

Since X is an E-solution not equal tow of (1.1) a n d n > 2 , X i X 2 • • -Xw_2 
^c+l=WiW2 • • • wn-2î therefore, (9.3) is true. Consequently, to 
prove (9.4), it suffices to show that 

(9.5) £ £ E (l/w), » > 2 . 
»—2,w—3 w—2,n—3 

When n — 3, (9.5) states that 1 = 1; when w > 3, (9.5) is a case of Lemma 
4.1 in which X^W and (v, s) = (n — 2, w — 3) with ?z — 3 = 1; therefore, 
(9.5) is true. 

Next, using (9.1), (9.3), and (9.4), we find that the sum of the terms 
in the first line of (9.2) is less than U, where 

u= Z (l/wO + UM-oT E (i/«0 + x E (i/«ol. 
n—2,n—2 L n—2,n—3 n—2,n—2 J 

Indeed, if in the first line of (9.2) we should replace Xn-i by Xn-i— 1, 
the resulting expression would not exceed U. Consequently, there ex­
ists for (1.1) an E-solution Y in which 

(9.6) Yp = Xp (p = 1, 2, • • • , n - 2), Yn^ = Xn_x - 1, F n > Xn, 

and the inequality in (9.6) contradicts H. Hence, under hypothesis H, 
(9.1) is false. 

10. On the classification of the elements of X ] . . . ( W _ D when H 
holds. For use in §11, the following statement, S, will presently be 
proved : In X\... (n__i) every element of class B is at least as large as 
every element of class A. 

To avoid vacuous language in the proof of 5 , 8 we consider sepa­
rately the cases n = 3 and n > 3. 

Case n = 3. Here Xi...(»_i) = (Xi, X2), and either Xp^wp (p = l, 2) 
or Xi>wi, X2<W2] in both cases £ is true. 

Case n>3. Here, by (7), any classified element of X\.. .(W-8) is of 
class A ; Xn-2 is of class A, class J3, or unclassified (=wn-i) ; and by 
(9) Xn-i is either unclassified or of class B. Therefore 5 is true. 

8 If n = 3, it is vacuous to say that any classified element of X i . . .<n-3) is of class A 
(cf. our discussion of the case n>3). 
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11. Proof of Property (i) for the w of (1.1). If Xi.. . (n-i) contains 
no element of class B, XT^W implies that Xn < wn, which contradicts H. 

Suppose that X±... (W_D contains at least one element of class B 
and, therefore, at least one element of class A, since the first classified 
element of X is necessarily of class A. Then, by S, every application 
of transformation (3a) to X or to an intermediate set of X [I, p. 898], 
which does not change the magnitude of the nth element of a set, 
accords with (4). Further, the last such transformation in the ex­
haustive set for X [I, p. 898] yields a set X(t) in which Xf =Xn^wn 

(cf. H) and 

(11) X™ ^ wp, p=l,2,-—9n-l; 

otherwise X{t) would be a set satisfying (1.1) and having at least one 
element of class A (t) and no element of class J3 ( 0 , which is impossible. 
We reach a contradiction of Has follows. Let R(X) stand for the right 
member of (8.1), so that XnSR(X). Certainly R(X) is expressible in 
the form 

R(X) =F+ G(Xgi + X1Q) + HXqiXiq, 

in which F} G, H are positive and independent of XQ1 and Xiq, while 
Xqi^Xiq [I, p . 898]; therefore, the first transformation (3a) that one 
uses in passing from X to X™ is such that R(X) <R(X') (cf. (4)). 
If t> 1, our transformation of X' into X" is such that R(X') <R(X"), 
and so on. On arriving at X(t), one has 

(11.1) Xn S R(X) < R(X') ^ R(XW), t ^ 1. 

But by (11) and the fact that R(X(a)) depends only on the first n — 1 
elements of X ( a ) , we have 

(11.2) R(X^) g R(w). 

By (11.1) and (11.2), Xn<R(w); and since R(w)=wn (cf. (7)), 
Xn <wn. This contradicts H. 

12. Proof that the w of (1.1) has Property (ii). H negated, we now 
merely suppose that X^w. We again avoid vacuous language by 
treating separately the cases n = 3 and n>3. 

If n = 3, Xz<wz (cf. §11) and either Xp^wp (p = l, 2) or Xi>wh 

X2<w2; in either case X is an s-set (and P{X) <P(w)). 
If n>3, Xn is of class B, and every classified element of Xi.. .(n-3) 

is of class A (cf. (7)). Then if one of Xn_2, Xw_i is unclassified, X is 
an s-set; the same is true if Xn_2, Xn^i are of the same class or if 
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Xn-2 {Xn-i) is of class A (B). Therefore, we only need to consider the 
case in which Xn_2 (-X"n-i) is of class B (A). Then 

(12) X\Xz • • • Xn-2 ^ Wiw2 • • • Ww-2 = c + 1, n > 3, 

and J f i . . . (w_2) contains one or more elements of class A (preceding 
the element Xn-2, of class B). Apply transformation (3a) to X1 or to X 
and one or more intermediate sets of X, until a set X{t) is obtained in 
which Xf... (n_2) does not contain both an element of class A ( 0 and an 
element of class B^\ Since each transformation that has been applied 
to this point has increased the (n — 2)d element of a set and decreased 
a not larger element (with subscript less than n — 2) each transforma­
tion applied has accorded with (4), so that necessarily 

( 0 ( 0 y ( 0 

(cf. the first two lines below (4)), and 

(0 
Xp ^ wp, p = 1, 2, • • • , n — 2, 

with > holding for at least one of the indicated values of p (cf. (12)). 
Further, by hypothesis Xn-i>wn-i, and by §11 Xn<wni while no 
transformation used in arriving at X^ has changed the value of the 
(n — l ) th or nth element of a set. Therefore, 

(12.1) Xp} ^wp (p=l,2,---,n-l), Xnl) = Xn < wn, 

with > holding in (12.1) for at least one of the indicated values of p. 
If u is a value of p for which > holds in (12.1), then X^SXU since 
transformation (3a) never increases the value of an element of class 
Aia). Consequently, the classified elements of X(t), like the elements 
of X, do not decrease as their subscripts increase, and so the X ( 0 of 
(12.1) is an s-set. 
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