
INDECOMPOSABLE CONNEXES1 

PAUL M. SWINGLE 

DEFINITION. A connected set M is an indecomposable connexe if and 
only if, for every two connected subsets H and K of M such that 
M=H+K, either H and M or K and M have the same closure.2 

Any connected subset N of an indecomposable continuum W, 
which is dense in W, such as any set of composants of W or W itself, 
is an indecomposable connexe, as is also a widely connected set.3 

EXAMPLE A.4 Let, in a euclidean plane, U be the points of a square, 
<2, plus its interior. Let Ui (i = l, 2, 3, • • • ) be a set of mutually ex­
clusive arcs each contained in U and having one and only one point, 
an end point, common with Q. Let the 27/s be taken so that every 
plane region of U is joined to every linear region of Q by at least 
one Ui. Let M=U-(Ui+U2+ • • • )• Then M is connected5 and 
such that, if H and K are connected and their sum is M, either H 
and M or K and M have the same closure. Hence M is an indecom­
posable connexe. 

EXAMPLE B. Let, in a euclidean plane, U be the points of a tri­
angle plus its interior, one vertex of which is the point a. Let Ui 
(i = l, 2, 3, • • • ) be a set of arcs, mutually exclusive, except for hav­
ing the common end point a, and whose sum is dense in U. Let further 
the Ui's be taken so that each two plane regions of U are joined by 
at least one Ui. Let M— U—(U\-\- Ü72+ • • • )• I t can be shown with­
out difficulty that M is an indecomposable connexe. 

1 Presented to the Society November 23, 1940. 
2 See S. Eilenberg, Topology du plan, Fundamenta Mathematicae, vol. 26, p. 81, 

for a definition of an indecomposable connected space. This definition is seen to be 
equivalent to the above for the types of spaces considered in these two papers. 

3 For definition and example see P. M. Swingle, Two types of connected sets, this 
Bulletin, vol. 37 (1931), pp. 254-258. 

4 E. W. Miller communicated this interesting example to me by letter in 1937 
calling attention to its relation to a widely connected set. The method of construction 
is somewhat similar to the well known boring process used to obtain a plane indecom­
posable continuum. See K. Yoneyama, Theory of continuous sets of points, Tôhoku 
Mathematical Journal, vol. 12 (1917), p. 60. That either H and M or K and M have 
the same closure is seen above by supposing that neither H nor K is dense in M, 
from which it readily follows that H and K can each have at most one point common 
with Q itself. 

5 E. W. Miller, Some theorems on continua, this Bulletin, vol. 46 (1940), p. 153, 
Theorem 3. 
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It is proposed to give here a generalization of some of the well 
known theorems on indecomposable continua6 by means of indecom­
posable connexes and the following definitions. The imbedding space 
will be one satisfying R. L. Moore's Axioms 0 and l.7 

DEFINITIONS. A connected subset K of a connected set M will be called 
a proper connexe subclosure of M if and only if M and K do not have 
the same closure. A connected set M is an irreducible connexe closure be­
tween two points a and b if and only if M contains a+b and there does 
not exist a proper connexe subclosure of M containing a+b. A connected 
set M is an irreducible joining connexe closure between a and b if and 
only if there exists a subset N of M such that both N and N+a+b are 
connected and, for all such N's, M and N have the same closure. 

Both a continuum and a connected set, irreducible between two 
points, are irreducible connexe closures between these two points. 
Also a widely connected set is an irreducible connexe closure between 
any two of its points. It is seen readily that if M is an irreducible 
connexe closure between a and b, then Mis an irreducible joining connexe 
closure between a and b. 

EXAMPLE C. In a euclidean plane let B be a biconnected set with 
dispersion point a and containing the point b distinct from a. Let W 
be an arc-wise connected set such that (a) if x and y are any two points 
of W then W+a contains arcs ax and ay such that one of these con­
tains the other, (b) for each x there exists but one arc ax, (c) the clos­
ure of W+a —ax contains B, and (d) the product of ax and the closure 
of B is a. Then M=W+B—a — b is an irreducible joining connexe 
closure from a to b, since each connected subset N of M, such that 
N+a+b is connected, contains W. However M+a+b is not an ir­
reducible connexe closure from a to b, since M+a+b contains B, 
which contains a+b, and B and M do not have the same closure. 

DEFINITIONS. A connected subset K of a connected set M is a connexe 
of condensation of M if and only if every point of K is a limit point 
of M—K. If M is connected a composant of M+ is a set of points Kp, 
which consists of a point p, of the closure of M but not necessarily of M, 
and of all points x of M such that there exists a proper connexe sub-
closure containing p+x and contained in M excepting perhaps for p. 

