
MEAN-VALUE SURFACES 

MAXWELL READE AND E. F . BECKENBACH 

Introduction. The real functions 

(1) Xi = Xj(u, v), j = 1, 2, 3, 

defined and continuous in a finite simply connected domain1 D, will 
be said to define a surface 5. If the first partial derivatives of the 
functions (1) are continuous in D, and if 

(2) E(u, v) = G(u, v), F(u, v) = 0 

hold in D, where 

3 3 3 

E(u, V) 33 ] £ Xjuy F(u, v) = ]T) XjuXjvt G(U, v) = ]T) xJv 
j=i i=l i=i 

are the coefficients of the first fundamental quadratic form of S, then 
the surface is said to be given in isothermic representation by the 
functions (1) and the parameters u, v are said to be isothermic pa­
rameters; the map of D on S is conformai except where E = G = 0. 

In a previous paper,2 the authors studied the equation 

(3) 23 I xAui v)dz = 0 , z = u + iv, 

where C is a circle in D ; the following necessary and sufficient condi­
tion was obtained. 

THEOREM A. If the functions (1) have continuous partial derivatives 
of the third order in a finite simply connected domain D, then a neces­
sary and sufficient condition that they map D is other mically either on a 
surface S that lies on a sphere of finite non-null radius, such that circles 
are mapped on circles, or on a minimal surface 5, is that (3) hold for 
each circle CinD. 

1. Mean-value surfaces. Let the coordinate functions (1) of a sur­
face 5 be continuous in a finite simply connected domain D ; then the 
circular averages 

1 A domain is a non-null connected open set. 
2 Generalizations to space of the Cauchy and Morera theorems, Transactions of this 

Society, vol. 49 (1941), pp. 354-377; in particular, see p. 365. 
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(4) xj = A5iP{u, v) s —- I I #y(> + £, v + r / ) J ^ , j = 1, 2, 3, 

where p is a positive constant, will be said to define a mean-value sur­
face Sp associated with S. We define 

Aj,o(u, v) s XJ(U, v), j = 1, 2, 3. 

We note that the functions (4) are defined and have continuous par­
tial derivatives of the first order in an open set of points Dp which 
is interior to D; since Dp is not necessarily a connected set, Sp may-
consist of several pieces. 

THEOREM 1.1. If the f unctions (1) are continuous in a simply con­
nected domain D, then a necessary and sufficient condition that (3) hold 
for each circle C in D is that all mean-value surfaces Sp associated with 
the surface S, defined by the functions (1), be given in isothermic repre­
sentation by (4). 

PROOF. The first partial derivatives of the functions (4) are given 
by the relations3 

dA y,p 

- - f du 7rp2 J p+v
2= 

dA, 

TTO1 J £2 

%i(u + £> » + v)dvy 

Xj(u + f, v + r))d£, j = 1, 2, 3, 
dv 7rp 2 J £2+1J2=!=p2 

which are valid for points of Dp ; hence 

/CN Z [ f */(« + f, f + n)W + idv)~\ 
( 5 ) j=l L •/ £2+7?2=p2 J 

= - 7T2p4[Ep - G p + 2tf ,
p j , 

where Epy Fp and G> are the coefficients of the first fundamental quad­
ratic form of Sp. From (2), (3) and (5) we obtain the theorem. 

From Theorems A and 1.1 we obtain the following result. 

THEOREM 1.2. If the f unctions (1) have continuous partial derivatives 
of the third order in a finite simply connected domain D, then a necessary 
and sufficient condition that they map D isothermically either on a sur­
face S that lies on a sphere of finite non-null radius, such that circles are 
mapped on circlesf or on a minimal surface S, is that all mean-value 
surfaces Sp associated with the surface S defined by the f unctions (1) be 
given in isothermic representation by (4). 

3 T. Radó, Subharmonic Functions, Berlin, 1937, p. 11. 
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2. Mean-value surfaces and transformations of axes. In §3 we shall 
make use of the following observations. 

2.1. Sp is invariant under rigid transformations in the (#i, #2, #3)-
space ; if 

3 

OCJ = dj + 22 ^kjXk, j = 1, 2, 3, 

is a rigid transformation, then 

3 

A'jtp(u, V) = a j + Ys \kjAktP(uy v), j = 1, 2, 3, 

where 

A y.p(«, v) s —- M ay (« + £, v + rj)d£dri, 

2.2. S0 is invariant under each of the reflections 

j = 1, 2, 3. 

u' — u, v' = — A, 

#' = — u, vf = Ï>. 

and 

If, for example, 

x'j(u', v') s * / « ' , - z/), 7 = 1, 2, 3, 

then 

4y lP(«', »') = ^y,p(«', - »')» i = 1, 2, 3, 

where 

(6) ^ ;.,>', »o s — f f */ («' + *,»' +17)^17, y = 1,2,3. 
7TP2 J J p+rj^p* 

2.3. Similarly, Sp is invariant under rigid transformations in the 
(w, ^)-plane. 

2.4. Under the transformation 

(7) uf = aw, *>' = av, a > 0, 

the mean-value surface Sp is transformed into the mean-value surface 
Sap whose coordinate functions are given by (6), where 

(uf vf\ 
x}(u', v') s xA—y — I , 

\ a a / 
j = 1, 2, 3. 
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Hence for a fixed, the family of mean-value surfaces [Sp] associated 
with a given surface S is identical with the family of mean-value sur­
faces whose coordinate functions are given by (6) ; under the trans­
formation (7), each member of one family is congruent to a member 
of the second family. 