6 Brouwer, Zur Analysis situs, Mathematische Annalen, vol. 68 (1910), p. 426, 
gave the first example and definition of indecomposable continuum. For theorems on 
these sets see Z. Janiszewski and C. Kuratowski, Sur les continus indécomposables, 
Fundamenta Mathematicae, vol. 1, p. 215. 

7 Foundations of Point Set Theory, American Mathematical Society Colloquium 
Publications, vol. 13, 1932. 
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And Kp is a composant of M if and only if p is also contained in M, 
i.e.f if Kp is a component of M+ but is contained entirely in M. 

In a widely connected set M each composant of M consists of but 
one point, and each composant of M+ may consist of but one point. 
Hence it is not true that if K is such a composant of M every point 
of M is a limit point of K, which is however a useful theorem on in­
decomposable continua.8 

THEOREM 107'. Every composant of M+, where M is connected and 
its closure is compact, is the sum of a countable number of proper con­
nexe subclosures, each contained in M except perhaps for one point of 
the closure of M. 

PROOF. Let a be a point of the closure of M and let K denote the 
composant of M+ consisting of a and all points x of M such that 
M+a is not an irreducible connexe closure from a to x. Then there 
exists9 a countable set G of domains such that if q is any point of the 
closure of M and D is any domain containing q there exists a domain 
of G, containing q, and contained wholly in D. For each domain R 
of G, which does not contain a, let MR denote the maximal connected 
subset, containing a, of (M+a) -(S — R), S being the imbedding space. 
Let H denote the collection of all sets MR and let T denote the sum 
of all these proper connexe subclosures of M+a which are elements 
of H. The set H is countable. If g is a point of M — T then M+a is an 
irreducible connexe closure from a to q. For if there exists a proper 
connexe subclosure iVof M+a, containing a+q, there exists a domain 
g of G such that the product of the closures of g and N is vacuous, 
where g contains a point of M. Thus N would have been contained 
in an MR above and so N, and thus q, would be contained in T. There­
fore K is 2". Hence K is the sum of a countable number of proper 
connexe subclosures as the theorem states. 

COROLLARY 107'. If M is connected and its closure is compact, then 
every composant of M is the sum of a countable number of proper connexe 
subclosures of M. 

LEMMA A. If M is an indecomposable connexe and N is a proper 
connexe subclosure of M, then M—-M-N is connected.1* 

8 R. L. Moore, loc. cit., Theorem 106, p. 75. Below, the theorems are numbered to 
correspond to similar theorems on indecomposable continua, given by Moore, pp. 75-
78. It is to be noted the methods of proof are somewhat similar. 

9 R. LJMoore, loc. cit., Theorem 19, p. 14. 
10 By N is meant the closure of N. 
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PROOF. Suppose M—M-N is the sum of the two mutually sepa­
rated sets H and K. Then M is the sum of two proper connexe11 sub-
closures H+N- M and K+N- M and so M is not indecomposable. 

LEMMA A'. If M is an indecomposable connexe and N is a proper 
connexe subclosure of M, then M—N is connected. 

PROOF. By Lemma A M-M-~N is connected. Also ÏÏ-M is con­
nected since N is. As M is the sum of these two sets and M-N is a 
proper connexe subclosure, M-M-N cannot be proper. 

Suppose M—N is the sum of the mutually separate sets U and V. 
But M—N contains the connected set M—M- "N and so either U or V 
contains it also. Say U does. Then M and U must have the same 
closure. But then points of V are limit points of U which is a con­
tradiction. Hence M—N is connected. 

THEOREM A. If M is an indecomposable connexe and W a connected 
subset of M such that M and W have the same closure, then W is an in­
decomposable connexe. 

PROOF. Let N=M— W and suppose W=H+K, H and K proper 
connexe subclosures of W. As N is contained in W = H + K, let 
HN = H' a n d _ ï ? i V = ü : ' . Thus H+H' and K+K' axe connected 
sets.12 But as H contains the closure of H+H' and J£ the closure 
of K+K', M=W+N is the sum of these two proper connexe sub-
closures and so M is not indecomposable. 

COROLLARY A. If M is an indecomposable connexe and N is both a 
proper connexe subclosure and a connexe of condensation of M, then 
M — N is an indecomposable connexe. 

PROOF. By Lemma A M—N is connected and by definition of con­
nexe of condensation M and M—N have the same closure. Thus the 
corollary follows from Theorem A. 