3. Conformai mean-value surfaces. Since, by Theorem 1.2, the 
only smooth surfaces in isothermic representation for which all asso­
ciated mean-value surfaces are given in isothermic representation by 
(4) are (a) spherical surfaces, in representation whereby circles are 
mapped on circles, and (b) minimal surfaces, the question arises as 
to the nature of the mean-value surfaces in these two cases. 

THEOREM 3.1. If the functions (1) map a finite simply connected do­
main D is other mically on a minimal surface 5, then each mean-value 
surface Sp associated with S is a minimal surface given in isothermic 
representation by (4) and coinciding with S f or (u, v) in Dp. 

PROOF. By a theorem of Weierstrass,4 the functions (1) are har­
monic in D; consequently it follows from the mean-value property of 
harmonic functions that the functions (4) coincide with the functions 
(1) in the open set Dp. Hence all mean-value surfaces associated with 
minimal surfaces given in isothermic representation by (1) are them­
selves minimal surfaces given in isothermic representation by (4) ; the 
surface Sp coincides with S for (u, v) in Dp. 

THEOREM 3.2. If the functions (1) are not identically constant and if 
they map a finite simply connected domain D is other mically on a sur­
face S that lies on a sphere S of finite non-null radius a, such that cir­
cles are mapped on circles, then each mean-value surface Sp associated 
with S lies on a surface of revolution Tp and is given in isothermic repre­
sentation by (4). Further, for 0 <p < «>, Tp is not a sphere. 

PROOF. I t has been pointed out, in a recently published paper,5 

that the functions (1) may be continued isothermically to map the 
entire closed uy p-plane isothermically on the whole of S ; further, the 
functions (1) have the representation 

4 If the functions (1) are harmonic in D, and if (2) holds in D, then the functions 
(1) are said to form a triple of conjugate harmonic functions) see E. F . Beckenbach 
and T. Radó, Subharmonic functions and minimal surfaces, Transactions of this So­
ciety, vol. 35 (1933), pp. 648-661. Then the theorem of Weierstrass may be stated as 
follows. A necessary and sufficient condition that the functions (1), defined in the domain 
D, be the coordinate functions of a minimal surface given in isothermic representation is 
that they form a triple of conjugate harmonic functions; loc. cit., p. 649. 

5 Loc. cit., see Footnote 2; see p. 375. 
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2a\k\ <Rf(z) 
xi = xi(u, v) = ax + 

(8) #2 = x$(u, v) = a% + 
2a | k | 3/(s) 

r 2 a i^ i i 

*-*«<« .»>-*L 1 - | y ( l ) | , . M , J ' 

/ ( s ) | 2 + P 

2a | & 

where ƒ (s) has one of the following forms : 

f(z) = az + p, ƒ(*) ^az + p, 

where a and P are constants. In (8), k=az±a, \k\ is the maximum 
of the two quantities | a 3 + # | and |a3 — a\ and (ai, a2, a3) are the co­
ordinates of the center of S . 

From 2.1-2.3, it follows that we may assume ai = a2 = a3 = 0, k=a> 
in (8), and that we may assume the funct ion/^) is given by 

(9) ƒ0) s as, a > 0. 

This is equivalent to assuming that the point z= <*> corresponds to 
the point P : (0, 0, a) on S , that the point 3 = 0 corresponds to the 
point P ' : (0, 0, —a) which is diametrically opposite P , and that the 
point in the z-plane corresponding to (a, 0, 0) is real and positive. 
Since we are investigating all mean-value surfaces associated with 5, 
it follows from 2.4 that we may take a = l in (9), in which case the 
functions (1) have the following familiar representation, as given by 
(8): 

2a2u 
X\ = Xi(u, v) = 

(10) x2 = xi{u, v) 

u2 + v2 + a2 

2a2v 
j 

u2 + v2 + a2 

2 
Xs = xs(u, v) = a 1 . 

If Cr is the circle u2+v2 = r2, and if 

z — u + iv = re**, 
then (4) and (10) yield 

^ I , P ( « , ») + i42fP(«, ») = e*[i4i,p(r, 0) + t42.p(r, 0)], 

•^3,p(w, v) = i48 ,P(r, 0 ) , 
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from which it follows that the map of Cr on the mean-value surface 
Tp} associated with the spheres which is denned by (10), is a circle C* 
in a plane perpendicular to the #3-axis; moreover, the center of C* is 
on the x3-axis. Since Sp lies on Tp, it follows that the functions (4) 
map Dp isothermically on a surface that lies on the surface of revolu­
tion Tp. 