COROLLARY A'. If M+f is an indecomposable connexe, M connected 
and f finite, then M is an indecomposable connexe. 

Theorem A and its corollaries treat the case where an indecomposa­
ble connexe is given and the subtraction of points gives an indecompos­
able connexe. This suggests the following addition problem: Let M 
be an indecomposable connexe and p a point of M — M. Is M+p an 
indecomposable connexe? This problem is left unsolved here. 

11 R. L. Moore, loc. cit., Theorem 47, p. 33. 
™ R. L. Moore, Theorem 27, p. 17. 
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THEOREM 108'. Let M be connected. Then in order that M be an 
indecomposable connexe it is necessary and sufficient that every proper 
connexe subclosure of M be a connexe of condensation of M. 

PROOF. The condition is sufficient. For suppose M is not indecom­
posable. Then M is the sum of two proper connexe subclosures H 
and K. Thus there exists a point q of H which is not a limit point of K. 
But K contains M—H. Thus q is not a limit point of M—H and so H 
is not a connexe of condensation of M. 

The condition is necessary. For suppose N is a proper connexe 
subclosure of M but that not every point of N is a limit point of 
M—N. By Lemma A' M—N is connected but the closures of M and 
M—N are not the same. Hence M is the sum of two proper connexe 
subclosures iVand M—N which is a contradiction. 

THEOREM 108". Let M be connected. Then in order that M be an 
indecomposable connexe it is necessary and sufficient that the closure of 
every proper connexe subclosure of M be a continuum of condensation 
of the closure of M. 

PROOF. The condition is sufficient. For suppose H and K are as in 
the proof above and that g is a point of H which is not a limit point 
of K. As M—U+lK. and q^K = 0 q is not a limit point of M—TI con­
tained in K. Thus H is not a continuum of condensation of M. 

The condition is necessary. As M is indecomposable, by Lemma A, 
M — M• N is connected, where N is a proper connexe subclosure of M. 
Hence M is the sum of the two connected sets M—M-N and M- N, 
the latter being a proper connexe subclosure of M. Hence M—M-N 
is not proper and so every point of M-N, and so of N, is a limit 
point of M—M-N. Thus every point of N is a limit point of 
M—M-lf=(M+7f) — 7f. Therefore every point of Tf is a limit point 
ol M — N and so N is a continuum of condensation of M. 

Let B be a composant of an indecomposable continuum K, where 
K—B contains an arc A. Let c and d be two points of A such that 
A -c-d = A'+A"+A'", where A', A", and A'" are mutually sepa­
rated sets, but A'+c+A" and A"+d+A'" are connected. Let 
M = B+A'+A"+A'". Then M is an indecomposable connexe. The 
composant of M+ containing c is A'+c+A" and the one contain­
ing d is A"+d+A'". Thus two composants of M+ are not neces­
sarily mutually exclusive. 

THEOREM 109'. If M is an indecomposable connexe, whose closure is 
compact, then no two composants of M have a point in common. 
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PROOF. For each point p of M let Mv denote the set of points x 
such that M is not an irreducible connexe closure from p to x. If b is a 
point of Ma then Mb = Ma. For suppose not and that x is any point 
of Ma and y is of AT&. Then there exist proper connexe subclosures 
Nax, Nbv, Nab of M. Suppose Nab + Nax—M. But Nab and Nax are con­
tinua of condensation of M by Theorem 108". This is a contradic­
tion.13 Therefore Nab+Nax is a proper connexe subclosure of M as is 
similarly (Nab+Nax)+Nby. Hence Nab + Nax+Nby is contained in both 
Ma and in Mb and so ikf« = Mb- Hence if two composants have a point 
in common they are the same composant. 

Since a composant of an indecomposable continuum is itself an in­
decomposable connexe it is not true that an indecomposable connexe 
contains uncountably many composants. A composant of M+ how­
ever may consist of a single point. Thus we have the following theo­
rem. 

THEOREM 110'. If M is an indecomposable connexe whose closure is 
compact and, for every point p of M — M, M+p is an indecomposable 
connexe j then there exist an uncountable number of composants of M+. 

PROOF. Suppose there exist but a countable number of composants 
of M+. Then by Theorem 107' M is contained in a countable number 
of proper connexe subclosures of M. Say these are the elements of the 
set (N). An N of (N) contains at most one point p of M — M and by 
hypothesis M+p is an indecomposable connexe. Hence by Theorem 
108" TV is a continuum of condensation of M+p — M. But M is the 
sum of the IV's of (N), since M is the sum of the N's. As this is a con­
tradiction14 the theorem is true. 