In §4 it will appear that for 0 < p < <*>, Tp is not a sphere. Neverthe­
less, we shall call Tp a mean-value sphere. 

4. Mean-value spheres. The mean-value sphere Tp is a surface of 
revolution about the #3-axis. Accordingly, to investigate Tp, it is suffi­
cient to study the intersection JHP* of Tp with the plane X2 = 0. Since, 
by (10), 

x2(uy —- z>) == — x2(u, v), 

it follows that the intersection of Tp with the plane x2 = 0 can be ob­
tained from (4) by setting v = 0 in (10). A computation yields the fol­
lowing coordinate functions for 2"p* : 

#i = Ai,p(u, 0) 

s 4a2u/[a2 + p2 + u2 + ((a2 + p2 - u2)2 + 4a 2 « 2 ) 1 / 2 ] , 

#3 = A9§p(u, 0) 

2az a2 + p2 - u2 + ((a2 + p2 - u2)2 + 4 a V ) 1 ' 2 

== a log • 
p2 2a2 

W e make the following observat ions . 
4 .1 . T h e curve T* is symmet r i c a b o u t the #3-axis; since 

u2 + P
2 /u2 + p2 \ 

Ai,P(u, 0) 5 ^1>p( ; Oj , 

2a3 a2 + P2 /u2 + p2 \ 
As,p(u, 0) s 2a log ^3,p( > 0 ), 

p2 a2 \ u / 
it follows that JHP* is also symmetric about the line 

(12) xB = A3tP((a2 + p2)1'2, 0) = a - - log * + / • 
p2 a2 

From this symmetry and from the relations, 

2au dm 2a(a2 + p2 + u2) 
m = ; = —; 

a2 + p2 — u2 du (a2 + p2 — 2/2)2 

satisfied by the slope my it follows that !TP* is convex. 
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4.2. The height h and the width / of Tp* are given by 

2a3 a2 + P2 4a2 

h = log ; / = ; 
p 2 a 2 ( a 2 + p 2 ) i / 2 + ö > 

hence for 0 < p < oo ^ e am>e rp* is w£ a circ/e. Moreover, since 

/ 
lim — = oo, 
p-*» h 

it follows that JTP* "flattens out" while approaching the point (0, a), 
as p—> oo. 

4.3. Each member of the family [Tp*] passes through the point 
(0, a) and is tangent there to every other member of the family. For 
p = 0, !TP* is the circle xl+xl = a2, and for p = oo, rp* is the point (0, a). 

4.4. A computation shows that for 0 ^ p < p ' , TP>* is inside TP*, ex­
cept for their common point of tangency. 

The figure shows Tp* for p = 0, 1, 2(6)1/2, oo ; a = l. 

\Ai 

From 4.1-4.4 it follows that the family of surfaces [Tp] consists of 
convex surfaces each of which passes through the point (0, 0, a) in 
(xi, X2, Xs)-space and is tangent there to every other member of the 
family. The surface Tp is a surface of revolution about the #3-axis and 
is symmetric with respect to the plane 

az a2 + p2 

Xz = a - — log 
p2 a2 

Since the ratio of width to height —»<*> as p—><*>, it follows that Tp 

"flattens out" as p—»oo. For p = 0, Tp is the sphere about the origin 
with radius a, and for p = oo, Tp is the point (0, 0, a). For 0 ^ p ' < p , 
Tp is inside Tp>, except for their common point of tangency. From (11) 
we obtain the following isothermic representation for Tp: 
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[a2+w2+2'2+P2-((a2+P2-M2-f2)2+4a2(M2+f2))1 / 2] , 

Xi 

P2(«2+ 

ah 

V1) 

V) 

[a2+u2+v2+p2-((a2+p2-u2-v2)2+4a2(u2+v2))ll2l 
P2(u2+v2) 

2az ra2-u2-v2+p2+((a2+p2-u2-v2)2+^a2(u2+v2)y/2l 2a* fû 
. « - — log [_-

2a2 

T H E OHIO STATE UNIVERSITY AND 

T H E UNIVERSITY OF MICHIGAN 

NOTE ON THE DISTRIBUTION OF VALUES OF THE 
ARITHMETIC FUNCTION d{mY 

M. KAC 

1. Introduction. Recently Dr. Erdös and the present writer2 proved 
the following theorem: 

If v(m) denotes the number of different prime divisors of m and 
kn(o)) the number of positive integers m^n for which 

then 

The purpose of this note is to derive a similar theorem concerning the 
function d(m) which denotes the number of all different divisors of m 
(1 and m are included). 

In fact we are going to prove the following theorem: 
If rn(œ) denotes the number of positive integers m^n for which 

d(m) ^ 2lglgw+w(21gIgn)1/2, 

v(m) S 

Éw (to) 
hm 
n-*«o ft 

iglg 

= Tf -

n + to 

-1/2 j 

(2 lg lg ri 

0 

e~u du = 
JO 

) l / 2 , 

Z>(< 

1 Presented to the Society, May 2, 1941. 
2 P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number 

theoretic functions, American Journal of Mathematics, vol. 62, pp. 738-742. 