THEOREM 111'. If M is connected and its closure is compact then in 
order that M be an indecomposable connexe it is necessary and sufficient 
that there exist three distinct points such that M is an irreducible joining 
connexe closure between any two of them. 

PROOF. The condition is sufficient. For if M is the sum of the con­
nexes H and K, one of these has at least two of the three points as 
limit points and so it and M have the same closure. 

The condition is necessary. For if M contains three points x, y, 
and z such that each of these is in a different composant, M is an 
irreducible connexe closure between any two of these points. Consider 
the case where M contains only the one composant 7\ containing a 

13 R. L. Moore, loc. cit., Theorem 15, p. 11. 
14 R. L. Moore, loc. cit., Theorem 15, p. 11. 
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point x. Then by Corollary 107' M is the sum of the elements of a 
countable class (N), each element of which is a proper connexe sub-
closure. Then by Theorem 108" every N of (N) is a continuum of 
condensation of M. But if M is the sum of the iV's this is a contradic­
tion.15 Hence M — M contains points y and z which are not contained 
in any N of (N). Thus if the connected set Ü of T contains x and has z 
as a limit point, H and M have the same closure. Thus M is an irre­
ducible joining connexe closure from xtoz and similarity from x to y. 
Suppose M contains a proper connexe subclosure N' which has y and z 
as limit points. Because of the nature of H above, N' does not con­
tain x. From the manner of constructing the sets N of (N) in Theorem 
107', using x for the point a there, it is seen that N' is contained in 
an N of (N) and so does not have y or z as a limit point. Therefore M 
is an irreducible joining connexe closure between y and z also. In case 
M is the sum of two composants, y and z can be taken as above and 
the proof completed.16 

THEOREM 112'. If a is a point of an indecomposable connexe M 
whose closure is compact and K is the set of all points x such that M is an 
irreducible joining connexe closure from a to x, then K is dense in M. 

PROOF. Suppose that there exists a region R, containing a point of 
Af, such that R does not contain a point of K. Let N be a maximal 
connected subset of R-M. Then by Lemma A M—M- N is connected 
as N is a proper connexe subclosure of M. Thus N is a continuum of 
condensation of M. Hence17 the locally compact closed set M-R is 
not the sum of the closures of a countable number of composants of 
MR. Hence by Theorem 107' M -7Î is not contained in the sum of 
the closures of the countable number of proper connexe subclosures 

16 R. L. Moore, loc. cit., Theorem 15, p. 11. 
16 The question arises whether the condition in Theorem 111' might be changed to 

"there exist three points x, y, and z such that M-\-x-\-y-\-z is an irreducible connexe 
closure between any two of these." That three points might be taken so that M-\-y, 
say, is not an irreducible connexe closure between y and some point of M is seen by 
the following example. Let interior to the square Q, of Example A above, (V) be the 
set of straight line intervals joining a Cantor ternary set, on a line /, to a point y 
not on t. Take the Uis as in Example A, except that no Ui has a point common with 
a F of (V). Let B-\-y be a biconnected subset of the sum of the elements of (V), 
B being totally disconnected. Let M— U—iUi-^Ui-^ • • • ) —(points of the elements 
of ( TO) -\-B. Then M is indecomposable but M+y is not an irreducible connexe closure 
between y and a point of B. See Example C above. Whether M could be taken so 
that each point of M—M is as y and M-\-y is not an irreducible connexe closure be­
tween any two points is a question. 

17 R. L. Moore, loc. cit., Theorem 15, p. 11. 
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of the composant of M which contains a. Therefore by a proof similar 
to that of Theorem 111' M is an irreducible joining connexe closure 
between a and some point of (M — M) R. Thus K is dense in M. 

If T is the sum of a countable number of proper connexe subclosures 
of an indecomposable connexe M, since M may be a composant of 
an indecomposable continuum, it is readily seen that M—T may be 
disconnected. However, by repeated use of Lemma A, Theorem 108', 
and Theorem A, the following theorem is seen to be true. 

THEOREM 113'. If T is the sum of a finite number of mutually ex­
clusive proper connexe subclosures of an indecomposable connexe M, then 
M—T is a non-vacuous indecomposable connexe. 

The two following theorems are proven in a manner similar to that 
used for the corresponding theorems on continua. 

THEOREM 114'. If a is a point of a decomposable connexe M, there 
exists a domain D containing a such that M is not an irreducible connexe 
closure from a to any point of D. 

THEOREM 115'. If a and b are two distinct points, M is an irreducible 
connexe closure from a tob, and T is a proper connexe subclosure of M 
containing b> then M—M- T is connected. 
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